// Copyright (c) 1997-2000 Max-Planck-Institute Saarbruecken (Germany). // All rights reserved. // // This file is part of CGAL (www.cgal.org). // You can redistribute it and/or modify it under the terms of the GNU // General Public License as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: GPL-3.0+ // // // Author(s) : Michael Seel //--------------------------------------------------------------------- // file generated by notangle from regl_complex.lw // please debug or modify LEDA web file // mails and bugs: Michael.Seel@mpi-sb.mpg.de // based on LEDA architecture by S. Naeher, C. Uhrig // coding: K. Mehlhorn, M. Seel // debugging and templatization: M. Seel //--------------------------------------------------------------------- #ifndef CGAL_REGULAR_COMPLEX_D_H #define CGAL_REGULAR_COMPLEX_D_H #include #define CGAL_DEPRECATED_HEADER "" #define CGAL_DEPRECATED_MESSAGE_DETAILS \ "The Triangulation package (see https://doc.cgal.org/latest/Triangulation) should be used instead." #include #include #include #include #include #include #include #include #ifdef CGAL_USE_LEDA #include #endif namespace CGAL { template class RC_simplex_d; template class RC_vertex_d; template class Regular_complex_d; template class Convex_hull_d; #define forall_rc_vertices(x,RC)\ for(x = (RC).vertices_begin(); x != (RC).vertices_end(); ++x) #define forall_rc_simplices(x,RC)\ for(x = (RC).simplices_begin(); x != (RC).simplices_end(); ++x) template class RC_vertex_d { typedef RC_vertex_d Self; typedef typename Refs::Point_d Point_d; typedef typename Refs::Vertex_handle Vertex_handle; typedef typename Refs::Simplex_handle Simplex_handle; typedef typename Refs::R R; friend class Regular_complex_d; friend class Convex_hull_d; friend class RC_simplex_d; Simplex_handle s_; int index_; Point_d point_; void set_simplex(Simplex_handle s) { s_=s; } void set_index(int i) { index_=i; } void set_point(const Point_d& p) { point_=p; } public: RC_vertex_d(Simplex_handle s, int i, const Point_d& p) : s_(s), index_(i), point_(p) {} RC_vertex_d(const Point_d& p) : point_(p), pp(NULL) {} RC_vertex_d() : s_(), index_(-42), pp(NULL) {} // beware that ass_point was initialized here by nil_point ~RC_vertex_d() {} Simplex_handle simplex() const { return s_; } int index() const { return index_; } const Point_d& point() const { return point_; } void* pp; void* for_compact_container() const { return pp; } void* & for_compact_container() { return pp; } #ifdef CGAL_USE_LEDA LEDA_MEMORY(RC_vertex_d) #endif }; template class RC_simplex_d { typedef RC_simplex_d Self; typedef typename Refs::Point_d Point_d; typedef typename Refs::Vertex_handle Vertex_handle; typedef typename Refs::Simplex_handle Simplex_handle; typedef typename Refs::R R; friend class Regular_complex_d; friend class Convex_hull_d; protected: std::vector vertices; // array of vertices std::vector neighbors; // opposite simplices std::vector opposite_vertices; // indices of opposite vertices //------ only for convex hulls ------------------ typedef typename R::Hyperplane_d Hyperplane_d; Hyperplane_d h_base; // hyperplane supporting base facet bool visited_; // visited mark when traversing //------ only for convex hulls ------------------ Vertex_handle vertex(int i) const { return vertices[i]; } Simplex_handle neighbor(int i) const { return neighbors[i]; } int opposite_vertex_index(int i) const { return opposite_vertices[i]; } void set_vertex(int i, Vertex_handle v) { vertices[i] = v; } void set_neighbor(int i, Simplex_handle s) { neighbors[i]=s; } void set_opposite_vertex_index(int i, int index) { opposite_vertices[i]=index; } //------ only for convex hulls ------------------ Hyperplane_d hyperplane_of_base_facet() const { return h_base; } void set_hyperplane_of_base_facet(const Hyperplane_d& h) { h_base = h; } bool& visited() { return visited_; } //------ only for convex hulls ------------------ public: typedef typename std::vector::const_iterator VIV_iterator; struct Point_from_VIV_iterator { typedef Vertex_handle argument_type; typedef Point_d result_type; result_type& operator()(argument_type& x) const { return x->point(); } const result_type& operator()(const argument_type& x) const { return x->point(); } }; typedef CGAL::Iterator_project Point_const_iterator; Point_const_iterator points_begin() const { return Point_const_iterator(vertices.begin()); } Point_const_iterator points_end() const { return Point_const_iterator(vertices.end()); } void* pp; void* for_compact_container() const { return pp; } void* & for_compact_container() { return pp; } #if 0 struct Point_const_iterator { typedef Point_const_iterator self; typedef std::random_access_iterator_tag iterator_category; typedef const Point_d& value_type; typedef std::ptrdiff_t difference_type; typedef const Point_d* pointer; typedef const Point_d& reference; typedef typename std::vector::const_iterator ra_vertex_iterator; Point_const_iterator() : _it() {} Point_const_iterator(ra_vertex_iterator it) : _it(it) {} value_type operator*() const { return (*_it)->point(); } pointer operator->() const { return &(operator*()); } self& operator++() { ++_it; return *this; } self operator++(int) { self tmp = *this; ++_it; return tmp; } self& operator--() { --_it; return *this; } self operator--(int) { self tmp = *this; --_it; return tmp; } self& operator+=(difference_type i) { _it+=i; return *this; } self& operator-=(difference_type i) { _it-=i; return *this; } self operator+(difference_type i) const { self tmp=*this; tmp+=i; return tmp; } self operator-(difference_type i) const { self tmp=*this; tmp-=i; return tmp; } difference_type operator-(self x) const { return _it-x._it; } reference operator[](difference_type i) { return *(*this + i); } bool operator==(const self& x) const { return _it==x._it; } bool operator!=(const self& x) const { return ! (*this==x); } bool operator<(self x) const { (x - *this) > 0; } private: ra_vertex_iterator _it; }; // Point_const_iterator Point_const_iterator points_begin() const { return Point_const_iterator(vertices.begin()); } Point_const_iterator points_end() const { return Point_const_iterator(vertices.end()); } #endif RC_simplex_d() : pp(NULL) {} RC_simplex_d(int dmax) : vertices(dmax+1), neighbors(dmax+1), opposite_vertices(dmax+1), pp(NULL) { for (int i = 0; i <= dmax; i++) { neighbors[i] = Simplex_handle(); vertices[i] = Vertex_handle(); opposite_vertices[i] = -1; } visited_ = false; } ~RC_simplex_d() {} void print(std::ostream& O=std::cout) const { O << "RC_simplex_d {" ; for(int i=0;i < int(vertices.size());++i) { Vertex_handle v = vertices[i]; if ( v != Vertex_handle() ) O << v->point(); else O << "(nil)"; } O << "}"; } #ifdef CGAL_USE_LEDA LEDA_MEMORY(RC_simplex_d) #endif }; template std::ostream& operator<<(std::ostream& O, const RC_simplex_d& s) { s.print(O); return O; } /*{\Manpage {Regular_complex_d}{R}{Regular Simplicial Complex}{C}}*/ /*{\Mdefinition An instance |\Mvar| of type |\Mname| is a regular abstract or concrete simplicial complex. An abstract simplicial complex is a family |\Mvar| of subsets of some set $V$, called the vertex set of the complex, which is closed under the subset relation, i.e., if a set $s$ belongs to the family then all its subsets do. A set $s$ of cardinality $k + 1$ is called a $k$-simplex and $k$ is called its dimension. If $s$ is a subset of $t$ then $s$ is called a subsimplex or face of $t$. A vertex $v$ is called incident to a simplex $s$ if $v$ is an element of $s$. A simplex is called \emph{maximal} if it is not a face of any simplex in |\Mvar|. Two simplices of dimension $k$ are called neighbors if they share $k-1$ vertices. A complex is connected if its set of maximal simplices forms a connected set under the neighboring relation. A simplicial complex is called \emph{regular} if all maximal simplices in the complex have the same dimension and if the complex is connected. A concrete simplicial complex is an abstract simplicial complex in which a point in some ambient space is associated with each vertex. We use |dim| to denote the dimension of ambient space. Simplices are now interpreted geometrically as sets of points in ambient space, namely as the convex hulls of (the points associated with) their vertices. A $0$-simplex is a point, a $1$-simplex is a line segment, a $2$-simplex is a triangle, a $3$-simplex is a tetrahedron, etc.. \emph{The simplices is a concrete simplicial complex must satisfy the additional conditions that the points associated with the vertices of any simplex are affinely independet and that the intersection of any two simplices is a face of both.} We will write simplicial complex instead of concrete simplicial complex in the sequel. All maximal simplices in a regular simplicial complex have the same dimension, which we denote |dcur|. For each maximal simplex\cgalFootnote{we drop the adjective maximal in the sequel} in |\Mvar| there is an item of type |RC_simplex_d| and for each vertex there is an item of type |rc_vertex|. Each maximal simplex has |1+dcur| vertices indexed from $0$ to |dcur|. For any simplex $s$ and any index $i$, |C.vertex_of(s,i)| returns the $i$-th vertex of $s$. There may or may not be a simplex $t$ opposite to (the vertex with index) $i$, i.e., a maximal simplex $t$ having \{|C.vertex_of(s,0)|,|C.vertex_of(s,1)|,\ldots, |C.vertex_of(s,dcur)|\} - \{|C.vertex_of(s,i)|\} in its vertex set. The function |C.opposite(s,i)| returns $t$ if it exists and returns |nil| otherwise. If $t$ exists then $s$ and $t$ share |dcur| vertices, namely all but vertex $i$ of $s$ and vertex |C.opposite_vertex(s,i)| of $t$. Assume that $t = |C.opposite(s,i)|$ exists and let |j = C.opposite_vertex(s,i)|. Then |s = C.opposite(t,j)| and |i = C.opposite_vertex(t,j)| and \begin{eqnarray*} \lefteqn{\{|C.vertex_of(s,0)|,|C.vertex_of(s,1)|,\ldots, |C.vertex_of(s,dcur)|\} - \{|C.vertex_of(s,i)|\} =} \\ & & \{|C.vertex_of(t,0)|,|C.vertex_of(t,1)|,\ldots,|C.vertex_of(t,dcur)|\} - \{|C.vertex_of(t,j)|\}. \end{eqnarray*} In general, a vertex belongs to many simplices. For an |rc_vertex| $v$, the functions |C.simplex(v)| and |C.index(v)| return a pair $(s,i)$ such that |v = C.vertex_of(s,i)|. The class |regl_complex| has a static member |nil_point| of type |Point_d|. This point is different (= not indentical) from any user defined point and is the point associated with every vertex of an abstract simplicial complex. It simulates the use of |nil| to denote an undefined object. Regular complexes are designed as the base class for triangulations of convex hulls and Delaunay triangulations in higher dimensional space. We have not used them yet for any other purpose. Regular complexes are built by constructing vertices and simplices, by assigning positions to vertices and vertices to simplices, and by establishing neighbor relations. The update operations do not check whether the data structure built actually encodes a simplicial complex. The class provides a function |is_valid()| that performs a partial check whether the data structure encodes a simplicial complex. It is not checked whether two simplices intersect without sharing a face. }*/ template class Regular_complex_d { typedef Regular_complex_d Self; public: /*{\Mtypes 4}*/ typedef R_ R; typedef RC_vertex_d Vertex; typedef CGAL::Compact_container Vertex_list; typedef typename Vertex_list::iterator Vertex_handle; /*{\Mtypemember the handle type for vertices of the complex.}*/ typedef typename Vertex_list::const_iterator Vertex_const_handle; typedef typename Vertex_list::iterator Vertex_iterator; /*{\Mtypemember the iterator type for vertices of the complex.}*/ typedef typename Vertex_list::const_iterator Vertex_const_iterator; typedef RC_simplex_d Simplex; typedef CGAL::Compact_container Simplex_list; typedef typename Simplex_list::iterator Simplex_handle; /*{\Mtypemember the handle type for simplices of the complex.}*/ typedef typename Simplex_list::const_iterator Simplex_const_handle; typedef typename Simplex_list::iterator Simplex_iterator; /*{\Mtypemember the iterator type for simplices of the complex.}*/ typedef typename Simplex_list::const_iterator Simplex_const_iterator; typedef typename R::Point_d Point_d; protected: const R& Kernel_; int dcur; // dimension of the current complex int dmax; // dimension of ambient space Vertex_list vertices_; // list of all vertices Simplex_list simplices_; // list of all simplices /* the default copy constructor and assignment operator for class regl_complex work incorrectly; it is therefore good practice to either implement them correctly or to make them inaccessible. We do the latter. */ private: Regular_complex_d(const Regular_complex_d& ); Regular_complex_d& operator=(const Regular_complex_d& ); void clean_dynamic_memory() { vertices_.clear(); simplices_.clear(); } public: /*{\Mcreation}*/ Regular_complex_d(int d = 2, const R& Kernel = R()) /*{\Mcreate creates an instance |\Mvar| of type |\Mtype|. The dimension of the underlying space is $d$ and |\Mvar| is initialized to the empty regular complex. Thus |dcur| equals $-1$. The traits class |R| specifies the models of all types and the implementations of all geometric primitives used by the regular complex class. The |Kernel| parameter allows you to carry fixed geometric information into the data type. For the default kernel traits |Homogeneous_d| the default construction of |Kernel| is enough. In the following we use further template parameters like the point type |Point_d=R::Point_d|. At this point, it suffices to say that |Point_d| represents points in $d$-space. The complete specification of the traits class is to be found at the end of this manual page.}*/ : Kernel_(Kernel) { dmax = d; dcur = -1; } ~Regular_complex_d() { clean_dynamic_memory(); } /* In the destructor for |Regular_complex_d|, we have to release the storage which was allocated for the simplices and the vertices. */ /*{\Mtext The data type |\Mtype| offers neither copy constructor nor assignment operator.}*/ /*{\Moperations 3 3}*/ /*{\Mtext \headerline{Access Operations}}*/ int dimension() const { return dmax; } /*{\Mop returns the dimension of ambient space}*/ int current_dimension() const { return dcur; } /*{\Mop returns the current dimension of the simplices in the complex.}*/ Vertex_handle vertex(Simplex_handle s, int i) const /*{\Mop returns the $i$-th vertex of $s$.\\ \precond $0 \leq i \leq |current_dimension|$. }*/ { CGAL_assertion(0<=i&&i<=dcur); return s->vertex(i); } Vertex_const_handle vertex(Simplex_const_handle s, int i) const { CGAL_assertion(0<=i&&i<=dcur); return s->vertex(i); } Point_d associated_point(Vertex_handle v) const /*{\Mop returns the point associated with vertex |v|.}*/ { return v->point(); } Point_d associated_point(Vertex_const_handle v) const { return v->point(); } int index(Vertex_handle v) const /*{\Mop returns the index of $v$ in |C.simplex(v)|.}*/ { return v->index(); } int index(Vertex_const_handle v) const { return v->index(); } Simplex_handle simplex(Vertex_handle v) const /*{\Mop returns a simplex of which $v$ is a vertex. Note that this simplex is not unique. }*/ { return v->simplex(); } Simplex_const_handle simplex(Vertex_const_handle v) const { return v->simplex(); } Point_d associated_point(Simplex_handle s, int i) const /*{\Mop same as |C.associated_point(C.vertex(s,i))|.}*/ { return associated_point(vertex(s,i)); } Point_d associated_point(Simplex_const_handle s, int i) const { return associated_point(vertex(s,i)); } Simplex_handle opposite_simplex(Simplex_handle s,int i) const /*{\Mop returns the simplex opposite to the $i$-th vertex of $s$ (|Simplex_handle()| is there is no such simplex).\\ \precond $0 \leq i \leq |dcur|$. }*/ { CGAL_assertion(0<=i&&i<=dcur); return s->neighbor(i); } Simplex_const_handle opposite_simplex(Simplex_const_handle s,int i) const { CGAL_assertion(0<=i&&i<=dcur); return s->neighbor(i); } int index_of_opposite_vertex(Simplex_handle s, int i) const { CGAL_assertion(0<=i&&i<=dcur); return s->opposite_vertex_index(i); } /*{\Mop returns the index of the vertex opposite to the $i$-th vertex of $s$. \precond $0 \leq i \leq |dcur|$ and there is a simplex opposite to the $i$-th vertex of $s$.}*/ int index_of_opposite_vertex(Simplex_const_handle s, int i) const { CGAL_assertion(0<=i&&i<=dcur); return s->opposite_vertex_index(i); } /*{\Mtext \headerline{Update Operations} We give operations that allow to update a regular complex. They have to be used with care as they may invalidate the data structure.}*/ void clear(int d = 0) /*{\Mop reinitializes |\Mvar| to the empty complex in dimension |dim|.}*/ { clean_dynamic_memory(); dmax = d; dcur = -1; } void set_current_dimension(int d) { dcur = d; } /*{\Mop sets |dcur| to |d|. }*/ Simplex_handle new_simplex() /*{\Mop adds a new simplex to |\Mvar| and returns it. The new simplex has no vertices yet.}*/ { Simplex s(dmax); Simplex_handle h = simplices_.insert(s); return h; } Vertex_handle new_vertex() /*{\Mop adds a new vertex to |\Mvar| and returns it. The new vertex has no associated simplex nor index yet. The associated point is the point |Regular_complex_d::nil_point| which is a static member of class |Regular_complex_d.|}*/ { Vertex v(nil_point); Vertex_handle h = vertices_.insert(v); return h; } Vertex_handle new_vertex(const Point_d& p) /*{\Mop adds a new vertex to |\Mvar| and returns it. The new vertex has |p| as the associated point, but is has no associated simplex nor index yet.}*/ { Vertex v(p); Vertex_handle h = vertices_.insert(v); return h; } void associate_vertex_with_simplex(Simplex_handle s, int i, Vertex_handle v) /*{\Mop sets the $i$-th vertex of |s| to |v| and records this fact in $v$. The latter occurs only if $v$ is non-nil.}*/ { s -> set_vertex(i,v); if ( v != Vertex_handle() ) { v -> set_simplex(s); v -> set_index(i); } } void associate_point_with_vertex(Vertex_handle v, const Point_d& p) /*{\Mop sets the point associated with $v$ to $p$.}*/ { v -> set_point(p); } void set_neighbor(Simplex_handle s, int i, Simplex_handle s1, int j) /*{\Mop sets the neihbor opposite to vertex $i$ of |s| to |s1| and records vertex $j$ of |s1| as the vertex opposite to $i$.}*/ { s -> set_neighbor(i,s1); s1 -> set_neighbor(j,s); s -> set_opposite_vertex_index(i,j); s1 -> set_opposite_vertex_index(j,i); } void check_topology() const; /*{\Mop Partially checks whether |\Mvar| is an abstract simplicial complex. This function terminates without error if each vertex is a vertex of the simplex of which it claims to be a vertex, if the vertices of all simplices are pairwise distinct, if the neighbor relationship is symmetric, and if neighboring simplices share exactly |dcur| vertices. It returns an error message if one of these conditions is violated. Note that it is not checked whether simplices that share |dcur| vertices are neighbors in the data structure.}*/ void check_topology_and_geometry() const; /*{\Mop In addition to the above, this function checks whether all vertices have an associated point different from |Regular_complex_d::nil_point| and whether the points associated with the vertices of any simplex are affinely independent. It returns an error message otherwise. Note that it is not checked whether the intersection of any two simplices is a facet of both.}*/ typedef size_t Size_type; Size_type number_of_vertices() const { return this->vertices_.size();} Size_type number_of_simplices() const { return this->simplices_.size();} void print_statistics(std::ostream& os = std::cout) const { os << "Regular_complex_d - statistic" << std::endl; os << "number of vertices = " << number_of_vertices() << std::endl; os << "number of simplices = " << number_of_simplices() << std::endl; } /*{\Mtext \headerline{Lists and Iterators} \setopdims{4.5cm}{3.5cm}}*/ /*{\Mtext The following operation pairs return iterator ranges in the style of STL.}*/ Vertex_iterator vertices_begin() { return vertices_.begin(); } /*{\Mop the first vertex of |\Mvar|.}*/ Vertex_iterator vertices_end() { return vertices_.end(); } /*{\Mop the beyond vertex of |\Mvar|.}*/ Simplex_iterator simplices_begin() { return simplices_.begin(); } /*{\Mop the first simplex of |\Mvar|.}*/ Simplex_iterator simplices_end() { return simplices_.end(); } /*{\Mop the beyond simplex of |\Mvar|.}*/ Vertex_const_iterator vertices_begin() const { return vertices_.begin(); } Vertex_const_iterator vertices_end() const { return vertices_.end(); } Simplex_const_iterator simplices_begin() const { return simplices_.begin(); } Simplex_const_iterator simplices_end() const { return simplices_.end(); } std::list all_simplices() /*{\Mop returns the set of all maximal simplices in |\Mvar|.}*/ { std::list res; Simplex_iterator it; forall_rc_simplices(it,*this) res.push_back(it); return res; } std::list all_simplices() const { std::list res; Simplex_const_iterator it; forall_rc_simplices(it,*this) res.push_back(it); return res; } std::list all_vertices() /*{\Mop returns the set of all vertices in |\Mvar|.}*/ { std::list res; Vertex_iterator it; forall_rc_vertices(it,*this) res.push_back(it); return res; } std::list all_vertices() const { std::list res; Vertex_const_iterator it; forall_rc_vertices(it,*this) res.push_back(it); return res; } const R& kernel() const { return Kernel_; } static const Point_d nil_point; }; // Regular_complex_d // init static member: template const typename Regular_complex_d::Point_d Regular_complex_d::nil_point; template void Regular_complex_d::check_topology() const { Simplex_const_handle s,t; Vertex_const_handle v; int i,j,k; if (dcur == -1) { if (!vertices_.empty() || !simplices_.empty() ) CGAL_error_msg( "check_topology: dcur is -1 but there are vertices or simplices"); } forall_rc_vertices(v,*this) { if ( v != vertex(simplex(v),index(v)) ) CGAL_error_msg( "check_topology: vertex-simplex relationship corrupted"); } forall_rc_simplices(s,*this) { for(i = 0; i <= dcur; i++) { for (j = i + 1; j <= dcur; j++) { if (vertex(s,i) == vertex(s,j)) CGAL_error_msg( "check_topology: a simplex with two equal vertices"); } } } forall_rc_simplices(s,*this) { for(i = 0; i <= dcur; i++) { if ((t = opposite_simplex(s,i)) != Simplex_const_handle()) { int l = index_of_opposite_vertex(s,i); if (s != opposite_simplex(t,l) || i != index_of_opposite_vertex(t,l)) CGAL_error_msg( "check_topology: neighbor relation is not symmetric"); for (j = 0; j <= dcur; j++) { if (j != i) { // j must also occur as a vertex of t for (k = 0; k <= dcur && ( vertex(s,j) != vertex(t,k) || k == l); k++) {} if (k > dcur) CGAL_error_msg( "check_topology: too few shared vertices."); } } } } } } template void Regular_complex_d::check_topology_and_geometry() const { check_topology(); Vertex_const_handle v; forall_rc_vertices(v,*this) { if ( v == Vertex_const_handle() || associated_point(v).identical(Regular_complex_d::nil_point) ) CGAL_error_msg("check_topology_and_geometry: \ vertex with nil_point or no associated point."); } typename R::Affinely_independent_d affinely_independent = kernel().affinely_independent_d_object(); Simplex_const_handle s; forall_rc_simplices(s,*this) { std::vector A(dcur + 1); for (int i = 0; i <= dcur; i++) A[i] = associated_point(s,i); if ( !affinely_independent(A.begin(),A.end()) ) CGAL_error_msg("check_topology_and_geometry: \ corners of some simplex are not affinely independent"); } } /*{\Mtext \headerline{Iteration Statements} {\bf forall\_rc\_simplices}($s,C$) $\{$ ``the simplices of $C$ are successively assigned to $s$'' $\}$ {\bf forall\_rc\_vertices}($v,C$) $\{$ ``the vertices of $C$ are successively assigned to $v$'' $\}$ }*/ /*{\Mimplementation Each simplex stores its vertices, the adjacent simplices, and the opposite vertices in arrays. The space requirement for a simplex is $3 * |dim| * 4$ Bytes for the contents of the arrays plus the actual space for the points plus the constant space overhead for the arrays (see the manual pages for arrays). The class |Regular_complex_d| needs constant space plus space for a list of simplices (which is about 12 bytes per simplex). The total space requirement is therefore about $12(|dim| + 2)$ bytes times the number of simplices. }*/ } //namespace CGAL #endif // CGAL_REGULAR_COMPLEX_D_H