// This file is part of libigl, a simple c++ geometry processing library. // // Copyright (C) 2013 Alec Jacobson // // This Source Code Form is subject to the terms of the Mozilla Public License // v. 2.0. If a copy of the MPL was not distributed with this file, You can // obtain one at http://mozilla.org/MPL/2.0/. #include "mat_to_quat.h" #include // This could be replaced by something fast template static inline Q_type ReciprocalSqrt( const Q_type x ) { return 1.0/sqrt(x); } //// Converts row major order matrix to quat //// http://software.intel.com/sites/default/files/m/d/4/1/d/8/293748.pdf //template //IGL_INLINE void igl::mat4_to_quat(const Q_type * m, Q_type * q) //{ // Q_type t = + m[0 * 4 + 0] + m[1 * 4 + 1] + m[2 * 4 + 2] + 1.0f; // Q_type s = ReciprocalSqrt( t ) * 0.5f; // q[3] = s * t; // q[2] = ( m[0 * 4 + 1] - m[1 * 4 + 0] ) * s; // q[1] = ( m[2 * 4 + 0] - m[0 * 4 + 2] ) * s; // q[0] = ( m[1 * 4 + 2] - m[2 * 4 + 1] ) * s; //} // https://bmgame.googlecode.com/svn/idlib/math/Simd_AltiVec.cpp template IGL_INLINE void igl::mat4_to_quat(const Q_type * mat, Q_type * q) { Q_type trace; Q_type s; Q_type t; int i; int j; int k; static int next[3] = { 1, 2, 0 }; trace = mat[0 * 4 + 0] + mat[1 * 4 + 1] + mat[2 * 4 + 2]; if ( trace > 0.0f ) { t = trace + 1.0f; s = ReciprocalSqrt( t ) * 0.5f; q[3] = s * t; q[0] = ( mat[1 * 4 + 2] - mat[2 * 4 + 1] ) * s; q[1] = ( mat[2 * 4 + 0] - mat[0 * 4 + 2] ) * s; q[2] = ( mat[0 * 4 + 1] - mat[1 * 4 + 0] ) * s; } else { i = 0; if ( mat[1 * 4 + 1] > mat[0 * 4 + 0] ) { i = 1; } if ( mat[2 * 4 + 2] > mat[i * 4 + i] ) { i = 2; } j = next[i]; k = next[j]; t = ( mat[i * 4 + i] - ( mat[j * 4 + j] + mat[k * 4 + k] ) ) + 1.0f; s = ReciprocalSqrt( t ) * 0.5f; q[i] = s * t; q[3] = ( mat[j * 4 + k] - mat[k * 4 + j] ) * s; q[j] = ( mat[i * 4 + j] + mat[j * 4 + i] ) * s; q[k] = ( mat[i * 4 + k] + mat[k * 4 + i] ) * s; } //// Unused translation //jq.t[0] = mat[0 * 4 + 3]; //jq.t[1] = mat[1 * 4 + 3]; //jq.t[2] = mat[2 * 4 + 3]; } template IGL_INLINE void igl::mat3_to_quat(const Q_type * mat, Q_type * q) { Q_type trace; Q_type s; Q_type t; int i; int j; int k; static int next[3] = { 1, 2, 0 }; trace = mat[0 * 3 + 0] + mat[1 * 3 + 1] + mat[2 * 3 + 2]; if ( trace > 0.0f ) { t = trace + 1.0f; s = ReciprocalSqrt( t ) * 0.5f; q[3] = s * t; q[0] = ( mat[1 * 3 + 2] - mat[2 * 3 + 1] ) * s; q[1] = ( mat[2 * 3 + 0] - mat[0 * 3 + 2] ) * s; q[2] = ( mat[0 * 3 + 1] - mat[1 * 3 + 0] ) * s; } else { i = 0; if ( mat[1 * 3 + 1] > mat[0 * 3 + 0] ) { i = 1; } if ( mat[2 * 3 + 2] > mat[i * 3 + i] ) { i = 2; } j = next[i]; k = next[j]; t = ( mat[i * 3 + i] - ( mat[j * 3 + j] + mat[k * 3 + k] ) ) + 1.0f; s = ReciprocalSqrt( t ) * 0.5f; q[i] = s * t; q[3] = ( mat[j * 3 + k] - mat[k * 3 + j] ) * s; q[j] = ( mat[i * 3 + j] + mat[j * 3 + i] ) * s; q[k] = ( mat[i * 3 + k] + mat[k * 3 + i] ) * s; } //// Unused translation //jq.t[0] = mat[0 * 4 + 3]; //jq.t[1] = mat[1 * 4 + 3]; //jq.t[2] = mat[2 * 4 + 3]; } #ifdef IGL_STATIC_LIBRARY // Explicit template instantiation template void igl::mat4_to_quat(double const*, double*); template void igl::mat4_to_quat(float const*, float*); template void igl::mat3_to_quat(double const*, double*); #endif