// Copyright (c) 1997-2000 Max-Planck-Institute Saarbruecken (Germany). // All rights reserved. // // This file is part of CGAL (www.cgal.org). // You can redistribute it and/or modify it under the terms of the GNU // General Public License as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: GPL-3.0+ // // // Author(s) : Michael Seel // Peter Hachenberger #ifndef CGAL_NEF_POLYHEDRON_S2_H #define CGAL_NEF_POLYHEDRON_S2_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #undef CGAL_NEF_DEBUG #define CGAL_NEF_DEBUG 53 #include namespace CGAL { template class Nef_polyhedron_S2; template class Nef_polyhedron_S2_rep; template class Nef_polyhedron_3; class SNC_items; template std::ostream& operator<<(std::ostream&, const Nef_polyhedron_S2&); template std::istream& operator>>(std::istream&, Nef_polyhedron_S2&); template class Nef_polyhedron_S2_rep { typedef Nef_polyhedron_S2_rep Self; friend class Nef_polyhedron_S2; public: typedef CGAL::Sphere_geometry Sphere_kernel; typedef Mk Mark; typedef M Sphere_map; typedef CGAL::SM_const_decorator Const_decorator; typedef CGAL::SM_decorator Decorator; typedef CGAL::SM_overlayer Overlayer; typedef CGAL::SM_point_locator Locator; private: Sphere_map sm_; public: Nef_polyhedron_S2_rep() : sm_() {} Nef_polyhedron_S2_rep(const Self&) : sm_() {} ~Nef_polyhedron_S2_rep() { sm_.clear(); } }; /*{\Moptions print_title=yes }*/ /*{\Manpage {Nef_polyhedron_S2}{K} {Nef Polyhedra in the sphere surface}{N}}*/ /*{\Mdefinition An instance of data type |\Mname| is a subset of $S_2$ that is the result of forming complements and intersections starting from a finite set |H| of half-spaces. |\Mtype| is closed under all binary set operations |intersection|, |union|, |difference|, |complement| and under the topological operations |boundary|, |closure|, and |interior|. The template parameter |Kernel| is specified via a kernel concept. |Kernel| must be a model of the concept |NefSphereKernelTraits_2|. }*/ template ,Items_, Mark_> > class Nef_polyhedron_S2 : public Handle_for< Nef_polyhedron_S2_rep >, public Nef_polyhedron_S2_rep::Const_decorator { using Nef_polyhedron_S2_rep::Const_decorator::set_sm; public: /*{\Mtypes 7}*/ typedef Items_ Items; typedef Kernel_ Kernel; typedef Map_ Sphere_map; typedef Mark_ Mark; typedef Nef_polyhedron_S2 Self; typedef Nef_polyhedron_S2_rep Rep; typedef Handle_for< Nef_polyhedron_S2_rep > Base; typedef typename Rep::Sphere_kernel Sphere_kernel; // typedef typename Rep::Sphere_map Sphere_map; typedef typename Sphere_kernel::Sphere_point Sphere_point; /*{\Mtypemember points in the sphere surface.}*/ typedef typename Sphere_kernel::Sphere_segment Sphere_segment; /*{\Mtypemember segments in the sphere surface.}*/ typedef typename Sphere_kernel::Sphere_circle Sphere_circle; /*{\Mtypemember oriented great circles modeling spherical half-spaces}*/ typedef typename Sphere_kernel::Sphere_direction Sphere_direction; // typedef typename Rep::Mark Mark; /*{\Xtypemember marking set membership or exclusion.}*/ enum Boundary { EXCLUDED=0, INCLUDED=1 }; /*{\Menum construction selection.}*/ enum Content { EMPTY=0, COMPLETE=1 }; /*{\Menum construction selection}*/ const Sphere_map& sphere_map() const { return this->ptr()->sm_; } protected: Sphere_map& sphere_map() { return this->ptr()->sm_; } struct AND { bool operator()(const Mark& b1, const Mark& b2) const { return b1&&b2; } }; struct OR { bool operator()(const Mark& b1, const Mark& b2) const { return b1||b2; } }; struct DIFF { bool operator()(const Mark& b1, const Mark& b2) const { return b1&&!b2; } }; struct XOR { bool operator()(const Mark& b1, const Mark& b2) const { return (b1&&!b2)||(!b1&&b2); } }; typedef Nef_polyhedron_S2_rep Nef_rep; typedef typename Nef_rep::Decorator Decorator; public: typedef typename Nef_rep::Const_decorator Const_decorator; protected: typedef typename Nef_rep::Overlayer Overlayer; typedef typename Nef_rep::Locator Locator; friend std::ostream& operator<< <> (std::ostream& os, const Self& NP); friend std::istream& operator>> <> (std::istream& is, Self& NP); public: typedef typename Decorator::SVertex_handle SVertex_handle; typedef typename Decorator::SHalfedge_handle SHalfedge_handle; typedef typename Decorator::SHalfloop_handle SHalfloop_handle; typedef typename Decorator::SFace_handle SFace_handle; typedef typename Sphere_map::SVertex_base SVertex; typedef typename Sphere_map::SHalfedge_base SHalfedge; typedef typename Sphere_map::SHalfloop SHalfloop; typedef typename Sphere_map::SFace_base SFace; typedef typename Decorator::SVertex_const_handle SVertex_const_handle; typedef typename Decorator::SHalfedge_const_handle SHalfedge_const_handle; typedef typename Decorator::SHalfloop_const_handle SHalfloop_const_handle; typedef typename Decorator::SFace_const_handle SFace_const_handle; typedef typename Decorator::SVertex_iterator SVertex_iterator; typedef typename Decorator::SHalfedge_iterator SHalfedge_iterator; typedef typename Decorator::SHalfloop_iterator SHalfloop_iterator; typedef typename Decorator::SFace_iterator SFace_iterator; typedef typename Const_decorator::SVertex_const_iterator SVertex_const_iterator; typedef typename Const_decorator::SHalfedge_const_iterator SHalfedge_const_iterator; typedef typename Const_decorator::SHalfloop_const_iterator SHalfloop_const_iterator; typedef typename Const_decorator::SFace_const_iterator SFace_const_iterator; typedef typename Const_decorator::Size_type Size_type; typedef Size_type size_type; typedef std::list SS_list; typedef typename SS_list::const_iterator SS_iterator; friend class Nef_polyhedron_3; public: /*{\Mcreation 3}*/ Nef_polyhedron_S2(Content sphere = EMPTY) : Base(Nef_rep()) /*{\Mcreate creates an instance |\Mvar| of type |\Mname| and initializes it to the empty set if |sphere == EMPTY| and to the whole sphere if |sphere == COMPLETE|.}*/ { set_sm(&sphere_map()); Decorator D(&sphere_map()); SFace_handle sf=D.new_sface(); sf->mark() = bool(sphere); } Nef_polyhedron_S2(const Sphere_circle& c, Boundary circle = INCLUDED) : Base(Nef_rep()) { /*{\Mcreate creates a Nef polyhedron |\Mvar| containing the half-sphere left of |c| including |c| if |circle==INCLUDED|, excluding |c| if |circle==EXCLUDED|.}*/ set_sm(&sphere_map()); CGAL_NEF_TRACEN("Nef_polyhedron_S2(): construction from circle "<circle() != c ) h = h->twin(); h->incident_sface()->mark() = true; h->mark() = h->twin()->mark() = bool(circle); } template Nef_polyhedron_S2(Forward_iterator first, Forward_iterator beyond, Boundary b = INCLUDED) : Base(Nef_rep()) /*{\Mcreate creates a Nef polyhedron |\Mvar| from the set of sphere segments in the iterator range |[first,beyond)|. If the set of sphere segments is a simple polygon that separates the sphere surface into two regions, then the polygonal region that is left of the segment |*first| is selected. The polygonal region includes its boundary if |b = INCLUDED| and excludes the boundary otherwise. |Forward_iterator| has to be an iterator with value type |Sphere_segment|.}*/ { CGAL_NEF_TRACEN("Nef_polyhedron_S2(): creation from segment range"); CGAL_assertion(first!=beyond); set_sm(&sphere_map()); Overlayer D(&sphere_map()); Sphere_segment s = *first; D.create_from_segments(first,beyond); SHalfedge_iterator e; CGAL_forall_shalfedges(e,D) { Sphere_circle c(e->circle()); if ( c == s.sphere_circle() ) break; } if ( e != SHalfedge_iterator() ) { if ( e->circle() != s.sphere_circle() ) e = e->twin(); CGAL_assertion( e->circle() == s.sphere_circle() ); D.set_marks_in_face_cycle(e,bool(b)); if ( D.number_of_sfaces() > 2 ) e->incident_sface()->mark() = true; else e->incident_sface()->mark() = !bool(b); return; } D.simplify(); } Nef_polyhedron_S2(const Self& N1) : Base(N1), Const_decorator() { set_sm(&sphere_map()); } Nef_polyhedron_S2& operator=(const Self& N1) { Base::operator=(N1); set_sm(&sphere_map()); return (*this); } ~Nef_polyhedron_S2() {} template Nef_polyhedron_S2(Forward_iterator first, Forward_iterator beyond, double p) : Base(Nef_rep()) /*{\Xcreate creates a random Nef polyhedron from the arrangement of the set of circles |S = set[first,beyond)|. The cells of the arrangement are selected uniformly at random with probability $p$. \precond $0 < p < 1$.}*/ { CGAL_assertion(0<=p && p<=1); CGAL_assertion(first!=beyond); set_sm(&sphere_map()); Overlayer D(&sphere_map()); D.create_from_circles(first, beyond); D.simplify(); boost::rand48 rng; boost::uniform_real<> dist(0,1); boost::variate_generator > get_double(rng,dist); SVertex_iterator v; SHalfedge_iterator e; SFace_iterator f; CGAL_forall_svertices(v,D) v->mark() = ( get_double() < p ? true : false ); CGAL_forall_shalfedges(e,D) e->mark() = ( get_double() < p ? true : false ); CGAL_forall_sfaces(f,D) f->mark() = ( get_double() < p ? true : false ); D.simplify(); } void delegate( Modifier_base& modifier) { // calls the `operator()' of the `modifier'. Precondition: The // `modifier' returns a consistent representation. modifier(sphere_map()); // CGAL_expensive_postcondition( is_valid()); } //protected: Nef_polyhedron_S2(const Sphere_map& H, bool clone=true) : Base(Nef_rep()) /*{\Xcreate makes |\Mvar| a new object. If |clone==true| then the underlying structure of |H| is copied into |\Mvar|.}*/ { if(clone) this->ptr()->sm_ = H; set_sm(&sphere_map()); } void clone_rep() { *this = Self(sphere_map()); } /*{\Moperations 4 3 }*/ public: void clear(Content plane = EMPTY) { *this = Nef_polyhedron_S2(plane); } /*{\Mop makes |\Mvar| the empty set if |plane == EMPTY| and the full plane if |plane == COMPLETE|.}*/ bool is_empty() const /*{\Mop returns true if |\Mvar| is empty, false otherwise.}*/ { Const_decorator D(&sphere_map()); CGAL_NEF_TRACEN("is_empty()"<<*this); SFace_const_iterator f = D.sfaces_begin(); return (D.number_of_svertices()==0 && D.number_of_sedges()==0 && D.number_of_sloops()==0 && D.number_of_sfaces()==1 && f->mark() == false); } bool is_plane() const /*{\Mop returns true if |\Mvar| is the whole plane, false otherwise.}*/ { Const_decorator D(&sphere_map()); SFace_const_iterator f = D.sfaces_begin(); return (D.number_of_svertices()==0 && D.number_of_sedges()==0 && D.number_of_sloops()==0 && D.number_of_sfaces()==1 && f->mark() == true); } void extract_complement() { CGAL_NEF_TRACEN("extract complement"); if ( this->is_shared() ) clone_rep(); Overlayer D(&sphere_map()); SVertex_iterator v; SHalfedge_iterator e; SFace_iterator f; CGAL_forall_svertices(v,D) v->mark() = !v->mark(); CGAL_forall_sedges(e,D) e->mark() = !e->mark(); CGAL_forall_sfaces(f,D) f->mark() = !f->mark(); if ( D.has_shalfloop() ) D.shalfloop()->mark() = D.shalfloop()->twin()->mark() = !D.shalfloop()->mark(); } void extract_interior() { CGAL_NEF_TRACEN("extract interior"); if ( this->is_shared() ) clone_rep(); Overlayer D(&sphere_map()); SVertex_iterator v; SHalfedge_iterator e; CGAL_forall_svertices(v,D) v->mark() = false; CGAL_forall_sedges(e,D) e->mark() = false; if ( D.has_sloop() ) D.shalfloop()->mark() = false; D.simplify(); } void extract_boundary() { CGAL_NEF_TRACEN("extract boundary"); if ( this->is_shared() ) clone_rep(); Overlayer D(&sphere_map()); SVertex_iterator v; SHalfedge_iterator e; SFace_iterator f; CGAL_forall_svertices(v,D) v->mark() = true; CGAL_forall_sedges(e,D) e->mark() = true; CGAL_forall_sfaces(f,D) f->mark() = false; if ( D.has_sloop() ) D.shalfloop()->mark() = D.shalfoop()->twin() = true; D.simplify(); } void extract_closure() /*{\Xop converts |\Mvar| to its closure. }*/ { CGAL_NEF_TRACEN("extract closure"); extract_complement(); extract_interior(); extract_complement(); } void extract_regularization() /*{\Xop converts |\Mvar| to its regularization. }*/ { CGAL_NEF_TRACEN("extract regularization"); extract_interior(); extract_closure(); } /*{\Mtext \headerline{Constructive Operations}}*/ Self complement() const /*{\Mop returns the complement of |\Mvar| in the plane.}*/ { Self res = *this; res.extract_complement(); return res; } Self interior() const /*{\Mop returns the interior of |\Mvar|.}*/ { Self res = *this; res.extract_interior(); return res; } Self closure() const /*{\Mop returns the closure of |\Mvar|.}*/ { Self res = *this; res.extract_closure(); return res; } Self boundary() const /*{\Mop returns the boundary of |\Mvar|.}*/ { Self res = *this; res.extract_boundary(); return res; } Self regularization() const /*{\Mop returns the regularized polyhedron (closure of interior).}*/ { Self res = *this; res.extract_regularization(); return res; } Self intersection(const Self& N1) const /*{\Mop returns |\Mvar| $\cap$ |N1|. }*/ { Self res(sphere_map(),false); // empty Overlayer D(&res.sphere_map()); D.subdivide(&sphere_map(),&N1.sphere_map()); AND _and; D.select(_and); D.simplify(); return res; } Self join(const Self& N1) const /*{\Mop returns |\Mvar| $\cup$ |N1|. }*/ { Self res(sphere_map(),false); // empty Overlayer D(&res.sphere_map()); D.subdivide(&sphere_map(),&N1.sphere_map()); OR _or; D.select(_or); D.simplify(); return res; } Self difference(const Self& N1) const /*{\Mop returns |\Mvar| $-$ |N1|. }*/ { Self res(sphere_map(),false); // empty Overlayer D(&res.sphere_map()); D.subdivide(&sphere_map(),&N1.sphere_map()); DIFF _diff; D.select(_diff); D.simplify(); return res; } Self symmetric_difference( const Self& N1) const /*{\Mop returns the symmectric difference |\Mvar - T| $\cup$ |T - \Mvar|. }*/ { Self res(sphere_map(),false); // empty Overlayer D(&res.sphere_map()); D.subdivide(&sphere_map(),&N1.sphere_map()); XOR _xor; D.select(_xor); D.simplify(); return res; } /*{\Mtext Additionally there are operators |*,+,-,^,!| which implement the binary operations \emph{intersection}, \emph{union}, \emph{difference}, \emph{symmetric difference}, and the unary operation \emph{complement} respectively. There are also the corresponding modification operations |*=,+=,-=,^=|.}*/ Self operator*(const Self& N1) const { return intersection(N1); } Self operator+(const Self& N1) const { return join(N1); } Self operator-(const Self& N1) const { return difference(N1); } Self operator^(const Self& N1) const { return symmetric_difference(N1); } Self operator!() const { return complement(); } Self& operator*=(const Self& N1) { *this = intersection(N1); return *this; } Self& operator+=(const Self& N1) { *this = join(N1); return *this; } Self& operator-=(const Self& N1) { *this = difference(N1); return *this; } Self& operator^=(const Self& N1) { *this = symmetric_difference(N1); return *this; } /*{\Mtext There are also comparison operations like |<,<=,>,>=,==,!=| which implement the relations subset, subset or equal, superset, superset or equal, equality, inequality, respectively.}*/ bool operator==(const Self& N1) const { return symmetric_difference(N1).is_empty(); } bool operator!=(const Self& N1) const { return !operator==(N1); } bool operator<=(const Self& N1) const { return difference(N1).is_empty(); } bool operator<(const Self& N1) const { return difference(N1).is_empty() && !N1.difference(*this).is_empty(); } bool operator>=(const Self& N1) const { return N1.difference(*this).is_empty(); } bool operator>(const Self& N1) const { return N1.difference(*this).is_empty() && !difference(N1).is_empty(); } /*{\Mtext \headerline{Exploration - Point location - Ray shooting} As Nef polyhedra are the result of forming complements and intersections starting from a set |H| of half-spaces that are defined by oriented lines in the plane, they can be represented by an attributed plane map $M = (V,E,F)$. For topological queries within |M| the following types and operations allow exploration access to this structure.}*/ /*{\Mtypes 3}*/ typedef Const_decorator Topological_explorer; typedef Const_decorator Explorer; /*{\Mtypemember a decorator to examine the underlying plane map. See the manual page of |Explorer|.}*/ typedef typename Locator::Object_handle Object_handle; /*{\Mtypemember a generic handle to an object of the underlying plane map. The kind of object |(vertex, halfedge, face)| can be determined and the object can be assigned to a corresponding handle by the three functions:\\ |bool assign(SVertex_const_handle& h, Object_handle)|\\ |bool assign(SHalfedge_const_handle& h, Object_handle)|\\ |bool assign(SFace_const_handle& h, Object_handle)|\\ where each function returns |true| iff the assignment to |h| was done.}*/ /*{\Moperations 3 1 }*/ bool contains(Object_handle h) const /*{\Mop returns true iff the object |h| is contained in the set represented by |\Mvar|.}*/ { Locator PL(&sphere_map()); return PL.mark(h); } bool contained_in_boundary(Object_handle h) const /*{\Mop returns true iff the object |h| is contained in the $1$-skeleton of |\Mvar|.}*/ { SVertex_const_handle v; SHalfedge_const_handle e; return ( CGAL::assign(v,h) || CGAL::assign(e,h) ); } Object_handle locate(const Sphere_point& p) const /*{\Mop returns a generic handle |h| to an object (face, halfedge, vertex) of the underlying plane map that contains the point |p| in its relative interior. The point |p| is contained in the set represented by |\Mvar| if |\Mvar.contains(h)| is true. The location mode flag |m| allows one to choose between different point location strategies.}*/ { Locator PL(&sphere_map()); return PL.locate(p); } struct INSET { const Const_decorator& D; INSET(const Const_decorator& Di) : D(Di) {} bool operator()(SVertex_const_handle v) const { return v->mark(); } bool operator()(SHalfedge_const_handle e) const { return e->mark(); } bool operator()(SHalfloop_const_handle l) const { return l->mark(); } bool operator()(SFace_const_handle f) const { return f->mark(); } }; Object_handle ray_shoot(const Sphere_point& p, const Sphere_direction& d) const /*{\Mop returns a handle |h| with |\Mvar.contains(h)| that can be converted to a |SVertex_/SHalfedge_/SFace_const_handle| as described above. The object returned is intersected by the ray starting in |p| with direction |d| and has minimal distance to |p|. The operation returns the null handle |NULL| if the ray shoot along |d| does not hit any object |h| of |\Mvar| with |\Mvar.contains(h)|.}*/ { Locator PL(&sphere_map()); return PL.ray_shoot(p,d,INSET(PL)); } struct INSKEL { bool operator()(SVertex_const_handle) const { return true; } bool operator()(SHalfedge_const_handle) const { return true; } bool operator()(SHalfloop_const_handle) const { return true; } bool operator()(SFace_const_handle) const { return false; } }; Object_handle ray_shoot_to_boundary(const Sphere_point& p, const Sphere_direction& d) const /*{\Mop returns a handle |h| that can be converted to a |SVertex_/SHalfedge_const_handle| as described above. The object returned is part of the $1$-skeleton of |\Mvar|, intersected by the ray starting in |p| with direction |d| and has minimal distance to |p|. The operation returns the null handle |NULL| if the ray shoot along |d| does not hit any $1$-skeleton object |h| of |\Mvar|. The location mode flag |m| allows one to choose between different point location strategies.}*/ { Locator PL(&sphere_map()); return PL.ray_shoot(p,d,INSKEL()); } // Explorer explorer() const /*{\Mop returns a decorator object which allows read-only access of the underlying plane map. See the manual page |Explorer| for its usage.}*/ // { return Explorer(const_cast(&sphere_map())); } /*{\Mtext\headerline{Input and Output} A Nef polyhedron |\Mvar| can be visualized in an open GL window. The output operator is defined in the file |CGAL/IO/Nef_\-poly\-hedron_2_\-Win\-dow_\-stream.h|. }*/ /*{\Mimplementation Nef polyhedra are implemented on top of a halfedge data structure and use linear space in the number of vertices, edges and facets. Operations like |empty| take constant time. The operations |clear|, |complement|, |interior|, |closure|, |boundary|, |regularization|, input and output take linear time. All binary set operations and comparison operations take time $O(n \log n)$ where $n$ is the size of the output plus the size of the input. The point location and ray shooting operations are implemented in the naive way. The operations run in linear query time without any preprocessing.}*/ /*{\Mexample Nef polyhedra are parameterized by a standard CGAL kernel. \begin{Mverb} #include #include #include using namespace CGAL; typedef Homogeneous Kernel; typedef SM_items SM_items; typedef Nef_polyhedron_S2 Nef_polyhedron; typedef Nef_polyhedron::Sphere_circle Sphere_circle; int main() { Nef_polyhedron N1(Sphere_circle(1,0,0)); Nef_polyhedron N2(Sphere_circle(0,1,0), Nef_polyhedron::EXCLUDED); Nef_polyhedron N3 = N1 * N2; // line (*) return 0; } \end{Mverb} After line (*) |N3| is the intersection of |N1| and |N2|.}*/ }; // end of Nef_polyhedron_S2 template std::ostream& operator<< (std::ostream& os, const Nef_polyhedron_S2& NP) { os << "Nef_polyhedron_S2\n"; typedef typename Nef_polyhedron_S2::Explorer Decorator; CGAL::SM_io_parser O(os, Decorator(&NP.sphere_map())); O.print(); return os; } template std::istream& operator>> (std::istream& is, Nef_polyhedron_S2& NP) { typedef typename Nef_polyhedron_S2::Decorator Decorator; CGAL::SM_io_parser I(is, Decorator(&NP.sphere_map())); // if ( I.check_sep("Nef_polyhedron_S2") ) I.read(); /* else { std::cerr << "Nef_polyhedron_S2 input corrupted." << std::endl; NP = Nef_polyhedron_S2(); } */ /* typename Nef_polyhedron_S2::Topological_explorer D(NP.explorer()); D.check_integrity_and_topological_planarity(); */ return is; } } //namespace CGAL #include #endif //CGAL_NEF_POLYHEDRON_S2_H