// Copyright (c) 2006-2008 Max-Planck-Institute Saarbruecken (Germany). // All rights reserved. // // This file is part of CGAL (www.cgal.org); you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation; either version 3 of the License, // or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: LGPL-3.0+ // // // Author(s) : Michael Hemmer //============================================================================ #ifndef CGAL_CORE_BIGFLOAT_H #define CGAL_CORE_BIGFLOAT_H #include #include #include #include #include #include namespace CGAL { // ######### Interval_traits template<> class Interval_traits : public internal::Interval_traits_base{ typedef CORE::BigFloat Interval; public: typedef Interval_traits Self; typedef CORE::BigFloat Type; typedef CORE::BigFloat Bound; typedef CGAL::Tag_true Is_interval; typedef CGAL::Tag_true Is_bigfloat_interval; struct Lower :public CGAL::cpp98::unary_function{ Bound operator() ( Interval x ) const { CORE::BigFloat result = ::CORE::BigFloat(x.m()-x.err(),0,x.exp()); CGAL_postcondition(result <= x); return result; } }; struct Upper :public CGAL::cpp98::unary_function{ Bound operator() ( Interval x ) const { CORE::BigFloat result = ::CORE::BigFloat(x.m()+x.err(),0,x.exp()); CGAL_postcondition(result >= x); return result; } }; struct Width :public CGAL::cpp98::unary_function{ Bound operator() ( Interval x ) const { unsigned long err = 2*x.err(); return Bound(CORE::BigInt(err),0,x.exp()); } }; struct Median :public CGAL::cpp98::unary_function{ Bound operator() ( Interval x ) const { return Bound(x.m(),0,x.exp()); } }; struct Norm :public CGAL::cpp98::unary_function{ Bound operator() ( Interval x ) const { BOOST_USING_STD_MAX(); return max BOOST_PREVENT_MACRO_SUBSTITUTION (Upper()(x).abs(),Lower()(x).abs()); } }; struct Zero_in :public CGAL::cpp98::unary_function{ bool operator() ( Interval x ) const { return x.isZeroIn(); } }; struct In :public CGAL::cpp98::binary_function{ bool operator()( Bound x, const Interval& a ) const { CGAL_precondition(CGAL::singleton(x)); return (Lower()(a) <= x && x <= Upper()(a)); } }; struct Equal :public CGAL::cpp98::binary_function{ bool operator()( const Interval& a, const Interval& b ) const { return (Upper()(a) == Upper()(b) && Lower()(a) == Lower()(b)); } }; struct Subset :public CGAL::cpp98::binary_function{ bool operator()( const Interval& a, const Interval& b ) const { return Lower()(b) <= Lower()(a) && Upper()(a) <= Upper()(b); } }; struct Proper_subset :public CGAL::cpp98::binary_function{ bool operator()( const Interval& a, const Interval& b ) const { return Subset()(a,b) && (!Equal()(a,b)); } }; struct Intersection :public CGAL::cpp98::binary_function{ Interval operator()( const Interval& a, const Interval& b ) const { BOOST_USING_STD_MAX(); BOOST_USING_STD_MIN(); // std::cout <<"a= (" << a.m() << "+-" << a.err() << ")*2^" << a.exp() << std::endl; Bound l(max BOOST_PREVENT_MACRO_SUBSTITUTION (Lower()(a),Lower()(b))); Bound u(min BOOST_PREVENT_MACRO_SUBSTITUTION (Upper()(a),Upper()(b))); if(u < l ) throw Exception_intersection_is_empty(); return Construct()(l,u); } }; struct Overlap :public CGAL::cpp98::binary_function{ bool operator() ( Interval x, Interval y ) const { Self::Zero_in Zero_in; bool result = Zero_in(x-y); return result; } }; struct Hull :public CGAL::cpp98::binary_function{ // for debugging /* void print_bf(CORE::BigFloat bf, std::string s) const { std::cout << s << ".m()=" << bf.m() << "," << s << ".err()=" << bf.err() << "," << s << ".exp()=" << bf.exp() << "," << "td=" << bf << std::endl; } */ Interval operator() ( Interval x, Interval y ) const { BOOST_USING_STD_MAX(); BOOST_USING_STD_MIN(); #if 0 // this is not possible since CORE::centerize has a bug. Interval result = CORE::centerize(x,y); #else //print_bf(x,"x"); //print_bf(y,"y"); CORE::BigFloat result; // Unfortunately, CORE::centerize(x,y) has bugs. if ((x.m() == y.m()) && (x.err() == y.err()) && (x.exp() == y.exp())) { return x; } CORE::BigFloat lower = min BOOST_PREVENT_MACRO_SUBSTITUTION (CGAL::lower(x), CGAL::lower(y)); CORE::BigFloat upper = max BOOST_PREVENT_MACRO_SUBSTITUTION (CGAL::upper(x), CGAL::upper(y)); CORE::BigFloat mid = (lower + upper)/2; //print_bf(lower,"lower"); //print_bf(upper,"upper"); //print_bf(mid,"mid"); // Now we have to compute the error. The problem is that .err() is just a long CORE::BigFloat err = (upper - lower)/CORE::BigFloat(2); //print_bf(err,"err"); //std::cout << "lower " << lower << std::endl; //std::cout << "upper " << upper << std::endl; //std::cout << "mid " << mid << std::endl; //std::cout << "err I " << err << std::endl; // shift such that err.m()+err.err() fits into long int digits_long = std::numeric_limits::digits; if(::CORE::bitLength(err.m()+err.err()) >= digits_long){ long shift = ::CORE::bitLength(err.m()) - digits_long + 1 ; //std::cout << "shift " << shift<< std::endl; long new_err = ((err.m()+err.err()) >> shift).longValue()+1; err = CORE::BigFloat(0,new_err,0) * CORE::BigFloat::exp2(err.exp()*CORE::CHUNK_BIT+shift); }else{ err = CORE::BigFloat(0,err.m().longValue()+err.err(),err.exp()); } //print_bf(err,"new_err"); // TODO: This is a workaround for a bug in operator+ // of CORE::Bigfloat. If the exponent difference is too big, // this might cause problems, since the error is a long if(mid.exp() > err.exp()) { long mid_err = mid.err(); CORE::BigInt mid_m = mid.m(); mid_err = mid_err << (mid.exp()-err.exp())*CORE::CHUNK_BIT; mid_m = mid_m << (mid.exp()-err.exp())*CORE::CHUNK_BIT; mid = CORE::BigFloat(mid_m,mid_err,err.exp()); //print_bf(mid,"corr_mid"); } //print_bf(result,"result"); result = mid + err; #endif CGAL_postcondition( CGAL::lower(result) <= min BOOST_PREVENT_MACRO_SUBSTITUTION (CGAL::lower(x), CGAL::lower(y))); CGAL_postcondition( CGAL::upper(result) >= max BOOST_PREVENT_MACRO_SUBSTITUTION (CGAL::upper(x), CGAL::upper(y))); return result ; } }; struct Singleton :public CGAL::cpp98::unary_function { bool operator() ( Interval x ) const { return (x.err() == 0); } }; struct Construct :public CGAL::cpp98::binary_function{ Interval operator()( const Bound& l,const Bound& r) const { CGAL_precondition( l < r ); return Hull()(l,r); } }; }; // ########### Bigfloat_interval_traits // template long relative_precision(BFI bfi); namespace internal{ CORE::BigFloat inline round(const CORE::BigFloat& x, long rel_prec = CORE::get_static_defRelPrec().toLong() ){ CGAL_postcondition(rel_prec >= 0); // since there is not rel prec defined if Zero_in(x) if (x.isZeroIn()) return x; // if (CGAL::get_significant_bits(x) <= rel_prec) return x; // if 1 // CORE::BigFloat xr; // xr.approx(x,rel_prec,1024); // typedef CORE::BigFloat BF; // else typedef CORE::BigFloat BF; BF xr; CORE::BigInt m = x.m(); long err = x.err(); long exp = x.exp(); // std::cout <<"(" << m << "+-" < 0 ){ m >>= shift ; err >>= shift; xr = BF(m,err+1,0)*BF::exp2(exp*CORE::CHUNK_BIT+shift); }else{ // noting to do xr = x; } // std::cout <<"(" <= 0); CGAL_postcondition(singleton(xr) || CGAL::relative_precision(xr) - rel_prec <= 32); CGAL_postcondition(BF(xr.m()-xr.err(),0,xr.exp()) <= BF(x.m()-x.err(),0,x.exp())); CGAL_postcondition(BF(xr.m()+xr.err(),0,xr.exp()) >= BF(x.m()+x.err(),0,x.exp())); return xr; } } template<> class Bigfloat_interval_traits :public Interval_traits { typedef CORE::BigFloat NT; typedef CORE::BigFloat BF; public: typedef Bigfloat_interval_traits Self; struct Relative_precision { // type for the \c AdaptableUnaryFunction concept. typedef NT argument_type; // type for the \c AdaptableUnaryFunction concept. typedef long result_type; long operator()( NT x) const { CGAL_precondition(!Singleton()(x)); CGAL_precondition(!CGAL::zero_in(x)); x = x.abs(); NT w = Width()(x); w /= ::CORE::BigFloat(x.m()-x.err(),0,x.exp()); w = w.abs(); return -(CORE::ceilLg(w.m()+w.err())+w.exp()*CORE::CHUNK_BIT); } }; struct Set_precision { // type for the \c AdaptableUnaryFunction concept. typedef long argument_type; // type for the \c AdaptableUnaryFunction concept. typedef long result_type; long operator() ( long prec ) const { long result = ::CORE::get_static_defRelPrec().toLong(); ::CORE::get_static_defRelPrec() = prec; ::CORE::get_static_defBFdivRelPrec() = prec; return result; } }; struct Get_precision { // type for the \c AdaptableGenerator concept. typedef long result_type; long operator() () const { return ::CORE::get_static_defRelPrec().toLong(); } }; }; // // Algebraic structure traits // template <> class Algebraic_structure_traits< CORE::BigFloat > : public Algebraic_structure_traits_base< CORE::BigFloat, Field_with_kth_root_tag > { public: typedef Tag_false Is_exact; typedef Tag_true Is_numerical_sensitive; class Sqrt : public CGAL::cpp98::unary_function< Type, Type > { public: Type operator()( const Type& x ) const { // What I want is a sqrt computed with // ::CORE::get_static_defRelPrec() bits. // And not ::CORE::defBFsqrtAbsPrec as CORE does. CGAL_precondition(::CORE::get_static_defRelPrec().toLong() > 0); CGAL_precondition(x > 0); Type a = CGAL::internal::round( x, ::CORE::get_static_defRelPrec().toLong()*2); CGAL_postcondition(a > 0); Type tmp1 = CORE::BigFloat( a.m(),0,0).sqrt(::CORE::get_static_defRelPrec().toLong()); Type err = Type(0,long(std::sqrt(double(a.err()))),0) * CORE::BigFloat::exp2(a.exp()*7); Type result = tmp1*CORE::BigFloat::exp2(a.exp()*7) + err; CGAL_postcondition(result >= 0); CGAL_postcondition(CGAL::lower(result*result) <= CGAL::lower(x)); CGAL_postcondition(CGAL::upper(result*result) >= CGAL::upper(x)); return result; } }; class Kth_root : public CGAL::cpp98::binary_function { public: Type operator()( int k, const Type& x) const { CGAL_precondition_msg( k > 0, "'k' must be positive for k-th roots"); // CORE::radical isn't implemented for negative values of x, so we // have to handle this case separately if( x < 0 && k%2 != 0) { return Type(-CORE::radical( -x, k ) ); } return Type( CORE::radical( x, k ) ); } }; }; // // Real embeddable traits // template <> class Real_embeddable_traits< CORE::BigFloat > : public INTERN_RET::Real_embeddable_traits_base< CORE::BigFloat , CGAL::Tag_true > { public: class Abs : public CGAL::cpp98::unary_function< Type, Type > { public: Type operator()( const Type& x ) const { Type result; if(x.isZeroIn()){ CORE::BigInt m; if(x.m() < 0 ){ m = -(x.m()-x.err()); }else{ m = x.m()+x.err(); } if(m % 2 == 1) m += 1; Type upper(m,0,x.exp()); result = CORE::centerize(CORE::BigFloat(0),upper); CGAL_postcondition(result.m()-result.err() <= 0); if(result.m()-result.err() != 0){ result = this->operator()(result); } CGAL_postcondition(result.m()-result.err() == 0); }else{ result = CORE::abs(x); } CGAL_postcondition(result.m()-result.err() >= 0); CGAL_postcondition(Type(result.m()+result.err(),0,result.exp()) >= Type(x.m()+x.err(),0,x.exp())); return result; } }; class Sgn : public CGAL::cpp98::unary_function< Type, ::CGAL::Sign > { public: ::CGAL::Sign operator()( const Type& x ) const { ::CGAL::Sign result = sign( x.sign()); return result; } }; class Compare : public CGAL::cpp98::binary_function< Type, Type, Comparison_result > { public: Comparison_result operator()( const Type& x, const Type& y ) const { return (Comparison_result) sign( (x-y).sign()); } CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR_WITH_RT( Type, Comparison_result ) }; class To_double : public CGAL::cpp98::unary_function< Type, double > { public: double operator()( const Type& x ) const { // this call is required to get reasonable values for the double // approximation return x.doubleValue(); } }; class To_interval : public CGAL::cpp98::unary_function< Type, std::pair< double, double > > { public: std::pair operator()( const Type& x ) const { double lb,ub; Type x_lower = CGAL::lower(CGAL::internal::round(CGAL::lower(x),50)); Type x_upper = CGAL::upper(CGAL::internal::round(CGAL::upper(x),50)); // since matissa has 50 bits only, conversion to double is exact lb = x_lower.doubleValue(); CGAL_postcondition(lb == x_lower); ub = x_upper.doubleValue(); CGAL_postcondition(ub == x_upper); std::pair result(lb,ub); CGAL_postcondition( result.first <= CORE::Expr(CGAL::lower(x))); CGAL_postcondition( result.second >= CORE::Expr(CGAL::upper(x))); return result; } }; }; } //namespace CGAL //since types are included by CORE_coercion_traits.h: #include #include #include #include #include namespace Eigen { template struct NumTraits; template<> struct NumTraits { typedef CORE::BigFloat Real; typedef CORE::BigFloat NonInteger; typedef CORE::BigFloat Nested; typedef CORE::BigFloat Literal; static inline Real epsilon() { return 0; } static inline Real dummy_precision() { return 0; } enum { IsInteger = 0, IsSigned = 1, IsComplex = 0, RequireInitialization = 1, ReadCost = 6, AddCost = 60, MulCost = 60 }; }; } #endif // CGAL_CORE_BIGFLOAT_H