// Copyright (c) 1998-2003 ETH Zurich (Switzerland). // All rights reserved. // // This file is part of CGAL (www.cgal.org). // You can redistribute it and/or modify it under the terms of the GNU // General Public License as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: GPL-3.0+ // // // Author(s) : Michael Hoffmann #ifndef CGAL_EXTREMAL_POLYGON_2_H #define CGAL_EXTREMAL_POLYGON_2_H 1 #include #include #include #include #include #include #include #include #include #include #include #include namespace CGAL { //!!! This will eventually be integrated into function_objects.h template < class Array, class Index, class Element > struct Index_operator : public CGAL::cpp98::binary_function< Array, Index, Element > { Element& operator()( Array& a, const Index& i) const { return a[i]; } const Element& operator()( const Array& a, const Index& i) const { return a[i]; } }; template < class RandomAccessIC_object_, class RandomAccessIC_value_, class Operation_ > // This class describes the kind of matrices used for the // computation of extremal polygons. // // RandomAccessIC_object is a random access iterator or circulator // with value type Object // RandomAccessIC_value is a random access iterator or circulator // with value type Value // Operation is an adatable binary function: // Object x Object -> Value // // objects can be constructed using the helper function // extremal_polygon_matrix. // class Extremal_polygon_matrix { public: typedef RandomAccessIC_object_ RandomAccessIC_object; typedef RandomAccessIC_value_ RandomAccessIC_value; typedef Operation_ Operation; typedef typename std::iterator_traits< RandomAccessIC_object >::value_type Object; typedef typename std::iterator_traits< RandomAccessIC_value >::value_type Value; Extremal_polygon_matrix( RandomAccessIC_object begin_row, RandomAccessIC_object end_row, RandomAccessIC_object begin_col, RandomAccessIC_object end_col, RandomAccessIC_value begin_value, RandomAccessIC_value CGAL_optimisation_precondition_code(end_value), const Operation& o) // initialization with two ranges [begin_row, end_row) and // [begin_col, end_col) of Objects, a range [begin_value, end_value) // of Values and an Operation o. // // an entry (r, c) of this matrix is then defined as: // begin_value[c] + op( begin_row[r], begin_col[c]). // : op( o), begin_row_( begin_row), begin_col_( begin_col), begin_value_( begin_value), n_rows( static_cast(iterator_distance( begin_row, end_row))), n_cols( static_cast(iterator_distance( begin_col, end_col))) { CGAL_optimisation_precondition( iterator_distance( begin_value, end_value) == n_cols); CGAL_optimisation_assertion( n_rows > 0 && n_cols > 0); } int number_of_rows() const { return n_rows; } int number_of_columns() const { return n_cols; } Value operator()( int r, int c) const { CGAL_optimisation_precondition( r >= 0 && r < n_rows); CGAL_optimisation_precondition( c >= 0 && c < n_cols); return begin_value_[c] + op( begin_row_[r], begin_col_[c]); } private: Operation op; RandomAccessIC_object begin_row_; RandomAccessIC_object begin_col_; RandomAccessIC_value begin_value_; int n_rows; int n_cols; }; template < class RandomAccessIC_object, class RandomAccessIC_value, class Operation > inline Extremal_polygon_matrix< RandomAccessIC_object, RandomAccessIC_value, Operation > extremal_polygon_matrix( RandomAccessIC_object begin_row, RandomAccessIC_object end_row, RandomAccessIC_object begin_col, RandomAccessIC_object end_col, RandomAccessIC_value begin_value, RandomAccessIC_value end_value, const Operation& o) { return Extremal_polygon_matrix< RandomAccessIC_object, RandomAccessIC_value, Operation > ( begin_row, end_row, begin_col, end_col, begin_value, end_value, o); } template < class RandomAccessIC, class Outputiterator, class Traits > Outputiterator CGAL_maximum_inscribed_rooted_k_gon_2( RandomAccessIC points_begin, RandomAccessIC points_end, int k, typename Traits::FT& max_area, Outputiterator o, const Traits& t) // // preconditions: // -------------- // * Traits fulfills the requirements for an extremal polygon // traits class // * the range [points_begin, points_end) of size n > 0 // describes the vertices of a convex polygon $P$ // enumerated clock- or counterclockwise // n > k, // * k >= t.min_k() // * value_type of RandomAccessIC is Traits::Point_2 // * OutputIterator accepts Traits::Point_2 as value_type // // functionality: // -------------- // computes maximum (as specified by t) inscribed k-gon $P_k$ // of the polygon $P$, // that is rooted at points_begin[0], // sets max_area to its associated value (as specified by t) // writes the indices (relative to points_begin) // of $P_k$'s vertices to o and // returns the past-the-end iterator of that sequence. { // check preconditions: CGAL_optimisation_precondition( k >= t.min_k()); int number_of_points( static_cast(iterator_distance( points_begin, points_end))); CGAL_optimisation_precondition( number_of_points > k); typedef std::vector< int > Index_cont; if ( k == t.min_k()) // compute min_k gon: return t.compute_min_k_gon( points_begin, points_end, max_area, o); // current i-gon (i = 2/3...k) Index_cont gon( k + 1); // compute initial min_k-gon: int i( t.min_k()); t.compute_min_k_gon( points_begin, points_end, max_area, gon.rbegin() + k + 1 - i); for (;;) { CGAL_optimisation_assertion( gon[0] == 0); gon[i] = number_of_points - 1; if ( ++i >= k) break; CGAL_maximum_inscribed_rooted_k_gon_2( points_begin, points_end, 0, gon.begin(), gon.begin() + i - 1, gon.begin() + 1, gon.begin() + i, max_area, gon.rbegin() + k + 1 - i, t); } // for (;;) return CGAL_maximum_inscribed_rooted_k_gon_2( points_begin, points_end, 0, gon.begin(), gon.begin() + k - 1, gon.begin() + 1, gon.begin() + k, max_area, o, t); } // CGAL_maximum_inscribed_rooted_k_gon_2( ... ) template < class RandomAccessIC_point, class RandomAccessIC_int, class OutputIterator, class Traits > OutputIterator CGAL_maximum_inscribed_rooted_k_gon_2( RandomAccessIC_point points_begin, RandomAccessIC_point points_end, int root, RandomAccessIC_int left_c_begin, RandomAccessIC_int CGAL_optimisation_precondition_code(left_c_end), RandomAccessIC_int right_c_begin, RandomAccessIC_int right_c_end, typename Traits::FT& max_area, OutputIterator o, const Traits& t) // // preconditions: // -------------- // * Traits fulfills the requirements for an extremal polygon // traits class // * the range [points_begin, points_end) of size n > 0 // describes the vertices of a convex polygon $P$ // enumerated clock- or counterclockwise // * value_type of RandomAccessIC_point is Traits::Point // * value_type of RandomAccessIC_int is int // * OutputIterator accepts int as value type // * length := right_c_end - right_c_begin == left_c_end - left_c_begin // >= t.min_k() - 1 (the root is already fixed) // * [left_c_begin, left_c_end) resp. [right_c_begin, right_c_end) // describe two subpolygons of $P$ by giving the indices of its // vertices relative to points_begin and for any 0 <= i < length: // left_c_begin[i] <= right_c_begin[i] // * for any 0 <= i < length: o + i must not be contained in // the range [right_c_begin, right_c_begin + length - i - 2]. // (NOT checked!) // // functionality: // -------------- // computes maximum (as specified by t) inscribed k-gon $P_k$ // of the polygon $P$, // that is rooted at points_begin[left_c_begin[0]] // such that for any 0 <= i < length: // left_c_begin[i] <= vertex i of $P_k$ <= right_c_begin[i], // sets max_area to its associated value (as specified by t), // writes the indices (relative to points_begin) // of $P_k$'s vertices to o and // returns the past-the-end iterator of that sequence. { using std::max_element; // counter :) int i; // compute size of ranges: int number_of_points = static_cast(iterator_distance( points_begin, points_end)); int size_of_gon = static_cast(iterator_distance( right_c_begin, right_c_end)); // check preconditions: CGAL_optimisation_precondition( number_of_points > t.min_k()); CGAL_optimisation_precondition( size_of_gon >= t.min_k() - 1); CGAL_optimisation_precondition( iterator_distance( left_c_begin, left_c_end) == iterator_distance( right_c_begin, right_c_end)); CGAL_optimisation_precondition( left_c_begin[0] >= 0); CGAL_optimisation_precondition( right_c_begin[0] >= 0); CGAL_optimisation_precondition( left_c_begin[size_of_gon-1] < number_of_points); CGAL_optimisation_precondition( right_c_begin[size_of_gon-1] < number_of_points); CGAL_optimisation_expensive_precondition_code( for ( i = 0; i < size_of_gon; ++i) { CGAL_optimisation_expensive_precondition( left_c_begin[i] >= 0); CGAL_optimisation_expensive_precondition( right_c_begin[i] >= 0); CGAL_optimisation_expensive_precondition( left_c_begin[i] < number_of_points); CGAL_optimisation_expensive_precondition( right_c_begin[i] < number_of_points); CGAL_optimisation_expensive_precondition( left_c_begin[i] <= right_c_begin[i]); }) typedef typename Traits::FT FT; typedef std::vector< FT > FT_cont; typedef std::vector< int > Index_cont; typedef typename Traits::Operation Operation; //!!! static ??? // area container: FT_cont area( number_of_points); // last vertex container: Index_cont last_vertex( number_of_points); // matrix operation: Operation op( t.operation( points_begin[root])); // initialize area and last vertex containers: for ( i = left_c_begin[0]; i <= right_c_begin[0]; ++i) { area[i] = t.init( points_begin[i], points_begin[root]); last_vertex[i] = root; } for ( i = 1; i < size_of_gon; ++i) { monotone_matrix_search( dynamic_matrix( extremal_polygon_matrix( points_begin + left_c_begin[i], points_begin + right_c_begin[i] + 1, points_begin + left_c_begin[i-1], points_begin + right_c_begin[i-1] + 1, area.begin() + left_c_begin[i-1], area.begin() + right_c_begin[i-1] + 1, op)), last_vertex.begin() + left_c_begin[i]); // compute new area values and adjust last_vertex values // (they are relative to left_c_begin[i-1] now) int j; for ( j = right_c_begin[i]; j >= left_c_begin[i]; --j) { last_vertex[j] += left_c_begin[i-1]; area[j] = area[last_vertex[j]] + op( points_begin[j], points_begin[last_vertex[j]]); } } // for ( i = 1; i < size_of_gon; ++i) // find maximum in last range: int maxi = static_cast(iterator_distance( area.begin(), max_element( area.begin() + left_c_begin[size_of_gon - 1], area.begin() + right_c_begin[size_of_gon - 1] + 1))); // set max_area: max_area = area[maxi]; // construct gon: *o++ = maxi; maxi = last_vertex[maxi]; for ( i = size_of_gon - 1; i > 0; --i) { // We must not place the "*o++ = maxi" here, // since o might be the same as left_c_begin + i ... if ( maxi != right_c_begin[i-1]) { *o++ = maxi; maxi = last_vertex[maxi]; } else { *o++ = maxi; maxi = right_c_begin[i-2]; } } // for ( i = size_of_gon - 1; i > 0; --i) *o++ = root; return o; } // CGAL_maximum_inscribed_rooted_k_gon_2( p, k, result) template < class RandomAccessIC, class OutputIterator, class Traits > inline OutputIterator extremal_polygon_2( RandomAccessIC points_begin, RandomAccessIC points_end, int k, OutputIterator o, const Traits& t) // // preconditions: // -------------- // * Traits fulfills the requirements for an extremal polygon // traits class // * the range [points_begin, points_end) of size n > 0 // describes the vertices of a convex polygon $P$ // enumerated clock- or counterclockwise // * k >= t.min_k() // * value_type of RandomAccessIC is Traits::Point_2 // * OutputIterator accepts Traits::Point_2 as value_type // // functionality: // -------------- // computes maximum (as specified by t) inscribed k-gon $P_k$ // of the polygon $P$, // writes the indices (relative to points_begin) // of $P_k$'s vertices to o and // returns the past-the-end iterator of that sequence. { // check preconditions: CGAL_optimisation_precondition_code( int number_of_points( static_cast(iterator_distance( points_begin, points_end)));) CGAL_optimisation_precondition( number_of_points >= t.min_k()); CGAL_optimisation_expensive_precondition( is_convex_2( points_begin, points_end, t)); typedef typename Traits::Point_2 Point_2; return CGAL_maximum_inscribed_k_gon_2( points_begin, points_end, k, CGAL::transform_iterator( o, boost::make_adaptable(boost::bind(Index_operator< RandomAccessIC, int, Point_2 >(), points_begin, _1))), t); } // backwards compatibility template < class RandomAccessIC, class OutputIterator, class Traits > inline OutputIterator extremal_polygon( RandomAccessIC points_begin, RandomAccessIC points_end, int k, OutputIterator o, const Traits& t) { return extremal_polygon_2(points_begin, points_end, k, o, t); } template < class RandomAccessIC, class OutputIterator, class Traits > OutputIterator CGAL_maximum_inscribed_k_gon_2( RandomAccessIC points_begin, RandomAccessIC points_end, int k, OutputIterator o, const Traits& t) // // preconditions: // -------------- // * Traits fulfills the requirements for an extremal polygon // traits class // * the range [points_begin, points_end) of size n > 0 // describes the vertices of a convex polygon $P$ // enumerated clock- or counterclockwise // * k >= t.min_k() // * value_type of RandomAccessIC is Traits::Point_2 // * OutputIterator accepts Traits::Point_2 as value_type // // functionality: // -------------- // computes maximum (as specified by t) inscribed k-gon $P_k$ // of the polygon $P$, // writes the indices (relative to points_begin) // of $P_k$'s vertices to o and // returns the past-the-end iterator of that sequence. { // check preconditions: CGAL_optimisation_precondition( k >= t.min_k()); int number_of_points( static_cast(iterator_distance( points_begin, points_end))); CGAL_optimisation_precondition( number_of_points > 0); using std::copy; typedef typename Traits::FT FT; typedef std::vector< int > Index_cont; if ( number_of_points <= k) { for ( int j( k - 1); j >= 0; --j) *o++ = (std::min)( j, number_of_points - 1); return o; } // compute k-gon rooted at points_begin[0] Index_cont P_0( k + 1); FT area_0; CGAL_maximum_inscribed_rooted_k_gon_2( points_begin, points_end, k, area_0, P_0.rbegin() + 1, t); P_0[k] = number_of_points - 1; CGAL_optimisation_assertion( P_0[0] == 0); // compute k-gon rooted at points_begin[P_0[1]] Index_cont P_1( k); FT area_1; CGAL_maximum_inscribed_rooted_k_gon_2( points_begin, points_end, P_0[1], P_0.begin() + 1, P_0.begin() + k, P_0.begin() + 2, P_0.begin() + k + 1, area_1, P_1.rbegin(), t); CGAL_optimisation_assertion( P_1[0] == P_0[1]); // start recursive computation: FT area_r( 0); Index_cont P_r( k); if ( P_0[1] - P_0[0] > 1) { CGAL_maximum_inscribed_k_gon_2( points_begin, points_end, P_0[0] + 1, P_0[1] - 1, P_0.begin() + 1, P_0.begin() + k, P_0.begin() + 2, P_0.begin() + k + 1, k, area_r, P_r.rbegin(), t); } if ( area_r > area_0) if ( area_r > area_1) // recursive is maximum copy( P_r.begin(), P_r.end(), o); else // P_1 is maximum copy( P_1.begin(), P_1.end(), o); else if ( area_0 > area_1) // P_0 is maximum copy( P_0.begin(), P_0.begin() + k, o); else // P_1 is maximum copy( P_1.begin(), P_1.end(), o); return o; } // CGAL_maximum_inscribed_k_gon_2( ... ) template < class RandomAccessIC_point, class RandomAccessIC_int, class OutputIterator, class Traits > OutputIterator CGAL_maximum_inscribed_k_gon_2( RandomAccessIC_point points_begin, RandomAccessIC_point points_end, int left_index, int right_index, RandomAccessIC_int left_c_begin, RandomAccessIC_int left_c_end, RandomAccessIC_int right_c_begin, RandomAccessIC_int right_c_end, int k, typename Traits::FT& max_area, OutputIterator o, const Traits& t) // // preconditions: // -------------- // * Traits fulfills the requirements for an extremal polygon // traits class // * the range [points_begin, points_end) of size n > 0 // describes the vertices of a convex polygon $P$ // enumerated clock- or counterclockwise // * value_type of RandomAccessIC_point is Traits::Point // * value_type of RandomAccessIC_int is int // * OutputIterator accepts int as value type // * 0 <= left_index <= right_index < |points_end - points_begin| // * |left_c_end - left_c_begin| == |right_c_end - right_c_begin| == k - 1 // * [left_c_begin, left_c_end) resp. [right_c_begin, right_c_end) // describe two subpolygons $P_l$ resp $P_r$ of $P$ by giving // the indices of its vertices relative to points_begin and // for any 0 <= i < k - 1: // left_c_begin[i] <= right_c_begin[i] // * k >= t.min_k() // // functionality: // -------------- // computes maximum (as specified by t) inscribed k-gon $P_k$ // of the polygon $P$, // * that is rooted at one of the vertices [points_begin[left_index], // points_begin[right_index]] and // * interleaves with both $P_l$ and $P_r$, // sets max_area to its associated value (as specified by t), // writes the indices (relative to points_begin) // of $P_k$'s vertices to o and // returns the past-the-end iterator of that sequence. { // typedefs typedef typename Traits::FT FT; typedef std::vector< int > Index_cont; using std::copy; // check preconditions: CGAL_optimisation_precondition( k >= t.min_k()); CGAL_optimisation_precondition( left_index <= right_index); CGAL_optimisation_precondition( left_index >= 0); CGAL_optimisation_precondition( right_index >= 0); CGAL_optimisation_precondition_code( int number_of_points( static_cast(iterator_distance( points_begin, points_end)));) CGAL_optimisation_precondition( left_index < number_of_points); CGAL_optimisation_precondition( right_index < number_of_points); CGAL_optimisation_precondition( iterator_distance( left_c_begin, left_c_end) == k - 1); CGAL_optimisation_precondition( iterator_distance( right_c_begin, right_c_end) == k - 1); CGAL_optimisation_expensive_precondition_code( for ( int i( 0); i < k - 1; ++i) { CGAL_optimisation_expensive_precondition( left_c_begin[i] >= 0); CGAL_optimisation_expensive_precondition( right_c_begin[i] >= 0); CGAL_optimisation_expensive_precondition( left_c_begin[i] < number_of_points); CGAL_optimisation_expensive_precondition( right_c_begin[i] < number_of_points); CGAL_optimisation_expensive_precondition( left_c_begin[i] <= right_c_begin[i]); }) int middle_index( (left_index + right_index) >> 1); Index_cont P_m( k); FT area_middle; CGAL_maximum_inscribed_rooted_k_gon_2( points_begin, points_end, middle_index, left_c_begin, left_c_end, right_c_begin, right_c_end, area_middle, P_m.rbegin(), t); CGAL_optimisation_assertion( P_m[0] == middle_index); // left recursive branch: FT area_left( 0); Index_cont P_l( k); if ( left_index < middle_index) { CGAL_maximum_inscribed_k_gon_2( points_begin, points_end, left_index, middle_index - 1, left_c_begin, left_c_end, P_m.begin() + 1, P_m.end(), k, area_left, P_l.rbegin(), t); } // if ( left_index < middle_index) // right recursive branch: FT area_right( 0); Index_cont P_r( k); if ( right_index > middle_index) { CGAL_maximum_inscribed_k_gon_2( points_begin, points_end, middle_index + 1, right_index, P_m.begin() + 1, P_m.end(), right_c_begin, right_c_end, k, area_right, P_r.rbegin(), t); } // if ( right_index > middle_index) if ( area_left > area_right) if ( area_left > area_middle) { // left is maximum max_area = area_left; copy( P_l.begin(), P_l.end(), o); } else { // middle is maximum max_area = area_middle; copy( P_m.begin(), P_m.end(), o); } else if ( area_right > area_middle) { // right is maximum max_area = area_right; copy( P_r.begin(), P_r.end(), o); } else { // middle is maximum max_area = area_middle; copy( P_m.begin(), P_m.end(), o); } return o; } // CGAL_maximum_inscribed_k_gon_2( ... ) } //namespace CGAL #endif // ! (CGAL_EXTREMAL_POLYGON_2_H)