// Copyright (c) 2005 Tel-Aviv University (Israel). // All rights reserved. // // This file is part of CGAL (www.cgal.org). // You can redistribute it and/or modify it under the terms of the GNU // General Public License as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: GPL-3.0+ // // Author(s) : Michal Meyerovitch // Baruch Zukerman // Ron Wein // Efi Fogel #ifndef CGAL_ENV_SPHERE_TRAITS_3_H #define CGAL_ENV_SPHERE_TRAITS_3_H #include #include #include #include #include #include #include #include namespace CGAL { template class Env_sphere_traits_3 : public ConicTraits_2 { public: typedef ConicTraits_2 Traits_2; typedef Env_sphere_traits_3 Self; typedef typename Traits_2::Point_2 Point_2; typedef typename Traits_2::Curve_2 Curve_2; typedef typename Traits_2::X_monotone_curve_2 X_monotone_curve_2; typedef typename Traits_2::Multiplicity Multiplicity; typedef typename Traits_2::Rat_kernel Rat_kernel; typedef typename Traits_2::Alg_kernel Alg_kernel; typedef typename Traits_2::Nt_traits Nt_traits; typedef typename Rat_kernel::FT Rational; typedef typename Rat_kernel::Point_2 Rat_point_2; typedef typename Rat_kernel::Segment_2 Rat_segment_2; typedef typename Rat_kernel::Line_2 Rat_line_2; typedef typename Rat_kernel::Circle_2 Rat_circle_2; typedef typename Rat_kernel::Point_3 Rat_point_3; typedef typename Alg_kernel::FT Algebraic; typedef typename Alg_kernel::Point_2 Alg_point_2; typedef typename Alg_kernel::Circle_2 Alg_circle_2; typedef typename Rat_kernel::Sphere_3 Surface_3; // here we refer to the lower part of the sphere only typedef Surface_3 Xy_monotone_surface_3; protected: typedef std::pair Intersection_curve; public: class Make_xy_monotone_3 { protected: const Self & parent; public: Make_xy_monotone_3(const Self * p) : parent(*p) {} // create xy-monotone surfaces from a general surface // return a past-the-end iterator template OutputIterator operator()(const Surface_3& s, bool is_lower, OutputIterator o) const { // our half sphere is of same type as our full sphere since we always // need only the lower/upper part of each sphere parent.m_is_lower = is_lower; *o++ = s; return o; } }; /*! Get a Make_xy_monotone_3 functor object. */ Make_xy_monotone_3 make_xy_monotone_3_object() const { return Make_xy_monotone_3(this); } class Construct_projected_boundary_2 { protected: const Self & parent; public: Construct_projected_boundary_2(const Self * p) : parent(*p) {} // insert into the OutputIterator all the (2d) curves of the boundary of // the vertical projection of the surface on the xy-plane // the OutputIterator value type is X_monotone_curve_2 template OutputIterator operator()(const Xy_monotone_surface_3& s, OutputIterator o) const { // the projected boundary in a circle, with a projected center, // and same radius Rat_point_2 proj_center = parent.project(s.center()); Rat_circle_2 circ(proj_center, s.squared_radius()); Curve_2 curve(circ); Object objs[2]; CGAL_assertion_code(Object *p = ) parent.make_x_monotone_2_object()(curve, objs); CGAL_assertion(p == objs + 2); X_monotone_curve_2 cv1, cv2; CGAL_assertion(assign(cv1, objs[0])); CGAL_assertion(assign(cv2, objs[1])); assign(cv1, objs[0]); assign(cv2, objs[1]); if(cv1.is_lower()) { CGAL_assertion(cv2.is_upper()); *o++ = make_object(std::make_pair(cv1, ON_POSITIVE_SIDE)); *o++ = make_object(std::make_pair(cv2, ON_NEGATIVE_SIDE)); } else { CGAL_assertion(cv2.is_lower()); *o++ = make_object(std::make_pair(cv1, ON_NEGATIVE_SIDE)); *o++ = make_object(std::make_pair(cv2, ON_POSITIVE_SIDE)); } return o; } }; /*! Get a Construct_projected_boundary_2 functor object. */ Construct_projected_boundary_2 construct_projected_boundary_2_object() const { return Construct_projected_boundary_2(this); } class Construct_projected_intersections_2 { protected: const Self & parent; public: Construct_projected_intersections_2(const Self * p) : parent(*p) {} // insert into OutputIterator all the (2d) projections on the xy plane of // the intersection objects between the 2 surfaces // the data type of OutputIterator is Object template OutputIterator operator()(const Xy_monotone_surface_3& s1, const Xy_monotone_surface_3& s2, OutputIterator o) const { Rat_point_3 p1 = s1.center(); Rat_point_3 p2 = s2.center(); const Rational a1 = p1.x(), b1 = p1.y(), c1 = p1.z(), a2 = p2.x(), b2 = p2.y(), c2 = p2.z(); const Rational sqr_r1 = s1.squared_radius(), sqr_r2 = s2.squared_radius(); // // the spheres intersect iff d(p1, p2) <= (r1+r2) // // squaring this twice, we get the condition // // sqr_d^2 + (1-2*sqr_d)(sqr_r1 + sqr_r2) - 2*sqr_r1*sqr_r2 <= 0 // // with only rational numbers involved. // // todo: check if it helps // Rat_kernel ratk; // Rational sqr_d = ratk.compute_squared_distance_3_object()(p1, p2); // Sign do_inter = CGAL_NTS sign(sqr_d*sqr_d + (1-2*sqr_d)*(sqr_r1+sqr_r2)-2*sqr_r1*sqr_r2); // if (do_inter == POSITIVE) // return o; Nt_traits nt_traits; // we check if the centers of the 2 spheres have same z coordinate - // in this case the potential projected intersection is a segment // (or point) if (CGAL_NTS compare(c1, c2) == EQUAL) { if (CGAL_NTS compare(b1, b2) == EQUAL) { if (CGAL_NTS compare(a1, a2) == EQUAL) // the same center, we have no intersection // (we don't return overlappings as intersections) { return o; } // here we have c1 == c2, b1 == b2 // the intersection lies on the plane // m // (1) x = -------- // 2(a1-a2) // where m = (a1^2 - a2^2 + sqr_r2 - sqr_r1) // which is orthogonal to the xy-plane // we look at the intersection of this plane with the plane z = c1 // to get the projected segment of the spheres intersection // we get the quadratic equation: // A*y^2 + B*y + C = 0, where: // A = 4(a1-a2)^2 // B = -8b1(a1-a2)^2 // C = m^2 - 4ma1(a1-a2) + 4(a1^2 + b1^2 - sqr_r1)(a1-a2)^2 // (we multiplied the equation by 4(a1-a2)^2 to get integer // coefficients) Rational a_diff = a1 - a2; Rational sqr_a_diff = a_diff * a_diff; Rational sqr_a1 = a1*a1, sqr_a2 = a2*a2; Rational sqr_b1 = b1*b1; Rational m = sqr_a1 - sqr_a2 + sqr_r2 - sqr_r1; Rational A = 4*sqr_a_diff; Rational B = -8*b1*sqr_a_diff; Rational C = 4*sqr_a_diff*(sqr_a1+sqr_b1-sqr_r1) + m*m - 4*m*a1*a_diff; Algebraic ys[2]; Algebraic *ys_end; std::ptrdiff_t n_ys; ys_end = nt_traits.solve_quadratic_equation(A, B, C, ys); n_ys = ys_end - ys; if (n_ys == 0) { return o; // no intersection } // the x coordinate of the solution points Algebraic xs = m / (2*a_diff); if (n_ys == 1) { // intersection is a point Point_2 inter_point(xs , ys[0]); *o++ = make_object(inter_point); return o; } CGAL_assertion(n_ys == 2); // intersection is a segment, with non-rational endpoints // so we construct a COLLINEAR conic (with equation as in (1)) // with 2 endpoints Alg_point_2 end1(xs, ys[0]); Alg_point_2 end2(xs, ys[1]); // equation (1) is: // 2(a1-a2)x - m = 0 Curve_2 res(0,0,0, 2*a_diff, 0, -m, COLLINEAR, end1, end2); parent.add_curve_to_output(res, o); //*o++ = make_object(Intersection_curve(res, TRANSVERSAL)); } else { // here we have c1 == c2, b1 != b2. // the intersection lies on the plane // -2(a1-a2)x + m // (1) y = ---------------- // 2(b1-b2) // where m = (a1^2 + b1^2 - a2^2 - b2^2 + sqr_r2 - sqr_r1) // which is orthogonal to the xy-plane // we look at the intersection of this plane with the plane z = c1 // to get the projected segment of the spheres intersection // we get the quadratic equation: // A*x^2 + B*x + C = 0 // where // (a1-a2)^2 m(a1-a2) 2b1(a1-a2) // A = 1 + --------- B = -2a1 - ---------- + ---------- // (b1-b2)^2 (b1-b2)^2 (b1-b2) // and m^2 b1*m // C = a1^2 + b1^2 - sqr_r1 + ---------- - ------- // 4(b1-b2)^2 (b1-b2) // since we can solve only equations with integer coefficients we // multiply everything by 4(b1 - b2)^2, and get: // D*x^2 + E*x + F = 0 where // D = 4(b1-b2)^2 + 4(a1-a2)^2 // E = -8a1(b1-b2)^2 - 4m(a1-a2) + 8b1(a1-a2)(b1-b2) // F = 4(a1^2 + b1^2 - sqr_r1)(b1-b2)^2 + m^2 - 4mb1(b1-b2) // TODO: in the new version coefficients can be rationals Rational a_diff = a1 - a2; Rational b_diff = b1 - b2; Rational sqr_a_diff = a_diff * a_diff; Rational sqr_b_diff = b_diff * b_diff; Rational sqr_a1 = a1*a1, sqr_a2 = a2*a2; Rational sqr_b1 = b1*b1, sqr_b2 = b2*b2; Rational m = sqr_a1 + sqr_b1 - sqr_a2 - sqr_b2 + sqr_r2 - sqr_r1; Rational D = 4*sqr_a_diff + 4*sqr_b_diff; Rational E = -8*a1*sqr_b_diff - 4*m*a_diff + 8*b1*a_diff*b_diff; Rational F = 4*sqr_b_diff*(sqr_a1+sqr_b1-sqr_r1) + m*m - 4*m*b1*b_diff; Algebraic xs[2]; Algebraic *xs_end; std::ptrdiff_t n_xs; xs_end = nt_traits.solve_quadratic_equation(D, E, F, xs); n_xs = xs_end - xs; if (n_xs == 0) { return o; // no intersection } if (n_xs == 1) { // intersection is a point Point_2 inter_point(xs[0], (-2*a_diff*xs[0] + m)/(2*b_diff) ); *o++ = make_object(inter_point); return o; } CGAL_assertion(n_xs == 2); // intersection is a segment, with non-rational endpoints // so we construct a COLLINEAR conic (with equation as in (1)) // with 2 endpoints Algebraic ys[2]; ys[0] = (-2*a_diff*xs[0] + m)/(2*b_diff); ys[1] = (-2*a_diff*xs[1] + m)/(2*b_diff); Alg_point_2 end1(xs[0], ys[0]); Alg_point_2 end2(xs[1], ys[1]); // equation (1) is: // 2(a1-a2)x + 2(b1-b2)y - m = 0 Curve_2 res(0,0,0, 2*a_diff, 2*b_diff, -m, COLLINEAR, end1, end2); parent.add_curve_to_output(res, o); //*o++ = make_object(Intersection_curve(res, TRANSVERSAL)); } } // now the potential intersection is (a part of) a circle, // and the projection is (a part of) an ellipse else { // here we have c1 != c2. // the intersection lies on the plane: // -2(a1-a2)x -2(b1-b2)y + m // (*) z = -------------------------- // 2(c1-c2) // where m = a1^2 + b1^2 + c1^2 - a2^2 - b2^2 - c2^2 + sqr_r2 - sqr_r1 // // (**) since we deal with only half sphere we are interested // in the part below min(c1, c2) in the case of lower envelope // and in the part above max(c1, c2) in the case of upper envelope // // substituting z in the sphere equation we get the ellipse equation: // r*x^2 + s*y^2 + t*x*y + u*x + v*y + w = 0 where: // // (a1-a2)^2 (b1-b2)^2 2(a1-a2)(b1-b2) // r = 1 + --------- s = 1 + --------- t = --------------- // (c1-c2)^2 (c1-c2)^2 (c1-c2)^2 // // 2c1(a1-a2) m(a1-a2) // u = -2a1 + ---------- - ---------- // (c1-c2) (c1-c2)^2 // // 2c1(b1-b2) m(b1-b2) // v = -2b1 + ---------- - ---------- // here we have c1 != c2 // (c1-c2) (c1-c2)^2 // // m*c1 m^2 // w = a1^2 + b1^2 + c1^2 - sqr_r1 - ------- + ---------- // (c1-c2) 4(c1-c2)^2 // since we can solve only equations with integer coefficients we // multiply everything by 4(c1-c2)^2, and get: // R*x^2 + S*y^2 + T*x*y + U*x + V*y + W = 0 where: // R = 4(c1-c2)^2 + 4(a1-a2)^2 // S = 4(c1-c2)^2 + 4(b1-b2)^2 // T = 8(a1-a2)(b1-b2) // U = -8a1(c1-c2)^2 + 8c1(a1-a2)(c1-c2) - 4m(a1-a2) // V = -8b1(c1-c2)^2 + 8c1(b1-b2)(c1-c2) - 4m(b1-b2) // W = 4(a1^2 + b1^2 + c1^2 - sqr_r1)(c1-c2)^2 - 4mc1(c1-c2) + m^2 // TODO: in the new version coefficients can be rationals Rational a_diff = a1 - a2; Rational b_diff = b1 - b2; Rational c_diff = c1 - c2; Rational sqr_a_diff = a_diff * a_diff; Rational sqr_b_diff = b_diff * b_diff; Rational sqr_c_diff = c_diff * c_diff; Rational sqr_a1 = a1*a1, sqr_a2 = a2*a2; Rational sqr_b1 = b1*b1, sqr_b2 = b2*b2; Rational sqr_c1 = c1*c1, sqr_c2 = c2*c2; Rational m = sqr_a1 + sqr_b1 + sqr_c1 - sqr_a2 - sqr_b2 - sqr_c2 + sqr_r2 - sqr_r1; Rational R = 4*sqr_c_diff + 4*sqr_a_diff; Rational S = 4*sqr_c_diff + 4*sqr_b_diff; Rational T = 8*a_diff*b_diff; Rational U = -8*a1*sqr_c_diff + 8*c1*c_diff*a_diff - 4*m*a_diff; Rational V = -8*b1*sqr_c_diff + 8*c1*c_diff*b_diff - 4*m*b_diff; Rational W = 4*sqr_c_diff*(sqr_a1+sqr_b1+sqr_c1-sqr_r1) - 4*m*c1*c_diff + m*m; // if the full spheres do not intersect, the equation we get has no // real solution, so we should check it: bool ellipse_is_point = false; if (!parent.is_valid_conic_equation(R, S, T, U, V, W, ellipse_is_point)) { return o; } // we need only a part of the ellipse (as stated in (**)) so we // construct the cutting line, which is: // equation (*) <= min(c1,c2) -- for lower envelope // equation (*) >= max(c1,c2) -- for upper envelope Rational z_plane; if (parent.m_is_lower) z_plane = ((c1 < c2) ? c1 : c2); else z_plane = ((c1 > c2) ? c1 : c2); // we get (for lower envelope) // -2(a1-a2)x -2(b1-b2)y + m // (*) z = -------------------------- <= z_plane // 2(c1-c2) // and since we need integer coefficients, and also need to be in the // positive side of the line (i.e., our halfplane equation should be of // type ax+by+c >= 0), we have: // sign_c_diff* [2(a1-a2)x + 2(b1-b2)y - m + 2(c1-c2)*z_plane] >= 0 // for upper envelope, we should multiply the line equation by -1 int envelope_coef = 1; if (!parent.m_is_lower) envelope_coef = -1; Sign sign_c_diff = CGAL_NTS sign(c_diff); Rational la = envelope_coef*2*a_diff*sign_c_diff; Rational lb = envelope_coef*2*b_diff*sign_c_diff; Rational lc = envelope_coef*sign_c_diff*(2*c_diff*z_plane - m); if (ellipse_is_point) { // as specified in the is_valid_conic_equation method, the // intersection point is: // Rational px = S*(4*U - T*V)/(T*T - 4*S*R); px = px / 2; Rational py = -(T*px + V)/(2*S); // should check if the point is in the non-negative side of the // line if (CGAL_NTS sign(la*px + lb*py +lc) != NEGATIVE) { *o++ = make_object(Point_2(px, py)); } return o; } // EBEB 2012/06/29: Added because of // no matching function for call to 'compare(CGAL::Env_sphere_traits_3::Rational&, int) Rational zero(0); // if (a1==a2) and (b1==b2) (*) is a plane parallel to the xy-plane // and either all ellipse (which should be a circle) is the // intersection - in which case lc >= 0 // or there is no intersection at all between the 2 half spheres - // in which case lc < 0 if (CGAL_NTS compare(a_diff, zero) == EQUAL && CGAL_NTS compare(b_diff, zero) == EQUAL) { Sign sign_lc = CGAL_NTS sign(lc); if (sign_lc != NEGATIVE) { Curve_2 res(R, S, T, U, V, W); parent.add_curve_to_output(res, o); //*o++ = make_object(Intersection_curve(res, TRANSVERSAL)); } return o; } // find the intersection of the line // la * x + lb * y + lc = 0 // with the conic // R*x^2 + S*y^2 + T*xy + U*x + V*y + W = 0 Alg_point_2 source, target, pmid; std::ptrdiff_t n_inter_points; if (CGAL_NTS compare(lb, zero) != EQUAL) { // Find the x-coordinates of the intersection points of the conic // curve and the line y = -(la*x + lc) / lb: // we get a quadratic equation Ax^2 + Bx + C = 0 // where A = lb*lb*R + la*(la*S - lb*T) // B = 2*la*lc*S - lb*(lc*T + la*V - lb*U) // C = S*lc*lc + lb*(lb*W - lc*V) Rational A = lb*lb*R + la*(la*S - lb*T), B = 2*la*lc*S - lb*(lc*T + la*V - lb*U), C = S*lc*lc + lb*(lb*W - lc*V); Algebraic inter_xs[2]; Algebraic *inter_xs_end; inter_xs_end = nt_traits.solve_quadratic_equation(A, B, C, inter_xs); n_inter_points = inter_xs_end - inter_xs; if (n_inter_points > 0) source = Alg_point_2(inter_xs[0], -(la*inter_xs[0] + lc) / Algebraic(lb)); if (n_inter_points == 2) { target = Alg_point_2(inter_xs[1], -(la*inter_xs[1] + lc) / Algebraic(lb)); // Get the conic points whose x-coordinate are in the middle of the // two endpoints. // since inter_xs[0] and inter_xs[1] are the roots of a quadratic // equation Ax^2 + Bx + C = 0, their sum is -B/A which is rational Algebraic x_mid = Algebraic(Rational(-B/(2*A))); //Algebraic x_mid = (inter_xs[0] + inter_xs[1]) / 2; Alg_point_2 x_mid_point(x_mid, 0); CGAL_precondition_code(int x_mid_n_y_points;); Alg_point_2 x_mid_y_points[2]; Curve_2 inter_cv(R, S, T, U, V, W); CGAL_precondition_code(x_mid_n_y_points = ) inter_cv.points_at_x(x_mid_point, x_mid_y_points); CGAL_precondition(x_mid_n_y_points > 0); Algebraic y1 = x_mid_y_points[0].y(), y2 = x_mid_y_points[1].y(); if (CGAL_NTS compare(Algebraic(la)*x_mid + Algebraic(lb)*y1 + Algebraic(lc), Algebraic(0) ) == LARGER) { pmid = Alg_point_2(x_mid, y1); } else { CGAL_assertion(CGAL_NTS compare(Algebraic(la)*x_mid + Algebraic(lb)*y2 + Algebraic(lc), Algebraic(0)) == LARGER); pmid = Alg_point_2(x_mid, y2); } } } else { // lb == 0 CGAL_assertion(CGAL_NTS compare(la, zero) != EQUAL); // Find the intersection of the vertical line x = -lc / la: Rational inter_x = -lc/la; // we should solve the quadratic equation A*y^2 + B*y + C = 0 // where A = S // B = T*inter_x + V // C = R*inter_x^2 + U*inter_x + W Rational A = S, B = T*inter_x + V, C = R*inter_x*inter_x + U*inter_x + W; Algebraic inter_points[2]; Algebraic *inter_points_end; inter_points_end = nt_traits.solve_quadratic_equation(A, B, C, inter_points); n_inter_points = inter_points_end - inter_points; if (n_inter_points > 0) source = Alg_point_2(Algebraic(inter_x), inter_points[0]); if (n_inter_points == 2) { target = Alg_point_2(Algebraic(inter_x), inter_points[1]); // Get the conic points whose y-coordinate are in the middle of the // two endpoints. // since inter_points[0] & inter_points[1] are roots of quadratic // equation, their sum is -B/A, and mid_y is -B/2A Algebraic y_mid = Algebraic(Rational(-B/(2*A))); Alg_point_2 y_mid_point(0, y_mid); Alg_point_2 y_mid_x_points[2]; Curve_2 inter_cv(R, S, T, U, V, W); CGAL_precondition_code(int y_mid_n_x_points =) inter_cv.points_at_y(y_mid_point, y_mid_x_points); CGAL_precondition(y_mid_n_x_points > 0); Algebraic x1 = y_mid_x_points[0].x(), x2 = y_mid_x_points[1].x(); if (CGAL_NTS compare( Algebraic(la)*x1 + Algebraic(lb)*y_mid + Algebraic(lc), Algebraic(0)) == LARGER) { pmid = Alg_point_2(x1, y_mid); } else { CGAL_assertion(CGAL_NTS compare ( Algebraic(la)*x2 + Algebraic(lb)*y_mid + Algebraic(lc), Algebraic(0)) == LARGER); pmid = Alg_point_2(x2, Algebraic(y_mid)); } } } if (n_inter_points < 2) { // we should check whether the ellipse is in the positive side of the // line - in which case we return the full ellipse // or not - in which case there is no intersection if // n_inter_points = 0, and a point intersection (equal to source) // if n_inter_points = 1 // for this, we find a point inside the ellipse and substitute // its coordinates in the line equation Curve_2 inter_cv(R, S, T, U, V, W); Alg_point_2 vtan_ps[2]; CGAL_assertion_code(int n_vtan_ps =) inter_cv.vertical_tangency_points(vtan_ps); CGAL_assertion(n_vtan_ps == 2); Algebraic lval = Algebraic(la)*vtan_ps[0].x() + Algebraic(lb)*vtan_ps[0].y() + Algebraic(lc); Sign lval_sign = CGAL_NTS sign(lval); if (lval_sign == POSITIVE) { // the full ellipse is in the positive side parent.add_curve_to_output(inter_cv, o); //*o++ = make_object(Intersection_curve(inter_cv, TRANSVERSAL)); return o; } else if (lval_sign == NEGATIVE) { // the full ellipse is in the negative side, except maybe the point // source in the case n_inter_points = 1 (which lies on the line) if (n_inter_points == 1) *o++ = make_object(Point_2(source)); return o; } CGAL_assertion(lval_sign == ZERO); // in this case lval_sign lies on the line, so it must be that // n_inter_points == 1 and source = vtan_ps[0] CGAL_assertion(n_inter_points == 1 && source == vtan_ps[0]); // so we try the other vertical tangency point lval = Algebraic(la)*vtan_ps[1].x() + Algebraic(lb)*vtan_ps[1].y() + Algebraic(lc); lval_sign = CGAL_NTS sign(lval); CGAL_assertion(lval_sign != ZERO); if (lval_sign == POSITIVE) parent.add_curve_to_output(inter_cv, o); //*o++ = make_object(Intersection_curve(inter_cv, TRANSVERSAL)); else *o++ = make_object(Point_2(source)); return o; } CGAL_assertion(n_inter_points == 2); // find the correct orientation of the conic between the 2 endpoints // it should lie on the positive side of line // If the mid-point forms a left-turn with the source and the target // points, the orientation is positive (going counterclockwise). // Otherwise, it is negative (going clockwise). Alg_kernel k; typename Alg_kernel::Orientation_2 orient_f = k.orientation_2_object(); Orientation orient; if (orient_f(source, pmid, target) == LEFT_TURN) orient = CGAL::COUNTERCLOCKWISE; else orient = CGAL::CLOCKWISE; Curve_2 res(R, S, T, U, V, W, orient, source, target); CGAL_assertion(res.is_valid()); parent.add_curve_to_output(res, o); //*o++ = make_object(Intersection_curve(res, TRANSVERSAL)); } return o; } }; /*! Get a Construct_projected_intersections_2 functor object. */ Construct_projected_intersections_2 construct_projected_intersections_2_object() const { return Construct_projected_intersections_2(this); } class Compare_z_at_xy_3 { protected: const Self & parent; public: Compare_z_at_xy_3(const Self * p) : parent(*p) {} // check which of the surfaces is closer to the envelope at the xy // coordinates of point (i.e. lower if computing the lower envelope, or // upper if computing the upper envelope) // precondition: the surfaces are defined in point Comparison_result operator()(const Point_2& p, const Xy_monotone_surface_3& s1, const Xy_monotone_surface_3& s2) const { Comparison_result c2 = compare_in_point_second_method(p, s1, s2); CGAL_expensive_assertion_code( Comparison_result c1 = compare_in_point_first_method(p, s1, s2); ); CGAL_expensive_assertion(c1 == c2); return c2; } // check which of the surfaces is closer to the envelope at the xy // coordinates of cv (i.e. lower if computing the lower envelope, or upper // if computing the upper envelope) // precondition: the surfaces are defined in all points of cv, and the // answer is the same for each of these points Comparison_result operator()(const X_monotone_curve_2& cv, const Xy_monotone_surface_3& s1, const Xy_monotone_surface_3& s2) const { // we compute a middle point on cv and use the previous function Point_2 mid = parent.construct_middle_point(cv); Comparison_result res = parent.compare_z_at_xy_3_object()(mid, s1, s2); return res; } protected: // first method of compare in point, calculates the z value of both // surfaces, and compares them Comparison_result compare_in_point_first_method(const Point_2& p, const Xy_monotone_surface_3& s1, const Xy_monotone_surface_3& s2) const { // find the z coordinates of surface 1 over p Algebraic z1 = parent.compute_envelope_z_in_point(p, s1); // find the z coordinates of surface 2 over p Algebraic z2 = parent.compute_envelope_z_in_point(p, s2); Sign res = CGAL_NTS sign(z1 - z2); if (parent.m_is_lower) return res; else return -res; } // second method of compare in point // p = (x1, y1) // s1: (x-a1)^2 + (y-b1)^2 + (z-c1)^2 = r1^2 // s2: (x-a2)^2 + (y-b2)^2 + (z-c2)^2 = r2^2 // (both lower parts or upper parts) // then in point p we get: // s1(p): (z-c1)^2 = r1^2 - (x1-a1)^2 - (y1-b1)^2 = A1 // s2(p): (z-c2)^2 = r2^2 - (x1-a2)^2 - (y1-b2)^2 = A2 // so we get z - ci = +- sqrt(Ai) where -sqrt(Ai) is for the lower part // and +sqrt(Ai) is for the upper part // we now need to compute the sign of: // c1 - sqrt(A1) - (c2 - sqrt(A2)) - for lower envelope // c1 + sqrt(A1) - (c2 + sqrt(A2)) - for upper envelope Comparison_result compare_in_point_second_method(const Point_2& p, const Xy_monotone_surface_3& s1, const Xy_monotone_surface_3& s2) const { Rat_point_3 p1 = s1.center(); Rat_point_3 p2 = s2.center(); const Rational a1 = p1.x(), b1 = p1.y(), c1 = p1.z(), a2 = p2.x(), b2 = p2.y(), c2 = p2.z(); const Rational sqr_r1 = s1.squared_radius(), sqr_r2 = s2.squared_radius(); const Algebraic x1 = p.x(), y1 = p.y(); Rational c_diff = c1 - c2; Algebraic x_diff1 = x1 - a1, y_diff1 = y1 - b1; Algebraic x_diff2 = x1 - a2, y_diff2 = y1 - b2; Algebraic A1 = sqr_r1 - x_diff1*x_diff1 - y_diff1*y_diff1; Algebraic A2 = sqr_r2 - x_diff2*x_diff2 - y_diff2*y_diff2; if (CGAL_NTS sign(A1) == NEGATIVE) std::cout << "A1 = " << A1 << std::endl; if (CGAL_NTS sign(A2) == NEGATIVE) std::cout << "A2 = " << A2 << std::endl; Sign res; // sign_a_plus_b_x_sqrt_e_plus_c_x_sqrt_f is a CGAL method which // computes the sign of quantity: a + b * sqrt(e) + c * sqrt(f) res = CGAL::sign_a_plus_b_x_sqrt_e_plus_c_x_sqrt_f(Algebraic(c_diff), Algebraic(-1), Algebraic(1), A1, A2); return res; } }; /*! Get a Compare_z_at_xy_3 functor object. */ Compare_z_at_xy_3 compare_z_at_xy_3_object() const { return Compare_z_at_xy_3(this); } class Compare_z_at_xy_above_3 { protected: const Self & parent; public: Compare_z_at_xy_above_3(const Self * p) : parent(*p) {} // check which of the surfaces is closer to the envelope on the points above // the curve cv (i.e. lower if computing the lower envelope, or upper if // computing the upper envelope) // precondition: the surfaces are defined above cv // the choise between s1 and s2 for the envelope is the same // for every point in the infinitesimal region above cv // the surfaces are EQUAL over the curve cv Comparison_result operator()(const X_monotone_curve_2& cv, const Xy_monotone_surface_3& s1, const Xy_monotone_surface_3& s2) const { Comparison_result res = parent.compare_on_side(cv, s1, s2, false); return res; } }; /*! Get a Compare_z_at_xy_above_3 functor object. */ Compare_z_at_xy_above_3 compare_z_at_xy_above_3_object() const { return Compare_z_at_xy_above_3(this); } class Compare_z_at_xy_below_3 { protected: const Self & parent; public: Compare_z_at_xy_below_3(const Self * p) : parent(*p) {} Comparison_result operator()(const X_monotone_curve_2& cv, const Xy_monotone_surface_3& s1, const Xy_monotone_surface_3& s2) const { Comparison_result res = parent.compare_on_side(cv, s1, s2, true); return res; } }; /*! Get a Compare_z_at_xy_below_3 functor object. */ Compare_z_at_xy_below_3 compare_z_at_xy_below_3_object() const { return Compare_z_at_xy_below_3(this); } /***************************************************************************/ // public method needed for testing // checks if point is in the xy-range of surf class Is_defined_over { protected: const Self & parent; public: Is_defined_over(const Self * p) : parent(*p) {} // checks if point is in the xy-range of surf bool operator()(const Point_2& p, const Xy_monotone_surface_3& s) const { // project the surface on the plane Rat_point_2 proj_center = parent.project(s.center()); Rat_circle_2 boundary(proj_center, s.squared_radius()); Nt_traits nt_traits; Alg_kernel k; Alg_point_2 aproj_center(proj_center.x(), proj_center.y()); Alg_circle_2 aboundary(aproj_center, nt_traits.convert(s.squared_radius())); // check if the projected point is inside the projected boundary return (!k.has_on_unbounded_side_2_object()(aboundary, p)); } }; /*! Get a Is_defined_over functor object. */ Is_defined_over is_defined_over_object() const { return Is_defined_over(this); } /***************************************************************************/ // helper methods // compare the surfaces over the side (as specified in the compare_on_right // parameter) of the curve, assuming they are defined there Comparison_result compare_on_side(const X_monotone_curve_2& cv, const Xy_monotone_surface_3& s1, const Xy_monotone_surface_3& s2, bool compare_on_right) const { // cv(x,y) : r*x^2 + s*y^2 + t*xy + u*x + v*y + w = 0 // let p be the leftmost endpoint of cv, p=(x0, y0) // the tangence of cv at p is a line. on the infinitesimal region // near p the relation between the surfaces to the right of cv is // the same as the relation between the tangences of the surfaces // in p to the right of this line (unless the tangence of the surface // is vertical) // we take a point in the internal of the curve, not an endpoint // since we assume that such point represents better what is going // on all internal curve points Point_2 cv_point = construct_middle_point(cv); Algebraic x0 = cv_point.x(), y0 = cv_point.y(); // d(cv)/dx : 2r*x + 2s*y*dy/dx + t*y + t*x*dy/dx +u + v*dy/dx = 0 // in point p=(x0,y0) we get // dy m // -- = y' = - where m = -2rx0 -ty0 - u // dx n n = 2sy0 + tx0 + v // if n != 0 (if n = 0 we have a vertical line). // // So the tangence equation (in p) is: // n = 0: x = x0 // n != 0: y - y0 = y'(x-x0) ==> -y'x + y + (y'x0 - y0) = 0 // and in general we have: // -m*x + n*y + (m*x0 -n*y0) = 0 (with integer coordinates) const Rational r = cv.r(), s = cv.s(), t = cv.t(), u = cv.u(), v = cv.v(), w = cv.w(); Algebraic m = -1 * (2*r*x0 + t*y0 + u); Algebraic n = 2*s*y0 + t*x0 + v; // line coefficients: A3, B3, C3 Algebraic A3 = -1*m, B3 = n, C3 = m*x0 - n*y0; // the tangences of the spheres (in point (x0,y0,z0)): Algebraic z0 = compute_envelope_z_in_point(cv_point, s1); // we assume the surfaces are equal over cv: CGAL_expensive_precondition_code( Algebraic z0_2 = compute_envelope_z_in_point(cv_point, s2); ) // this test can be very time consuming ... CGAL_expensive_precondition(CGAL_NTS compare(z0, z0_2) == EQUAL); // the sphere i : fi(x,y,z) = (x-ai)^2 + (y-bi)^2 + (z-ci)^2 - ri^2 = 0 // dfi / dx = 2(x-ai) + 2(z-ci)*dz/dx = 0 // dfi / dy = 2(y-bi) + 2(z-ci)*dz/dy = 0 // if z = ci the tangent plane is vertical - if only one of the tangent // planes is vertical, them its sphere wins (i.e. is on envelope). // we assume not both are tangent, since this means that they are the // same sphere // if z != ci the tangent plane is: // z-z0 = dz/dx (x-x0) + dz/dy (y-y0) // ==> // (x0-ai)(x-x0) + (y0-bi)(y-y0) + (z0-ci)(z-z0) = 0 // Ai*x + Bi*y + Ci*z + Di = 0 // where Ai = (x0-ai) // Bi = (y0-bi) // Ci = (z0-ci) // Di = -(x0-ai)x0 - (y0-bi)y0 - (z0-ci)z0 // // and we solve the problem as for triangles Rat_point_3 p1 = s1.center(); Rat_point_3 p2 = s2.center(); const Rational a1 = p1.x(), b1 = p1.y(), c1 = p1.z(), a2 = p2.x(), b2 = p2.y(), c2 = p2.z(); Algebraic A1 = x0 - a1, B1 = y0 - b1, C1 = z0 - c1; Algebraic A2 = x0 - a2, B2 = y0 - b2, C2 = z0 - c2; if (C1 != 0 && C2 != 0) { Sign sign1 = CGAL_NTS sign((A2*A3+B2*B3)/C2-(A1*A3+B1*B3)/C1); // to make sure the direction is correct, we take a second point on the // line: for vertical line we take (x0, y0+1) // otherwise we take (x0+1, y0+ m/n) Algebraic x1, y1; if (n == 0) { x1 = x0; y1 = y0+1; } else { x1 = x0+1; y1 = y0 + (m/n); } Sign sign2 = CGAL_NTS sign(-B3*x1+A3*y1-(-B3*x0+A3*y0)); // the answer negates according to the side of the line we ask of Sign sign3 = (compare_on_right ? (CGAL_NTS sign(1)) : (CGAL_NTS sign(-1))); return sign1 * sign2 * sign3; } else if (C1 != 0 && C2 == 0) { // sphere 2 is on the envelope (both lower & upper) return LARGER; } else if (C1 == 0 && C2 != 0) { // sphere 1 is on the envelope (both lower & upper) return SMALLER; } else CGAL_error(); return EQUAL; } Rat_point_2 project(const Rat_point_3& p) const { return Rat_point_2(p.x(), p.y()); } // compute the z coordinate of the surface s in point p on the envelope // (i.e. take lower point if lower envelope, upper otherwise) // precondition: s is defined at p Algebraic compute_envelope_z_in_point(const Point_2& p, const Xy_monotone_surface_3& s) const { Algebraic res; // the point coordinates const Algebraic x1 = p.x(), y1 = p.y(); // the surface equations Rat_point_3 center = s.center(); const Rational a = center.x(), b = center.y(), c = center.z(); const Rational sqr_r = s.squared_radius(); // we substitute x1 and y1 in the equation of s // (x-a)^2 + (y-b)^2 + (z-c)^2 = r^2 // and get a quadratic equation of z: // z^2 - 2cz + [(x1-a)^2 + (y1-b)^2 + c^2 - r^2] = 0 Algebraic x_diff = x1 - a, y_diff = y1 - b; // the coefficients are: Algebraic A = 1, B = -2*c, C = x_diff*x_diff + y_diff*y_diff + c*c - sqr_r; Algebraic zs[2]; Algebraic *zs_end; std::ptrdiff_t n_zs; Nt_traits nt_traits; zs_end = nt_traits.solve_quadratic_equation(A, B, C, zs); n_zs = zs_end - zs; CGAL_precondition(n_zs > 0); if (n_zs == 1) // only one point is defined at p, this is the result return zs[0]; CGAL_assertion(n_zs == 2); Comparison_result comp = CGAL_NTS compare(zs[0], zs[1]); if (m_is_lower) res = ((comp == SMALLER) ? zs[0] : zs[1]); else res = ((comp == LARGER) ? zs[0] : zs[1]); return res; } // construct the point in the middle of cv Point_2 construct_middle_point(const X_monotone_curve_2& cv) const { // get the x-value of the middle point Alg_kernel k; Alg_point_2 mid_x = k.construct_midpoint_2_object()(cv.source(), cv.target()); // TODO_NEW_DESIGN - this is not implemented in X_monotone_curve_2, but maybe we want it there? // if (cv.is_segment()) // return mid_x; if (cv.is_vertical()) return Point_2(mid_x); return Point_2(cv.point_at_x(mid_x)); } // for the test Point_2 construct_middle_point(const Point_2& p1, const Point_2& p2) const { Alg_kernel k; return Point_2(k.construct_midpoint_2_object()(p1, p2)); } // check if the equation // r*x^2 + s*y^2 + t*xy + u*x + v*y + w = 0 // has real solutions // is_point is set to true if the equation represents just one point template bool is_valid_conic_equation(const NT& r, const NT& s, const NT& t, const NT& u, const NT& v, const NT& w, bool &is_point) const { // initialize is_point to false, and will change it when we detect // that the equation represents a point is_point = false; // (*) r*x^2 + s*y^2 + t*xy + u*x + v*y + w = 0 // we fix x, and get a 1-variable quadratic equation: // (**) s*y^2 + (tx + v)*y + (rx^2 + ux + w) = 0 // (*) has real solution (x,y) iff there exists x such that (**) has a // solution y, i.e. discriminant(**) >= 0 // discriminant(**) = f(x) = (tx + v)^2 -4s(rx^2 + ux + w) // = (t^2 - 4sr)*x^2 + (stv - 4su)*x + (v^2 - 4sw) // = A*x^2 + B*x + C >= 0 // where A = t^2 - 4sr // B = stv - 4su // C = v^2 - 4sw // so we should check if there exists x such that f(x) >= 0 // if A > 0 we have a smiling parabula, and a positive answer // (the conic equation in this case represents hyperbola or 2 // intersecting lines) Sign sign_A = CGAL_NTS sign(t*t - 4*s*r); if (sign_A == POSITIVE) return true; // if A < 0 we have a sad parabula, so we should check if it crosses the // x-axis, i.e. if the equation f(x) = 0 has a real solution x. // this means that discriminant(f(x)) >= 0 // discriminant(f(x)) = B^2 - 4AC // = (2tv-4su)^2 - 4(t^2-4sr)(v^2-4sw) // = s(-tvu + su^2 + wt^2 + rv^2 - 4srw) if (sign_A == NEGATIVE) { // (in this case the conic equation represents ellipse, circle, point // or no curve) Sign sign_s = CGAL_NTS sign(s); Sign sign_eq = CGAL_NTS sign(-t*v*u + s*u*u + w*t*t + r*v*v - 4*s*r*w); // if sign_eq = 0 then discriminant(f(x))=0, and so we have only one x // solution for f(x), say x0. since we get f(x0)=0 and f(x)<0 forall // x!=x0, we have only one solution for (**). So the equation represents // a point with coordinates x0=-B/2A, y0=-(tx0 + v)/2s if (sign_eq == ZERO) is_point = true; Sign sign_disc = CGAL_NTS sign(int(sign_s * sign_eq)); return (sign_disc != NEGATIVE); } // if A = 0 we get (***) f(x) = (stv - 4su)*x + (v^2 - 4sw) = B*x + C // if B != 0 we get a line equation, which always has x // such that f(x) >= 0 // if B = 0 then f(x) = v^2 - 4sw = C and should check its sign CGAL_assertion(sign_A == ZERO); // (in this case the conic equation represents parabola, 2 parallel lines, // 1 line or no curve) Sign sign_B = CGAL_NTS sign(s*(t*v - 4*u)); if (sign_B != ZERO) return true; Sign sign_C = CGAL_NTS sign(v*v - 4*s*w); return (sign_C != NEGATIVE); } // for the test: Point_2 vertical_ray_shoot_2(const Point_2& pt, const X_monotone_curve_2& cv) const { if (cv.is_vertical()) { Alg_kernel k; if (!k.less_y_2_object()(cv.left(), pt)) return cv.left(); else { CGAL_assertion(k.less_y_2_object()(cv.right(), pt)); return cv.right(); } } else return cv.point_at_x(pt); } template OutputIterator add_curve_to_output(const Curve_2& c, OutputIterator oi) const { Object objs[2]; Object* p_obj = this->make_x_monotone_2_object()(c, objs); for(Object* o = objs; o != p_obj; ++o) { X_monotone_curve_2 cv; if(assign(cv, *o)) { *oi++ = make_object(Intersection_curve(cv, 1)); } else { Point_2 pt; CGAL_assertion(assign(pt, *o)); assign(pt, *o); *oi++ = make_object(pt); } } return oi; } /*! Default constructor. */ Env_sphere_traits_3() : m_is_lower(true) {} protected: mutable bool m_is_lower; }; /*! * Compare two spheres: first compare their center points in an * xyz-lexicographic order, then by their radii. */ template bool operator< (const CGAL::Sphere_3 & a, const CGAL::Sphere_3 & b) { Kernel k; Comparison_result res = k.compare_xyz_3_object()(a.center(), b.center()); if (res == EQUAL) { res = CGAL::compare (a.squared_radius(), b.squared_radius()); } return (res == SMALLER); } /*! * Compare two spheres for equality. */ template bool operator== (const typename Kernel::Sphere_3& a, const typename Kernel::Sphere_3& b) { Kernel k; if (! k.equal_3_object() (a.center(), b.center())) return (false); return (CGAL::compare (a.squared_radius(), b.squared_radius()) == EQUAL); } } //namespace CGAL #endif // ENVELOPE_SPHERES_TRAITS_3_H