// Copyright (c) 2003,2004,2007-2010 INRIA Sophia-Antipolis (France). // Copyright (c) 2014 GeometryFactory Sarl (France) // All rights reserved. // // This file is part of CGAL (www.cgal.org); you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation; either version 3 of the License, // or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: LGPL-3.0+ // // Author(s) : Sylvain Pion #ifndef CGAL_COMPACT_CONTAINER_H #define CGAL_COMPACT_CONTAINER_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include // An STL like container with the following properties : // - to achieve compactness, it requires access to a pointer stored in T, // specified by a traits. This pointer is supposed to be 4 bytes aligned // when the object is alive, otherwise, the container uses the 2 least // significant bits to store information in the pointer. // - Ts are allocated in arrays of increasing size, which are linked together // by their first and last element. // - the iterator looks at the famous 2 bits to know if it has to deal with // a free/used/boundary element. // TODO : // - Add .resize() (and proper copy of capacity_). // - Add preconditions in input that real pointers need to have clean bits. // Also for the allocated memory alignment, and sizeof(). // - Do a benchmark before/after. // - Check the end result with Valgrind. // - The bit squatting mechanism will be reused for the conflict flag, maybe // it could be put out of the class. // TODO low priority : // - rebind<> the allocator // - Exception safety guarantees // - Thread safety guarantees // - std requirements on iterators says all defined operations are constant // time amortized (it's not true here, maybe it could be with some work...) // - all this is expected especially when there are not so many free objects // compared to the allocated elements. // - Should block_size be selectable/hintable by .reserve() ? // - would be nice to have a temporary_free_list (still active elements, but // which are going to be freed soon). Probably it prevents compactness. // - eventually something to copy this data structure, providing a way to // update the pointers (give access to a hash_map, at least a function that // converts an old pointer to the new one ?). Actually it doesn't have to // be stuck to a particular DS, because for a list it's useful too... // - Currently, end() can be invalidated on insert() if a new block is added. // It would be nice to fix this. We could insert the new block at the // beginning instead ? That would drop the property that iterator order // is preserved. Maybe it's not a problem if end() is not preserved, after // all nothing is going to dereference it, it's just for comparing with // end() that it can be a problem. // Another way would be to have end() point to the end of an always // empty block (containing no usable element), and insert new blocks just // before this one. // Instead of having the blocks linked between them, the start/end pointers // could point back to the container, so that we can do more interesting // things (e.g. freeing empty blocks automatically) ? namespace CGAL { #define CGAL_GENERATE_MEMBER_DETECTOR(X) \ template class has_##X { \ struct Fallback { int X; }; \ struct Derived : T, Fallback { }; \ \ template struct Check; \ \ typedef char ArrayOfOne[1]; \ typedef char ArrayOfTwo[2]; \ \ template static ArrayOfOne & func( \ Check *); \ template static ArrayOfTwo & func(...); \ public: \ typedef has_##X type; \ enum { value = sizeof(func(0)) == 2 }; \ } // semicolon is after the macro call #define CGAL_INIT_COMPACT_CONTAINER_BLOCK_SIZE 14 #define CGAL_INCREMENT_COMPACT_CONTAINER_BLOCK_SIZE 16 template struct Addition_size_policy { static const unsigned int first_block_size = first_block_size_; template static void increase_size(Compact_container& cc) { cc.block_size += block_size_increment; } template static void get_index_and_block(typename Compact_container::size_type i, typename Compact_container::size_type& index, typename Compact_container::size_type& block) { typedef typename Compact_container::size_type ST; const ST TWO_M_N = 2*first_block_size_ - block_size_increment; ST delta = TWO_M_N*TWO_M_N + 8*block_size_increment*i; block= (static_cast(std::sqrt(static_cast(delta))) - TWO_M_N) / (2*block_size_increment); if ( block==0 ) { index = i + 1; } else { const typename Compact_container::size_type first_element_in_block = block*(first_block_size_+ (block_size_increment*(block - 1))/2); index=i - first_element_in_block + 1; } } }; template struct Constant_size_policy { static const unsigned int first_block_size = k; template static void increase_size(Compact_container& /*cc*/) {} template static void get_index_and_block(typename Compact_container::size_type i, typename Compact_container::size_type& index, typename Compact_container::size_type& block) { block=i/k; index=(i%k)+1; } }; // The following base class can be used to easily add a squattable pointer // to a class (maybe you loose a bit of compactness though). // TODO : Shouldn't adding these bits be done automatically and transparently, // based on the traits class info ? class Compact_container_base { void * p; public: Compact_container_base() : p(NULL) {} void * for_compact_container() const { return p; } void * & for_compact_container() { return p; } }; // The traits class describes the way to access the pointer. // It can be specialized. template < class T > struct Compact_container_traits { static void * pointer(const T &t) { return t.for_compact_container(); } static void * & pointer(T &t) { return t.for_compact_container(); } }; namespace internal { template < class DSC, bool Const > class CC_iterator; CGAL_GENERATE_MEMBER_DETECTOR(increment_erase_counter); // A basic "no erase counter" strategy template class Erase_counter_strategy { public: // Do nothing template static unsigned int erase_counter(const Element &) { return 0; } template static void set_erase_counter(Element &, unsigned int) {} template static void increment_erase_counter(Element &) {} }; // A strategy managing an internal counter template <> class Erase_counter_strategy { public: template static unsigned int erase_counter(const Element &e) { return e.erase_counter(); } template static void set_erase_counter(Element &e, unsigned int c) { e.set_erase_counter(c); } template static void increment_erase_counter(Element &e) { e.increment_erase_counter(); } }; } template < class T, class Allocator_ = Default, class Increment_policy_ = Default, class TimeStamper_ = Default > class Compact_container { typedef Allocator_ Al; typedef typename Default::Get< Al, CGAL_ALLOCATOR(T) >::type Allocator; typedef Increment_policy_ Ip; typedef typename Default::Get< Ip, Addition_size_policy >::type Increment_policy; typedef TimeStamper_ Ts; typedef Compact_container Self; typedef Compact_container_traits Traits; public: typedef typename Default::Get< TimeStamper_, CGAL::Time_stamper_impl >::type Time_stamper_impl; typedef T value_type; typedef Allocator allocator_type; typedef value_type& reference; typedef const value_type& const_reference; #ifdef CGAL_CXX11 typedef typename std::allocator_traits::pointer pointer; typedef typename std::allocator_traits::const_pointer const_pointer; typedef typename std::allocator_traits::size_type size_type; typedef typename std::allocator_traits::difference_type difference_type; #else typedef typename Allocator::pointer pointer; typedef typename Allocator::const_pointer const_pointer; typedef typename Allocator::size_type size_type; typedef typename Allocator::difference_type difference_type; #endif typedef internal::CC_iterator iterator; typedef internal::CC_iterator const_iterator; typedef std::reverse_iterator reverse_iterator; typedef std::reverse_iterator const_reverse_iterator; friend class internal::CC_iterator; friend class internal::CC_iterator; template friend struct Addition_size_policy; template friend struct Constant_size_policy; explicit Compact_container(const Allocator &a = Allocator()) : alloc(a) , time_stamper(new Time_stamper_impl()) { init (); } template < class InputIterator > Compact_container(InputIterator first, InputIterator last, const Allocator & a = Allocator()) : alloc(a) , time_stamper(new Time_stamper_impl()) { init(); std::copy(first, last, CGAL::inserter(*this)); } // The copy constructor and assignment operator preserve the iterator order Compact_container(const Compact_container &c) : alloc(c.get_allocator()) , time_stamper(new Time_stamper_impl()) { init(); block_size = c.block_size; *time_stamper = *c.time_stamper; std::copy(c.begin(), c.end(), CGAL::inserter(*this)); } Compact_container & operator=(const Compact_container &c) { if (&c != this) { Self tmp(c); swap(tmp); } return *this; } ~Compact_container() { clear(); delete time_stamper; } bool is_used(const_iterator ptr) const { return (type(&*ptr)==USED); } bool is_used(size_type i) const { typename Self::size_type block_number, index_in_block; Increment_policy::template get_index_and_block(i, index_in_block, block_number); return (type(&all_items[block_number].first[index_in_block]) == USED); } const T& operator[] (size_type i) const { CGAL_assertion( is_used(i) ); typename Self::size_type block_number, index_in_block; Increment_policy::template get_index_and_block(i, index_in_block, block_number); return all_items[block_number].first[index_in_block]; } T& operator[] (size_type i) { CGAL_assertion( is_used(i) ); typename Self::size_type block_number, index_in_block; Increment_policy::template get_index_and_block(i, index_in_block, block_number); return all_items[block_number].first[index_in_block]; } void swap(Self &c) { std::swap(alloc, c.alloc); std::swap(capacity_, c.capacity_); std::swap(size_, c.size_); std::swap(block_size, c.block_size); std::swap(first_item, c.first_item); std::swap(last_item, c.last_item); std::swap(free_list, c.free_list); all_items.swap(c.all_items); std::swap(time_stamper, c.time_stamper); } iterator begin() { return iterator(first_item, 0, 0); } iterator end() { return iterator(last_item, 0); } const_iterator begin() const { return const_iterator(first_item, 0, 0); } const_iterator end() const { return const_iterator(last_item, 0); } reverse_iterator rbegin() { return reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } // Boost.Intrusive interface iterator iterator_to(reference value) const { return iterator(&value, 0); } const_iterator iterator_to(const_reference value) const { return const_iterator(&value, 0); } static iterator s_iterator_to(reference value) { return iterator(&value, 0); } static const_iterator s_iterator_to(const_reference value) { return const_iterator(&value, 0); } // Special insert methods that construct the objects in place // (just forward the arguments to the constructor, to optimize a copy). #ifndef CGAL_CFG_NO_CPP0X_VARIADIC_TEMPLATES template < typename... Args > iterator emplace(const Args&... args) { if (free_list == NULL) allocate_new_block(); pointer ret = free_list; free_list = clean_pointee(ret); new (ret) value_type(args...); CGAL_assertion(type(ret) == USED); ++size_; time_stamper->set_time_stamp(ret); return iterator(ret, 0); } #else // inserts a default constructed item. iterator emplace() { if (free_list == NULL) allocate_new_block(); pointer ret = free_list; free_list = clean_pointee(ret); new (ret) value_type(); CGAL_assertion(type(ret) == USED); ++size_; time_stamper->set_time_stamp(ret); return iterator(ret, 0); } template < typename T1 > iterator emplace(const T1 &t1) { if (free_list == NULL) allocate_new_block(); pointer ret = free_list; free_list = clean_pointee(ret); new (ret) value_type(t1); CGAL_assertion(type(ret) == USED); ++size_; time_stamper->set_time_stamp(ret); return iterator(ret, 0); } template < typename T1, typename T2 > iterator emplace(const T1 &t1, const T2 &t2) { if (free_list == NULL) allocate_new_block(); pointer ret = free_list; free_list = clean_pointee(ret); new (ret) value_type(t1, t2); CGAL_assertion(type(ret) == USED); ++size_; time_stamper->set_time_stamp(ret); return iterator(ret, 0); } template < typename T1, typename T2, typename T3 > iterator emplace(const T1 &t1, const T2 &t2, const T3 &t3) { if (free_list == NULL) allocate_new_block(); pointer ret = free_list; free_list = clean_pointee(ret); new (ret) value_type(t1, t2, t3); CGAL_assertion(type(ret) == USED); ++size_; time_stamper->set_time_stamp(ret); return iterator(ret, 0); } template < typename T1, typename T2, typename T3, typename T4 > iterator emplace(const T1 &t1, const T2 &t2, const T3 &t3, const T4 &t4) { if (free_list == NULL) allocate_new_block(); pointer ret = free_list; free_list = clean_pointee(ret); new (ret) value_type(t1, t2, t3, t4); CGAL_assertion(type(ret) == USED); ++size_; time_stamper->set_time_stamp(ret); return iterator(ret, 0); } template < typename T1, typename T2, typename T3, typename T4, typename T5 > iterator emplace(const T1 &t1, const T2 &t2, const T3 &t3, const T4 &t4, const T5 &t5) { if (free_list == NULL) allocate_new_block(); pointer ret = free_list; free_list = clean_pointee(ret); new (ret) value_type(t1, t2, t3, t4, t5); CGAL_assertion(type(ret) == USED); ++size_; time_stamper->set_time_stamp(ret); return iterator(ret, 0); } template < typename T1, typename T2, typename T3, typename T4, typename T5, typename T6 > iterator emplace(const T1 &t1, const T2 &t2, const T3 &t3, const T4 &t4, const T5 &t5, const T6 &t6) { if (free_list == NULL) allocate_new_block(); pointer ret = free_list; free_list = clean_pointee(ret); new (ret) value_type(t1, t2, t3, t4, t5, t6); CGAL_assertion(type(ret) == USED); ++size_; time_stamper->set_time_stamp(ret); return iterator(ret, 0); } template < typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7 > iterator emplace(const T1 &t1, const T2 &t2, const T3 &t3, const T4 &t4, const T5 &t5, const T6 &t6, const T7 &t7) { if (free_list == NULL) allocate_new_block(); pointer ret = free_list; free_list = clean_pointee(ret); new (ret) value_type(t1, t2, t3, t4, t5, t6, t7); CGAL_assertion(type(ret) == USED); ++size_; time_stamper->set_time_stamp(ret); return iterator(ret, 0); } template < typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8 > iterator emplace(const T1 &t1, const T2 &t2, const T3 &t3, const T4 &t4, const T5 &t5, const T6 &t6, const T7 &t7, const T8 &t8) { if (free_list == NULL) allocate_new_block(); pointer ret = free_list; free_list = clean_pointee(ret); new (ret) value_type(t1, t2, t3, t4, t5, t6, t7, t8); CGAL_assertion(type(ret) == USED); ++size_; time_stamper->set_time_stamp(ret); return iterator(ret, 0); } #endif // CGAL_CFG_NO_CPP0X_VARIADIC_TEMPLATES iterator insert(const T &t) { if (free_list == NULL) allocate_new_block(); pointer ret = free_list; free_list = clean_pointee(ret); #ifdef CGAL_CXX11 std::allocator_traits::construct(alloc, ret, t); #else alloc.construct(ret, t); #endif CGAL_assertion(type(ret) == USED); ++size_; time_stamper->set_time_stamp(ret); return iterator(ret, 0); } template < class InputIterator > void insert(InputIterator first, InputIterator last) { for (; first != last; ++first) insert(*first); } template < class InputIterator > void assign(InputIterator first, InputIterator last) { clear(); // erase(begin(), end()); // ? insert(first, last); } void erase(iterator x) { typedef internal::Erase_counter_strategy< internal::has_increment_erase_counter::value> EraseCounterStrategy; CGAL_precondition(type(&*x) == USED); EraseCounterStrategy::increment_erase_counter(*x); #ifdef CGAL_CXX11 std::allocator_traits::destroy(alloc, &*x); #else alloc.destroy(&*x); #endif /*#ifndef CGAL_NO_ASSERTIONS std::memset(&*x, 0, sizeof(T)); #endif*/ put_on_free_list(&*x); --size_; } void erase(iterator first, iterator last) { while (first != last) erase(first++); } void clear(); // Merge the content of d into *this. d gets cleared. // The complexity is O(size(free list = capacity-size)). void merge(Self &d); size_type size() const { CGAL_expensive_assertion(size_ == (size_type) std::distance(begin(), end())); return size_; } size_type max_size() const { #ifdef CGAL_CXX11 return std::allocator_traits::max_size(alloc); #else return alloc.max_size(); #endif } size_type capacity() const { return capacity_; } // void resize(size_type sz, T c = T()); // TODO makes sense ??? bool empty() const { return size_ == 0; } allocator_type get_allocator() const { return alloc; } // Returns the index of the iterator "cit", i.e. the number n so that // operator[](n)==*cit. // Complexity : O(#blocks) = O(sqrt(capacity())). // This function is mostly useful for purposes of efficient debugging at // higher levels. size_type index(const_iterator cit) const { // We use the block structure to provide an efficient version : // we check if the address is in the range of each block. assert(cit != end()); const_pointer c = &*cit; size_type res=0; for (typename All_items::const_iterator it = all_items.begin(), itend = all_items.end(); it != itend; ++it) { const_pointer p = it->first; size_type s = it->second; // Are we in the address range of this block (excluding first and last // elements) ? if ( pfirst; size_type s = it->second; // Are we in the address range of this block (excluding first and last // elements) ? if (c <= p || (p+s-1) <= c) continue; CGAL_assertion_msg( (c-p)+p == c, "wrong alignment of iterator"); return type(c) == USED; } return false; } bool owns_dereferencable(const_iterator cit) const { return cit != end() && owns(cit); } /** Reserve method to ensure that the capacity of the Compact_container be * greater or equal than a given value n. */ void reserve(size_type n) { if ( capacity_>=n ) return; size_type lastblock = all_items.size(); while ( capacity_= 1; --i) put_on_free_list(new_block + i); } while ( curblock>lastblock ); } private: void allocate_new_block(); void put_on_free_list(pointer x) { set_type(x, free_list, FREE); free_list = x; } // Definition of the bit squatting : // ================================= // ptr is composed of a pointer part and the last 2 bits. // Here is the meaning of each of the 8 cases. // // value of the last 2 bits as "Type" // pointer part 0 1 2 3 // NULL user elt unused free_list end start/end // != NULL user elt block boundary free elt unused // // meaning of ptr : user stuff next/prev block free_list unused enum Type { USED = 0, BLOCK_BOUNDARY = 1, FREE = 2, START_END = 3 }; // The bit squatting is implemented by casting pointers to (char *), then // subtracting to NULL, doing bit manipulations on the resulting integer, // and converting back. static char * clean_pointer(char * p) { return ((p - (char *) NULL) & ~ (std::ptrdiff_t) START_END) + (char *) NULL; } // Returns the pointee, cleaned up from the squatted bits. static pointer clean_pointee(const_pointer ptr) { return (pointer) clean_pointer((char *) Traits::pointer(*ptr)); } // Get the type of the pointee. static Type type(const_pointer ptr) { char * p = (char *) Traits::pointer(*ptr); return (Type) (p - clean_pointer(p)); } // Sets the pointer part and the type of the pointee. static void set_type(pointer ptr, void * p, Type t) { // This out of range compare is always true and causes lots of // unnecessary warnings. // CGAL_precondition(0 <= t && t < 4); Traits::pointer(*ptr) = (void *) ((clean_pointer((char *) p)) + (int) t); } public: // @return true iff pts is on the beginning or on the end of its block. static bool is_begin_or_end(const_pointer ptr) { return type(ptr)==START_END; } // We store a vector of pointers to all allocated blocks and their sizes. // Knowing all pointers, we don't have to walk to the end of a block to reach // the pointer to the next block. // Knowing the sizes allows to deallocate() without having to compute the size // by walking through the block till its end. // This opens up the possibility for the compiler to optimize the clear() // function considerably when has_trivial_destructor. typedef std::vector > All_items; void init() { block_size = Increment_policy::first_block_size; capacity_ = 0; size_ = 0; free_list = NULL; first_item = NULL; last_item = NULL; all_items = All_items(); time_stamper->reset(); } allocator_type alloc; size_type capacity_; size_type size_; size_type block_size; pointer free_list; pointer first_item; pointer last_item; All_items all_items; // This is a pointer, so that the definition of Compact_container does // not require a complete type `T`. Time_stamper_impl* time_stamper; }; template < class T, class Allocator, class Increment_policy, class TimeStamper > void Compact_container::merge(Self &d) { CGAL_precondition(&d != this); // Allocators must be "compatible" : CGAL_precondition(get_allocator() == d.get_allocator()); // Concatenate the free_lists. if (free_list == NULL) { free_list = d.free_list; } else if (d.free_list != NULL) { pointer p = free_list; while (clean_pointee(p) != NULL) p = clean_pointee(p); set_type(p, d.free_list, FREE); } // Concatenate the blocks. if (last_item == NULL) { // empty... first_item = d.first_item; last_item = d.last_item; } else if (d.last_item != NULL) { set_type(last_item, d.first_item, BLOCK_BOUNDARY); set_type(d.first_item, last_item, BLOCK_BOUNDARY); last_item = d.last_item; } all_items.insert(all_items.end(), d.all_items.begin(), d.all_items.end()); // Add the sizes. size_ += d.size_; // Add the capacities. capacity_ += d.capacity_; // It seems reasonnable to take the max of the block sizes. block_size = (std::max)(block_size, d.block_size); // Clear d. d.init(); } template < class T, class Allocator, class Increment_policy, class TimeStamper > void Compact_container::clear() { for (typename All_items::iterator it = all_items.begin(), itend = all_items.end(); it != itend; ++it) { pointer p = it->first; size_type s = it->second; for (pointer pp = p + 1; pp != p + s - 1; ++pp) { if (type(pp) == USED) { #ifdef CGAL_CXX11 std::allocator_traits::destroy(alloc, pp); #else alloc.destroy(pp); #endif set_type(pp, NULL, FREE); } } alloc.deallocate(p, s); } init(); } template < class T, class Allocator, class Increment_policy, class TimeStamper > void Compact_container::allocate_new_block() { typedef internal::Erase_counter_strategy< internal::has_increment_erase_counter::value> EraseCounterStrategy; pointer new_block = alloc.allocate(block_size + 2); all_items.push_back(std::make_pair(new_block, block_size + 2)); capacity_ += block_size; // We don't touch the first and the last one. // We mark them free in reverse order, so that the insertion order // will correspond to the iterator order... for (size_type i = block_size; i >= 1; --i) { EraseCounterStrategy::set_erase_counter(*(new_block + i), 0); time_stamper->initialize_time_stamp(new_block + i); put_on_free_list(new_block + i); } // We insert this new block at the end. if (last_item == NULL) // First time { first_item = new_block; last_item = new_block + block_size + 1; set_type(first_item, NULL, START_END); } else { set_type(last_item, new_block, BLOCK_BOUNDARY); set_type(new_block, last_item, BLOCK_BOUNDARY); last_item = new_block + block_size + 1; } set_type(last_item, NULL, START_END); // Increase the block_size for the next time. Increment_policy::increase_size(*this); } template < class T, class Allocator, class Increment_policy, class TimeStamper > inline bool operator==(const Compact_container &lhs, const Compact_container &rhs) { return lhs.size() == rhs.size() && std::equal(lhs.begin(), lhs.end(), rhs.begin()); } template < class T, class Allocator, class Increment_policy, class TimeStamper > inline bool operator!=(const Compact_container &lhs, const Compact_container &rhs) { return ! (lhs == rhs); } template < class T, class Allocator, class Increment_policy, class TimeStamper > inline bool operator< (const Compact_container &lhs, const Compact_container &rhs) { return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); } template < class T, class Allocator, class Increment_policy, class TimeStamper > inline bool operator> (const Compact_container &lhs, const Compact_container &rhs) { return rhs < lhs; } template < class T, class Allocator, class Increment_policy, class TimeStamper > inline bool operator<=(const Compact_container &lhs, const Compact_container &rhs) { return ! (lhs > rhs); } template < class T, class Allocator, class Increment_policy, class TimeStamper > inline bool operator>=(const Compact_container &lhs, const Compact_container &rhs) { return ! (lhs < rhs); } namespace internal { template < class DSC, bool Const > class CC_iterator { typedef typename DSC::iterator iterator; typedef CC_iterator Self; public: typedef DSC CC; typedef typename DSC::value_type value_type; typedef typename DSC::size_type size_type; typedef typename DSC::difference_type difference_type; typedef typename boost::mpl::if_c< Const, const value_type*, value_type*>::type pointer; typedef typename boost::mpl::if_c< Const, const value_type&, value_type&>::type reference; typedef std::bidirectional_iterator_tag iterator_category; // the initialization with NULL is required by our Handle concept. CC_iterator() #ifdef CGAL_COMPACT_CONTAINER_DEBUG_TIME_STAMP : ts(0) #endif { m_ptr.p = NULL; } // Either a harmless copy-ctor, // or a conversion from iterator to const_iterator. CC_iterator (const iterator &it) #ifdef CGAL_COMPACT_CONTAINER_DEBUG_TIME_STAMP : ts(Time_stamper_impl::time_stamp(it.operator->())) #endif { m_ptr.p = it.operator->(); } // Same for assignment operator (otherwise MipsPro warns) CC_iterator & operator= (const iterator &it) { m_ptr.p = it.operator->(); #ifdef CGAL_COMPACT_CONTAINER_DEBUG_TIME_STAMP ts = Time_stamper_impl::time_stamp(it.operator->()); #endif return *this; } // Construction from NULL CC_iterator (Nullptr_t CGAL_assertion_code(n)) #ifdef CGAL_COMPACT_CONTAINER_DEBUG_TIME_STAMP : ts(0) #endif { CGAL_assertion (n == NULL); m_ptr.p = NULL; } private: typedef typename DSC::Time_stamper_impl Time_stamper_impl; #ifdef CGAL_COMPACT_CONTAINER_DEBUG_TIME_STAMP std::size_t ts; #endif union { pointer p; void *vp; } m_ptr; // Only Compact_container should access these constructors. friend class Compact_container; // For begin() CC_iterator(pointer ptr, int, int) #ifdef CGAL_COMPACT_CONTAINER_DEBUG_TIME_STAMP : ts(0) #endif { m_ptr.p = ptr; if (m_ptr.p == NULL) // empty container. return; ++(m_ptr.p); // if not empty, p = start if (DSC::type(m_ptr.p) == DSC::FREE) increment(); #ifdef CGAL_COMPACT_CONTAINER_DEBUG_TIME_STAMP else ts = Time_stamper_impl::time_stamp(m_ptr.p); #endif // CGAL_COMPACT_CONTAINER_DEBUG_TIME_STAMP } // Construction from raw pointer and for end(). CC_iterator(pointer ptr, int) #ifdef CGAL_COMPACT_CONTAINER_DEBUG_TIME_STAMP : ts(0) #endif { m_ptr.p = ptr; #ifdef CGAL_COMPACT_CONTAINER_DEBUG_TIME_STAMP if(ptr != NULL){ ts = Time_stamper_impl::time_stamp(m_ptr.p); } #endif // end CGAL_COMPACT_CONTAINER_DEBUG_TIME_STAMP } // NB : in case empty container, begin == end == NULL. void increment() { // It's either pointing to end(), or valid. CGAL_assertion_msg(m_ptr.p != NULL, "Incrementing a singular iterator or an empty container iterator ?"); CGAL_assertion_msg(DSC::type(m_ptr.p) != DSC::START_END, "Incrementing end() ?"); // If it's not end(), then it's valid, we can do ++. do { ++(m_ptr.p); if (DSC::type(m_ptr.p) == DSC::USED || DSC::type(m_ptr.p) == DSC::START_END) { #ifdef CGAL_COMPACT_CONTAINER_DEBUG_TIME_STAMP ts = Time_stamper_impl::time_stamp(m_ptr.p); #endif return; } if (DSC::type(m_ptr.p) == DSC::BLOCK_BOUNDARY) m_ptr.p = DSC::clean_pointee(m_ptr.p); } while (true); } void decrement() { // It's either pointing to end(), or valid. CGAL_assertion_msg(m_ptr.p != NULL, "Decrementing a singular iterator or an empty container iterator ?"); CGAL_assertion_msg(DSC::type(m_ptr.p - 1) != DSC::START_END, "Decrementing begin() ?"); // If it's not begin(), then it's valid, we can do --. do { --m_ptr.p; if (DSC::type(m_ptr.p) == DSC::USED || DSC::type(m_ptr.p) == DSC::START_END) { #ifdef CGAL_COMPACT_CONTAINER_DEBUG_TIME_STAMP ts = Time_stamper_impl::time_stamp(m_ptr.p); #endif return; } if (DSC::type(m_ptr.p) == DSC::BLOCK_BOUNDARY) m_ptr.p = DSC::clean_pointee(m_ptr.p); } while (true); } public: Self & operator++() { CGAL_assertion_msg(m_ptr.p != NULL, "Incrementing a singular iterator or an empty container iterator ?"); /* CGAL_assertion_msg(DSC::type(m_ptr.p) == DSC::USED, "Incrementing an invalid iterator."); */ increment(); return *this; } Self & operator--() { CGAL_assertion_msg(m_ptr.p != NULL, "Decrementing a singular iterator or an empty container iterator ?"); /*CGAL_assertion_msg(DSC::type(m_ptr.p) == DSC::USED || DSC::type(m_ptr.p) == DSC::START_END, "Decrementing an invalid iterator.");*/ decrement(); return *this; } Self operator++(int) { Self tmp(*this); ++(*this); return tmp; } Self operator--(int) { Self tmp(*this); --(*this); return tmp; } #ifdef CGAL_COMPACT_CONTAINER_DEBUG_TIME_STAMP bool is_time_stamp_valid() const { return (ts == 0) || (ts == Time_stamper_impl::time_stamp(m_ptr.p)); } #endif // CGAL_COMPACT_CONTAINER_DEBUG_TIME_STAMP reference operator*() const { return *(m_ptr.p); } pointer operator->() const { return (m_ptr.p); } // For std::less... bool operator<(const CC_iterator& other) const { #ifdef CGAL_COMPACT_CONTAINER_DEBUG_TIME_STAMP assert( is_time_stamp_valid() ); #endif return Time_stamper_impl::less(m_ptr.p, other.m_ptr.p); } bool operator>(const CC_iterator& other) const { #ifdef CGAL_COMPACT_CONTAINER_DEBUG_TIME_STAMP assert( is_time_stamp_valid() ); #endif return Time_stamper_impl::less(other.m_ptr.p, m_ptr.p); } bool operator<=(const CC_iterator& other) const { #ifdef CGAL_COMPACT_CONTAINER_DEBUG_TIME_STAMP assert( is_time_stamp_valid() ); #endif return Time_stamper_impl::less(m_ptr.p, other.m_ptr.p) || (*this == other); } bool operator>=(const CC_iterator& other) const { #ifdef CGAL_COMPACT_CONTAINER_DEBUG_TIME_STAMP assert( is_time_stamp_valid() ); #endif return Time_stamper_impl::less(other.m_ptr.p, m_ptr.p) || (*this == other); } // Can itself be used for bit-squatting. void * for_compact_container() const { return (m_ptr.vp); } void * & for_compact_container() { return (m_ptr.vp); } }; template < class DSC, bool Const1, bool Const2 > inline bool operator==(const CC_iterator &rhs, const CC_iterator &lhs) { return rhs.operator->() == lhs.operator->(); } template < class DSC, bool Const1, bool Const2 > inline bool operator!=(const CC_iterator &rhs, const CC_iterator &lhs) { return rhs.operator->() != lhs.operator->(); } // Comparisons with NULL are part of CGAL's Handle concept... template < class DSC, bool Const > inline bool operator==(const CC_iterator &rhs, Nullptr_t CGAL_assertion_code(n)) { CGAL_assertion( n == NULL); return rhs.operator->() == NULL; } template < class DSC, bool Const > inline bool operator!=(const CC_iterator &rhs, Nullptr_t CGAL_assertion_code(n)) { CGAL_assertion( n == NULL); return rhs.operator->() != NULL; } template std::size_t hash_value(const CC_iterator& i) { typedef Time_stamper_impl Stamper; return Stamper::hash_value(&*i); } } // namespace internal } //namespace CGAL namespace std { #ifndef CGAL_CFG_NO_STD_HASH template < class DSC, bool Const > struct hash > : public CGAL::cpp98::unary_function, std::size_t> { std::size_t operator()(const CGAL::internal::CC_iterator& i) const { return reinterpret_cast(&*i) / sizeof(typename DSC::value_type); } }; #endif // CGAL_CFG_NO_STD_HASH } // namespace std #include #endif // CGAL_COMPACT_CONTAINER_H