// Copyright (c) 1999,2016 // Utrecht University (The Netherlands), // ETH Zurich (Switzerland), // INRIA Sophia-Antipolis (France), // Max-Planck-Institute Saarbruecken (Germany), // and Tel-Aviv University (Israel). All rights reserved. // // This file is part of CGAL (www.cgal.org); you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation; either version 3 of the License, // or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: LGPL-3.0+ // // // Author(s) : Stefan Schirra, Olivier Devillers, Mariette Yvinec #ifndef CGAL_PREDICATES_ON_POINTSH2_H #define CGAL_PREDICATES_ON_POINTSH2_H #include namespace CGAL { template < class R> CGAL_KERNEL_INLINE bool equal_xy(const PointH2& p, const PointH2& q) { typedef typename R::RT RT; // Using these references allows to spare calls to [pq].hw(). const RT& phw = p.hw(); const RT& qhw = q.hw(); return (p.hx()*qhw == q.hx()*phw) && (p.hy()*qhw == q.hy()*phw); } template CGAL_KERNEL_MEDIUM_INLINE Oriented_side _where_wrt_L_wedge( const PointH2& p, const PointH2& q ) { Sign xs = CGAL_NTS sign( q.hx()*p.hw() - p.hx()*q.hw() ); // sign( qx - px ) Sign ys = CGAL_NTS sign( q.hy()*p.hw() - p.hy()*q.hw() ); // sign( qy - py ) if (( xs == NEGATIVE ) || ( ys == NEGATIVE )) return ON_NEGATIVE_SIDE; if (( xs == POSITIVE ) && ( ys == POSITIVE )) return ON_POSITIVE_SIDE; return ON_ORIENTED_BOUNDARY; } template Comparison_result compare_power_distanceH2(const RT& phx, const RT& phy, const RT& phw, const Quotient& pwt, const RT& qhx, const RT& qhy, const RT& qhw, const Quotient& qwt, const RT& rhx, const RT& rhy, const RT& rhw) { // returns SMALLER if r is closer to p w.r.t. the power metric RT dphx = rhx * phw - phx * rhw; RT dphy = rhy * phw - phy * rhw; RT dqhx = rhx * qhw - qhx * rhw; RT dqhy = rhy * qhw - qhy * rhw; RT dphw = CGAL_NTS square(phw); RT dqhw = CGAL_NTS square(qhw); RT drhw = CGAL_NTS square(rhw); RT npwt = pwt.numerator(); RT dpwt = pwt.denominator(); RT nqwt = qwt.numerator(); RT dqwt = qwt.denominator(); RT dh1 = (CGAL_NTS square(dphx) + CGAL_NTS square(dphy))*dpwt - npwt * dphw * drhw; RT dh2 = (CGAL_NTS square(dqhx) + CGAL_NTS square(dqhy))*dqwt - nqwt * dqhw * drhw; return CGAL_NTS compare(dh1 * dqhw * dqwt, dh2 * dphw * dpwt ); } template Oriented_side power_testH2( const RT &phx, const RT &phy, const RT &phw, const Quotient &pwt, const RT &qhx, const RT &qhy, const RT &qhw, const Quotient &qwt, const RT &rhx, const RT &rhy, const RT &rhw, const Quotient &rwt, const RT &thx, const RT &thy, const RT &thw, const Quotient &twt) { RT npwt = pwt.numerator(); RT dpwt = pwt.denominator(); RT nqwt = qwt.numerator(); RT dqwt = qwt.denominator(); RT nrwt = rwt.numerator(); RT drwt = rwt.denominator(); RT ntwt = twt.numerator(); RT dtwt = twt.denominator(); RT dphx = phx*phw; RT dphy = phy*phw; RT dphw = CGAL_NTS square(phw); RT dpz = (CGAL_NTS square(phx) + CGAL_NTS square(phy))*dpwt - npwt*dphw; RT dqhx = qhx*qhw; RT dqhy = qhy*qhw; RT dqhw = CGAL_NTS square(qhw); RT dqz = (CGAL_NTS square(qhx) + CGAL_NTS square(qhy))*dqwt - nqwt*dqhw; RT drhx = rhx*rhw; RT drhy = rhy*rhw; RT drhw = CGAL_NTS square(rhw); RT drz = (CGAL_NTS square(rhx) + CGAL_NTS square(rhy)) *drwt - nrwt*drhw; RT dthx = thx*thw; RT dthy = thy*thw; RT dthw = CGAL_NTS square(thw); RT dtz = (CGAL_NTS square(thx) + CGAL_NTS square(thy))*dtwt - ntwt*dthw; dthx *= dtwt; dthy *= dtwt; dthw *= dtwt; return sign_of_determinant(dphx, dphy, dpz, dphw, dqhx, dqhy, dqz, dqhw, drhx, drhy, drz, drhw, dthx, dthy, dtz, dthw); } template Oriented_side power_testH2( const RT &phx, const RT &phy, const RT &phw, const Quotient &pwt, const RT &qhx, const RT &qhy, const RT &qhw, const Quotient &qwt, const RT &thx, const RT &thy, const RT &thw, const Quotient &twt) { RT npwt = pwt.numerator(); RT dpwt = pwt.denominator(); RT nqwt = qwt.numerator(); RT dqwt = qwt.denominator(); RT ntwt = twt.numerator(); RT dtwt = twt.denominator(); // Test if we can project on the (x) axis. If not, then on the // (y) axis RT pa, qa, ta; if (phx * qhw != qhx * phw ) { pa = phx*phw; qa = qhx*qhw; ta = thx*thw; } else { pa = phy*phw; qa = qhy*qhw; ta = thy*thw; } RT dphw = CGAL_NTS square(phw); RT dpz = (CGAL_NTS square(phx) + CGAL_NTS square(phy))*dpwt - npwt*dphw; RT dqhw = CGAL_NTS square(qhw); RT dqz = (CGAL_NTS square(qhx) + CGAL_NTS square(qhy))*dqwt - nqwt*dqhw; RT dthw = CGAL_NTS square(thw); RT dtz = (CGAL_NTS square(thx) + CGAL_NTS square(thy))*dtwt - ntwt*dthw; pa *= dtwt; qa *= dtwt; ta *= dtwt; return CGAL_NTS compare(pa, qa) * sign_of_determinant(pa, dpz, dphw, qa, dqz, dqhw, ta, dtz, dthw); } #if 0 // Unused, undocumented, un-functorized. template < class R > CGAL_KERNEL_MEDIUM_INLINE Comparison_result compare_deltax_deltay(const PointH2& p, const PointH2& q, const PointH2& r, const PointH2& s) { return CGAL_NTS compare( CGAL_NTS abs(p.hx()*q.hw() - q.hx()*p.hw()) * r.hw()*s.hw(), CGAL_NTS abs(r.hy()*s.hw() - s.hy()*r.hw()) * p.hw()*q.hw()); } #endif } //namespace CGAL #endif // CGAL_PREDICATES_ON_POINTSH2_H