// Copyright (c) 1998-2004 // Utrecht University (The Netherlands), // ETH Zurich (Switzerland), // INRIA Sophia-Antipolis (France), // Max-Planck-Institute Saarbruecken (Germany), // and Tel-Aviv University (Israel). All rights reserved. // // This file is part of CGAL (www.cgal.org); you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation; either version 3 of the License, // or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: LGPL-3.0+ // // // Author(s) : Geert-Jan Giezeman, Andreas Fabri #ifndef CGAL_DISTANCE_3_1_H #define CGAL_DISTANCE_3_1_H #include #include #include #include namespace CGAL { namespace internal { template typename K::FT squared_distance( const typename K::Point_3 &pt, const typename K::Line_3 &line, const K& k) { typedef typename K::Vector_3 Vector_3; typename K::Construct_vector_3 construct_vector; Vector_3 dir(line.direction().vector()); Vector_3 diff = construct_vector(line.point(), pt); return internal::squared_distance_to_line(dir, diff, k); } template inline typename K::FT squared_distance( const typename K::Line_3 & line, const typename K::Point_3 & pt, const K& k) { return squared_distance(pt, line, k); } template typename K::FT squared_distance( const typename K::Point_3 &pt, const typename K::Ray_3 &ray, const K& k) { typename K::Construct_vector_3 construct_vector; typedef typename K::Vector_3 Vector_3; Vector_3 diff = construct_vector(ray.source(), pt); const Vector_3 &dir = ray.direction().vector(); if (!is_acute_angle(dir,diff, k) ) return (typename K::FT)(diff*diff); return squared_distance_to_line(dir, diff, k); } template inline typename K::FT squared_distance( const typename K::Ray_3 & ray, const typename K::Point_3 & pt, const K& k) { return squared_distance(pt, ray, k); } template typename K::FT squared_distance( const typename K::Point_3 &pt, const typename K::Segment_3 &seg, const K& k, const Homogeneous_tag) { typename K::Construct_vector_3 construct_vector; typedef typename K::Vector_3 Vector_3; typedef typename K::RT RT; typedef typename K::FT FT; // assert that the segment is valid (non zero length). Vector_3 diff = construct_vector(seg.source(), pt); Vector_3 segvec = construct_vector(seg.source(), seg.target()); RT d = wdot(diff,segvec, k); if (d <= (RT)0) return (FT(diff*diff)); RT e = wdot(segvec,segvec, k); if ( (d * segvec.hw()) > (e * diff.hw())) return squared_distance(pt, seg.target(), k); Vector_3 wcr = wcross(segvec, diff, k); return FT(wcr*wcr)/FT(e * diff.hw() * diff.hw()); } template typename K::FT squared_distance( const typename K::Point_3 &pt, const typename K::Segment_3 &seg, const K& k, const Cartesian_tag&) { typename K::Construct_vector_3 construct_vector; typedef typename K::Vector_3 Vector_3; typedef typename K::RT RT; typedef typename K::FT FT; // assert that the segment is valid (non zero length). Vector_3 diff = construct_vector(seg.source(), pt); Vector_3 segvec = construct_vector(seg.source(), seg.target()); RT d = wdot(diff,segvec, k); if (d <= (RT)0) return (FT(diff*diff)); RT e = wdot(segvec,segvec, k); if (d > e) return squared_distance(pt, seg.target(), k); Vector_3 wcr = wcross(segvec, diff, k); return FT(wcr*wcr)/e; } template inline typename K::FT squared_distance( const typename K::Point_3 &pt, const typename K::Segment_3 &seg, const K& k) { typedef typename K::Kernel_tag Tag; Tag tag; return squared_distance(pt, seg, k, tag); } template inline typename K::FT squared_distance( const typename K::Segment_3 & seg, const typename K::Point_3 & pt, const K& k) { return squared_distance(pt, seg, k); } template typename K::Comparison_result compare_distance_pssC3( const typename K::Point_3 &pt, const typename K::Segment_3 &seg1, const typename K::Segment_3 &seg2, const K& k) { typename K::Construct_vector_3 construct_vector; typedef typename K::Vector_3 Vector_3; typedef typename K::RT RT; typedef typename K::FT FT; FT d1=FT(0), d2=FT(0); RT e1 = RT(1), e2 = RT(1); // assert that the segment is valid (non zero length). { Vector_3 diff = construct_vector(seg1.source(), pt); Vector_3 segvec = construct_vector(seg1.source(), seg1.target()); RT d = wdot(diff,segvec, k); if (d <= (RT)0){ d1 = (FT(diff*diff)); }else{ RT e = wdot(segvec,segvec, k); if (d > e){ d1 = squared_distance(pt, seg1.target(), k); } else{ Vector_3 wcr = wcross(segvec, diff, k); d1 = FT(wcr*wcr); e1 = e; } } } { Vector_3 diff = construct_vector(seg2.source(), pt); Vector_3 segvec = construct_vector(seg2.source(), seg2.target()); RT d = wdot(diff,segvec, k); if (d <= (RT)0){ d2 = (FT(diff*diff)); }else{ RT e = wdot(segvec,segvec, k); if (d > e){ d2 = squared_distance(pt, seg2.target(), k); } else{ Vector_3 wcr = wcross(segvec, diff, k); d2 = FT(wcr*wcr); e2 = e; } } } return compare(d1*e2, d2*e1); } template typename K::Comparison_result compare_distance_ppsC3( const typename K::Point_3 &pt, const typename K::Point_3 &pt2, const typename K::Segment_3 &seg, const K& k) { typename K::Construct_vector_3 construct_vector; typedef typename K::Vector_3 Vector_3; typedef typename K::RT RT; typedef typename K::FT FT; RT e2 = RT(1); // assert that the segment is valid (non zero length). FT d1 = squared_distance(pt, pt2, k); FT d2 = FT(0); { Vector_3 diff = construct_vector(seg.source(), pt); Vector_3 segvec = construct_vector(seg.source(), seg.target()); RT d = wdot(diff,segvec, k); if (d <= (RT)0){ d2 = (FT(diff*diff)); }else{ RT e = wdot(segvec,segvec, k); if (d > e){ d2 = squared_distance(pt, seg.target(), k); } else{ Vector_3 wcr = wcross(segvec, diff, k); d2 = FT(wcr*wcr); e2 = e; } } } return compare(d1*e2, d2); } template typename K::FT squared_distance_parallel( const typename K::Segment_3 &seg1, const typename K::Segment_3 &seg2, const K& k) { typedef typename K::Vector_3 Vector_3; const Vector_3 &dir1 = seg1.direction().vector(); const Vector_3 &dir2 = seg2.direction().vector(); if (same_direction(dir1, dir2, k)) { if (!is_acute_angle(seg1.source(), seg1.target(), seg2.source(), k)) return squared_distance(seg1.target(), seg2.source(), k); if (!is_acute_angle(seg1.target(), seg1.source(), seg2.target(), k)) return squared_distance(seg1.source(), seg2.target(), k); } else { if (!is_acute_angle(seg1.source(), seg1.target(), seg2.target(), k)) return squared_distance(seg1.target(), seg2.target(), k); if (!is_acute_angle(seg1.target(), seg1.source(), seg2.source(), k)) return squared_distance(seg1.source(), seg2.source(), k); } return squared_distance(seg2.source(), seg1.supporting_line(), k); } template inline typename K::RT _distance_measure_sub(typename K::RT startwdist, typename K::RT endwdist, const typename K::Vector_3 &start, const typename K::Vector_3 &end, const K&) { return CGAL_NTS abs(wmult((K*)0, startwdist, end.hw())) - CGAL_NTS abs(wmult((K*)0, endwdist, start.hw())); } template typename K::FT squared_distance( const typename K::Segment_3 &seg1, const typename K::Segment_3 &seg2, const K& k) { typename K::Construct_vector_3 construct_vector; typedef typename K::Vector_3 Vector_3; typedef typename K::Point_3 Point_3; typedef typename K::RT RT; typedef typename K::FT FT; const Point_3 &start1 = seg1.source(); const Point_3 &start2 = seg2.source(); const Point_3 &end1 = seg1.target(); const Point_3 &end2 = seg2.target(); if (start1 == end1) return squared_distance(start1, seg2, k); if (start2 == end2) return squared_distance(start2, seg1, k); Vector_3 dir1, dir2, normal; dir1 = seg1.direction().vector(); dir2 = seg2.direction().vector(); normal = wcross(dir1, dir2, k); if (is_null(normal, k)) return squared_distance_parallel(seg1, seg2, k); bool crossing1, crossing2; RT sdm_s1to2, sdm_e1to2, sdm_s2to1, sdm_e2to1; Vector_3 perpend1, perpend2, s2mins1, e2mins1, e1mins2; perpend1 = wcross(dir1, normal, k); perpend2 = wcross(dir2, normal, k); s2mins1 = construct_vector(start1, start2); e2mins1 = construct_vector(start1, end2); e1mins2 = construct_vector(start2, end1); sdm_s1to2 = -RT(wdot(perpend2, s2mins1, k)); sdm_e1to2 = wdot(perpend2, e1mins2, k); sdm_s2to1 = wdot(perpend1, s2mins1, k); sdm_e2to1 = wdot(perpend1, e2mins1, k); if (sdm_s1to2 < RT(0)) { crossing1 = (sdm_e1to2 >= RT(0)); } else { if (sdm_e1to2 <= RT(0)) { crossing1 = true; } else { crossing1 = (sdm_s1to2 == RT(0)); } } if (sdm_s2to1 < RT(0)) { crossing2 = (sdm_e2to1 >= RT(0)); } else { if (sdm_e2to1 <= RT(0)) { crossing2 = true; } else { crossing2 = (sdm_s2to1 == RT(0)); } } if (crossing1) { if (crossing2) { return squared_distance_to_plane(normal, s2mins1, k); } RT dm; dm = _distance_measure_sub( sdm_s2to1, sdm_e2to1, s2mins1, e2mins1, k); if (dm < RT(0)) { return squared_distance(start2, seg1, k); } else { if (dm > RT(0)) { return squared_distance(end2, seg1, k); } else { // should not happen with exact arithmetic. return squared_distance_parallel(seg1, seg2, k); } } } else { if (crossing2) { RT dm; dm =_distance_measure_sub( sdm_s1to2, sdm_e1to2, s2mins1, e1mins2, k); if (dm < RT(0)) { return squared_distance(start1, seg2, k); } else { if (dm > RT(0)) { return squared_distance(end1, seg2, k); } else { // should not happen with exact arithmetic. return squared_distance_parallel(seg1, seg2, k); } } } else { FT min1, min2; RT dm; dm = _distance_measure_sub( sdm_s1to2, sdm_e1to2, s2mins1, e1mins2, k); if (dm == RT(0)) // should not happen with exact arithmetic. return squared_distance_parallel(seg1, seg2, k); min1 = (dm < RT(0)) ? squared_distance(seg1.source(), seg2, k): squared_distance(end1, seg2, k); dm = _distance_measure_sub( sdm_s2to1, sdm_e2to1, s2mins1, e2mins1, k); if (dm == RT(0)) // should not happen with exact arithmetic. return squared_distance_parallel(seg1, seg2, k); min2 = (dm < RT(0)) ? squared_distance(start2, seg1, k): squared_distance(end2, seg1, k); return (min1 < min2) ? min1 : min2; } } } template typename K::FT squared_distance_parallel( const typename K::Segment_3 &seg, const typename K::Ray_3 &ray, const K& k) { typedef typename K::Vector_3 Vector_3; bool same_direction; const Vector_3 &dir1 = seg.direction().vector(); const Vector_3 &dir2 = ray.direction().vector(); if (CGAL_NTS abs(dir1.hx()) > CGAL_NTS abs(dir1.hy())) { same_direction = (CGAL_NTS sign(dir1.hx()) == CGAL_NTS sign(dir2.hx())); } else { same_direction = (CGAL_NTS sign(dir1.hy()) == CGAL_NTS sign(dir2.hy())); } if (same_direction) { if (!is_acute_angle(seg.source(), seg.target(), ray.source(), k)) return squared_distance(seg.target(), ray.source(), k); } else { if (!is_acute_angle(seg.target(), seg.source(), ray.source(), k)) return squared_distance(seg.source(), ray.source(), k); } return squared_distance(ray.source(), seg.supporting_line(), k); } template typename K::FT squared_distance( const typename K::Segment_3 &seg, const typename K::Ray_3 &ray, const K& k) { typename K::Construct_vector_3 construct_vector; typedef typename K::Point_3 Point_3; typedef typename K::Vector_3 Vector_3; typedef typename K::RT RT; typedef typename K::FT FT; const Point_3 & ss = seg.source(); const Point_3 & se = seg.target(); if (ss == se) return squared_distance(ss, ray, k); Vector_3 raydir, segdir, normal; raydir = ray.direction().vector(); segdir = seg.direction().vector(); normal = wcross(segdir, raydir, k); if (is_null(normal, k)) return squared_distance_parallel(seg, ray, k); bool crossing1, crossing2; RT sdm_ss2r, sdm_se2r, sdm_rs2s, sdm_re2s; Vector_3 perpend2seg, perpend2ray, ss_min_rs, se_min_rs; perpend2seg = wcross(segdir, normal, k); perpend2ray = wcross(raydir, normal, k); ss_min_rs = construct_vector(ray.source(), ss); se_min_rs = construct_vector(ray.source(), se); sdm_ss2r = wdot(perpend2ray, ss_min_rs, k); sdm_se2r = wdot(perpend2ray, se_min_rs, k); if (sdm_ss2r < RT(0)) { crossing1 = (sdm_se2r >= RT(0)); } else { if (sdm_se2r <= RT(0)) { crossing1 = true; } else { crossing1 = (sdm_ss2r == RT(0)); } } sdm_rs2s = -RT(wdot(perpend2seg, ss_min_rs, k)); sdm_re2s = wdot(perpend2seg, raydir, k); if (sdm_rs2s < RT(0)) { crossing2 = (sdm_re2s >= RT(0)); } else { if (sdm_re2s <= RT(0)) { crossing2 = true; } else { crossing2 = (sdm_rs2s == RT(0)); } } if (crossing1) { if (crossing2) { return squared_distance_to_plane(normal, ss_min_rs, k); } return squared_distance(ray.source(), seg, k); } else { if (crossing2) { RT dm; dm = _distance_measure_sub( sdm_ss2r, sdm_se2r, ss_min_rs, se_min_rs, k); if (dm < RT(0)) { return squared_distance(ss, ray, k); } else { if (dm > RT(0)) { return squared_distance(se, ray, k); } else { // parallel, should not happen (no crossing) return squared_distance_parallel(seg, ray, k); } } } else { FT min1, min2; RT dm; dm = _distance_measure_sub( sdm_ss2r, sdm_se2r, ss_min_rs, se_min_rs, k); if (dm == RT(0)) return squared_distance_parallel(seg, ray, k); min1 = (dm < RT(0)) ? squared_distance(ss, ray, k) : squared_distance(se, ray, k); min2 = squared_distance(ray.source(), seg, k); return (min1 < min2) ? min1 : min2; } } } template inline typename K::FT squared_distance( const typename K::Ray_3 & ray, const typename K::Segment_3 & seg, const K& k) { return squared_distance(seg, ray, k); } template typename K::FT squared_distance( const typename K::Segment_3 &seg, const typename K::Line_3 &line, const K& k) { typename K::Construct_vector_3 construct_vector; typedef typename K::Vector_3 Vector_3; typedef typename K::Point_3 Point_3; typedef typename K::RT RT; const Point_3 &linepoint = line.point(); const Point_3 &start = seg.source(); const Point_3 &end = seg.target(); if (start == end) return squared_distance(start, line, k); Vector_3 linedir = line.direction().vector(); Vector_3 segdir = seg.direction().vector(); Vector_3 normal = wcross(segdir, linedir, k); if (is_null(normal, k)) return squared_distance_to_line(linedir, construct_vector(linepoint,start), k); bool crossing; RT sdm_ss2l, sdm_se2l; Vector_3 perpend2line, start_min_lp, end_min_lp; perpend2line = wcross(linedir, normal, k); start_min_lp = construct_vector(linepoint, start); end_min_lp = construct_vector(linepoint, end); sdm_ss2l = wdot(perpend2line, start_min_lp, k); sdm_se2l = wdot(perpend2line, end_min_lp, k); if (sdm_ss2l < RT(0)) { crossing = (sdm_se2l >= RT(0)); } else { if (sdm_se2l <= RT(0)) { crossing = true; } else { crossing = (sdm_ss2l == RT(0)); } } if (crossing) { return squared_distance_to_plane(normal, start_min_lp, k); } else { RT dm; dm = _distance_measure_sub( sdm_ss2l, sdm_se2l, start_min_lp, end_min_lp, k); if (dm <= RT(0)) { return squared_distance_to_line(linedir, start_min_lp, k); } else { return squared_distance_to_line(linedir, end_min_lp, k); } } } template inline typename K::FT squared_distance( const typename K::Line_3 & line, const typename K::Segment_3 & seg, const K& k) { return squared_distance(seg, line, k); } template typename K::FT ray_ray_squared_distance_parallel( const typename K::Vector_3 &ray1dir, const typename K::Vector_3 &ray2dir, const typename K::Vector_3 &s1_min_s2, const K& k) { if (!is_acute_angle(ray2dir, s1_min_s2, k)) { if (!same_direction(ray1dir, ray2dir, k)) return (typename K::FT)(s1_min_s2*s1_min_s2); } return squared_distance_to_line(ray1dir, s1_min_s2, k); } template typename K::FT squared_distance( const typename K::Ray_3 &ray1, const typename K::Ray_3 &ray2, const K& k) { typename K::Construct_vector_3 construct_vector; typedef typename K::Vector_3 Vector_3; typedef typename K::Point_3 Point_3; typedef typename K::RT RT; typedef typename K::FT FT; const Point_3 & s1 = ray1.source(); const Point_3 & s2 = ray2.source(); Vector_3 dir1, dir2, normal; dir1 = ray1.direction().vector(); dir2 = ray2.direction().vector(); normal = wcross(dir1, dir2, k); Vector_3 s1_min_s2 = construct_vector(s2, s1); if (is_null(normal, k)) return ray_ray_squared_distance_parallel(dir1, dir2, s1_min_s2, k); bool crossing1, crossing2; RT sdm_s1_2, sdm_s2_1; Vector_3 perpend1, perpend2; perpend1 = wcross(dir1, normal, k); perpend2 = wcross(dir2, normal, k); sdm_s1_2 = wdot(perpend2, s1_min_s2, k); if (sdm_s1_2 < RT(0)) { crossing1 = (RT(wdot(perpend2, dir1, k)) >= RT(0)); } else { if (RT(wdot(perpend2, dir1, k)) <= RT(0)) { crossing1 = true; } else { crossing1 = (sdm_s1_2 == RT(0)); } } sdm_s2_1 = -RT(wdot(perpend1, s1_min_s2, k)); if (sdm_s2_1 < RT(0)) { crossing2 = (RT(wdot(perpend1, dir2, k)) >= RT(0)); } else { if (RT(wdot(perpend1, dir2, k)) <= RT(0)) { crossing2 = true; } else { crossing2 = (sdm_s2_1 == RT(0)); } } if (crossing1) { if (crossing2) return squared_distance_to_plane(normal, s1_min_s2, k); return squared_distance(ray2.source(), ray1, k); } else { if (crossing2) { return squared_distance(ray1.source(), ray2, k); } else { FT min1, min2; min1 = squared_distance(ray1.source(), ray2, k); min2 = squared_distance(ray2.source(), ray1, k); return (min1 < min2) ? min1 : min2; } } } template typename K::FT squared_distance( const typename K::Line_3 &line, const typename K::Ray_3 &ray, const K& k) { typename K::Construct_vector_3 construct_vector; typedef typename K::Vector_3 Vector_3; typedef typename K::Point_3 Point_3; typedef typename K::RT RT; const Point_3 & rs =ray.source(); Vector_3 raydir, linedir, normal; linedir = line.direction().vector(); raydir = ray.direction().vector(); normal = wcross(raydir, linedir, k); Vector_3 rs_min_lp = construct_vector(line.point(), rs); if (is_null(normal, k)) return squared_distance_to_line(linedir, rs_min_lp, k); bool crossing; RT sdm_sr_l; Vector_3 perpend2l; perpend2l = wcross(linedir, normal, k); sdm_sr_l = wdot(perpend2l, rs_min_lp, k); if (sdm_sr_l < RT(0)) { crossing = (RT(wdot(perpend2l, raydir, k)) >= RT(0)); } else { if (RT(wdot(perpend2l, raydir, k)) <= RT(0)) { crossing = true; } else { crossing = (sdm_sr_l == RT(0)); } } if (crossing) return squared_distance_to_plane(normal, rs_min_lp, k); else return squared_distance_to_line(linedir, rs_min_lp, k); } template inline typename K::FT squared_distance( const typename K::Ray_3 & ray, const typename K::Line_3 & line, const K& k) { return squared_distance(line, ray, k); } template typename K::FT squared_distance( const typename K::Line_3 &line1, const typename K::Line_3 &line2, const K& k) { typename K::Construct_vector_3 construct_vector; typedef typename K::Vector_3 Vector_3; Vector_3 dir1, dir2, normal, diff; dir1 = line1.direction().vector(); dir2 = line2.direction().vector(); normal = wcross(dir1, dir2, k); diff = construct_vector(line1.point(), line2.point()); if (is_null(normal, k)) return squared_distance_to_line(dir2, diff, k); return squared_distance_to_plane(normal, diff, k); } } // namespace internal template inline typename K::FT squared_distance(const Point_3 &pt, const Line_3 &line) { return internal::squared_distance(pt, line, K()); } template inline typename K::FT squared_distance( const Line_3 & line, const Point_3 & pt) { return internal::squared_distance(pt, line, K()); } template inline typename K::FT squared_distance( const Point_3 &pt, const Ray_3 &ray) { return internal::squared_distance(pt, ray, K()); } template inline typename K::FT squared_distance( const Ray_3 & ray, const Point_3 & pt) { return internal::squared_distance(pt, ray, K()); } template inline typename K::FT squared_distance( const Point_3 &pt, const Segment_3 &seg) { return internal::squared_distance(pt, seg, K()); } template inline typename K::FT squared_distance( const Segment_3 & seg, const Point_3 & pt) { return internal::squared_distance(pt, seg, K()); } template inline typename K::FT squared_distance_parallel( const Segment_3 &seg1, const Segment_3 &seg2) { return internal::squared_distance_parallel(seg1, seg2, K()); } template inline typename K::FT squared_distance(const Segment_3 &seg1, const Segment_3 &seg2) { return internal::squared_distance(seg1, seg2, K()); } template inline typename K::FT squared_distance_parallel( const Segment_3 &seg, const Ray_3 &ray) { return internal::squared_distance_parallel(ray,seg, K()); } template inline typename K::FT squared_distance( const Segment_3 &seg, const Ray_3 &ray) { return internal::squared_distance(ray, seg, K()); } template inline typename K::FT squared_distance( const Ray_3 & ray, const Segment_3 & seg) { return internal::squared_distance(seg, ray, K()); } template inline typename K::FT squared_distance( const Segment_3 &seg, const Line_3 &line) { return internal::squared_distance(seg, line, K()); } template inline typename K::FT squared_distance( const Line_3 & line, const Segment_3 & seg) { return internal::squared_distance(seg, line, K()); } template inline typename K::FT ray_ray_squared_distance_parallel( const Vector_3 &ray1dir, const Vector_3 &ray2dir, const Vector_3 &s1_min_s2) { return internal::ray_ray_squared_distance_parallel(ray1dir, ray2dir, s1_min_s2, K()); } template inline typename K::FT squared_distance( const Ray_3 &ray1, const Ray_3 &ray2) { return internal::squared_distance(ray1, ray2, K()); } template inline typename K::FT squared_distance( const Line_3 &line, const Ray_3 &ray) { return internal::squared_distance(line, ray, K()); } template inline typename K::FT squared_distance( const Ray_3 & ray, const Line_3 & line) { return internal::squared_distance(line, ray, K()); } template inline typename K::FT squared_distance( const Line_3 &line1, const Line_3 &line2) { return internal::squared_distance(line1, line2, K()); } } //namespace CGAL #endif