// Copyright (c) 2008 Max-Planck-Institute Saarbruecken (Germany) // // This file is part of CGAL (www.cgal.org); you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation; either version 3 of the License, // or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: LGPL-3.0+ // // // Author(s) : Michael Hemmer #ifndef CGAL_POLYNOMIAL_CHINESE_REMAINDER_TRAITS #define CGAL_POLYNOMIAL_CHINESE_REMAINDER_TRAITS #include #include #include namespace CGAL { template class Chinese_remainder_traits >{ public: typedef Polynomial Type; typedef Chinese_remainder_traits CRT_NT; typedef typename CRT_NT::Scalar_type Scalar_type; struct Chinese_remainder{ void operator()( const Scalar_type& m1, const Scalar_type& m2, const Scalar_type& m, const Scalar_type& s, const Scalar_type& t, const Type& u1, const Type& u2, Type& u) const { typename CRT_NT::Chinese_remainder chinese_remainder_nt; CGAL_precondition(u1.degree() == u2.degree()); std::vector coeffs(u1.degree()+1); for(int i = 0; i <= u1.degree(); i++){ NT c; chinese_remainder_nt(m1,m2,m,s,t,u1[i],u2[i],c); coeffs[i] = c; } u = Polynomial(coeffs.begin(),coeffs.end()); } void operator()( const Scalar_type& m1, const Type& u1, const Scalar_type& m2, const Type& u2, Scalar_type& m, Type& u) const { Scalar_type s,t; CGAL::extended_euclidean_algorithm(m1,m2,s,t); m = m1 * m2; this->operator()(m1,m2,m,s,t,u1,u2,u); } }; }; } // namespace CGAL #endif // CGAL_POLYNOMIAL_CHINESE_REMAINDER_TRAITS