// Copyright (c) 1999-2004 INRIA Sophia-Antipolis (France). // All rights reserved. // // This file is part of CGAL (www.cgal.org). // You can redistribute it and/or modify it under the terms of the GNU // General Public License as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: GPL-3.0+ // // // Author(s) : Monique Teillaud // Sylvain Pion // Christophe Delage // Clement Jamin #ifndef CGAL_REGULAR_TRIANGULATION_3_H #define CGAL_REGULAR_TRIANGULATION_3_H #include #include #include #include #include #include #include #include #ifdef CGAL_LINKED_WITH_TBB # include # include # include # include #endif #include #include #include #include #include #include #include #include #include #ifndef CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO #include #include #include #include #endif //CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO #ifdef CGAL_TRIANGULATION_3_PROFILING # include #endif #ifdef CGAL_CONCURRENT_TRIANGULATION_3_ADD_TEMPORARY_POINTS_ON_FAR_SPHERE #include #endif namespace CGAL { /************************************************ * * Regular_triangulation_3 class * ************************************************/ template < class Gt, class Tds_ = Default, class Lock_data_structure_ = Default > class Regular_triangulation_3 : public Triangulation_3< Gt, typename Default::Get, Regular_triangulation_cell_base_3 > >::type, Lock_data_structure_> { private: typedef typename Default::Get, Regular_triangulation_cell_base_3 > >::type Tds; typedef Regular_triangulation_3 Self; public: typedef Triangulation_3 Tr_Base; typedef Gt Geom_traits; typedef Tds Triangulation_data_structure; typedef Geom_traits Traits; typedef typename Tr_Base::Concurrency_tag Concurrency_tag; typedef typename Tr_Base::Lock_data_structure Lock_data_structure; typedef typename Tr_Base::Vertex_handle Vertex_handle; typedef typename Tr_Base::Cell_handle Cell_handle; typedef typename Tr_Base::Vertex Vertex; typedef typename Tr_Base::Cell Cell; typedef typename Tr_Base::Facet Facet; typedef typename Tr_Base::Edge Edge; typedef typename Tr_Base::size_type size_type; typedef typename Tr_Base::Locate_type Locate_type; typedef typename Tr_Base::Cell_iterator Cell_iterator; typedef typename Tr_Base::Facet_iterator Facet_iterator; typedef typename Tr_Base::Edge_iterator Edge_iterator; typedef typename Tr_Base::Facet_circulator Facet_circulator; typedef typename Tr_Base::Finite_vertices_iterator Finite_vertices_iterator; typedef typename Tr_Base::Finite_cells_iterator Finite_cells_iterator; typedef typename Tr_Base::Finite_facets_iterator Finite_facets_iterator; typedef typename Tr_Base::Finite_edges_iterator Finite_edges_iterator; typedef typename Tr_Base::All_cells_iterator All_cells_iterator; // Traits are not supposed to define Bare_point, but leaving below // for backward compatibility typedef typename boost::mpl::eval_if_c< internal::Has_nested_type_Bare_point::value, typename internal::Bare_point_type, boost::mpl::identity >::type Bare_point; typedef typename Gt::Weighted_point_3 Weighted_point; typedef typename Gt::Segment_3 Segment; typedef typename Gt::Triangle_3 Triangle; typedef typename Gt::Tetrahedron_3 Tetrahedron; // types for dual: typedef typename Gt::Line_3 Line; typedef typename Gt::Ray_3 Ray; typedef typename Gt::Plane_3 Plane; typedef typename Gt::Object_3 Object; //Tag to distinguish Delaunay from regular triangulations typedef Tag_true Weighted_tag; // Tag to distinguish periodic triangulations from others typedef Tag_false Periodic_tag; #ifndef CGAL_CFG_USING_BASE_MEMBER_BUG_2 using Tr_Base::geom_traits; #endif using Tr_Base::adjacent_vertices; using Tr_Base::cw; using Tr_Base::ccw; using Tr_Base::construct_point; using Tr_Base::coplanar_orientation; using Tr_Base::dimension; using Tr_Base::find_conflicts; using Tr_Base::finite_facets_begin; using Tr_Base::finite_facets_end; using Tr_Base::finite_vertices_begin; using Tr_Base::finite_vertices_end; using Tr_Base::finite_cells_begin; using Tr_Base::finite_cells_end; using Tr_Base::finite_edges_begin; using Tr_Base::finite_edges_end; using Tr_Base::incident_facets; using Tr_Base::insert_in_conflict; using Tr_Base::infinite_vertex; using Tr_Base::is_infinite; using Tr_Base::is_valid; using Tr_Base::is_valid_finite; using Tr_Base::locate; using Tr_Base::mirror_vertex; using Tr_Base::mirror_index; using Tr_Base::next_around_edge; using Tr_Base::number_of_vertices; using Tr_Base::orientation; using Tr_Base::point; using Tr_Base::side_of_segment; using Tr_Base::side_of_edge; using Tr_Base::tds; using Tr_Base::vertex_triple_index; Regular_triangulation_3(const Gt& gt = Gt(), Lock_data_structure *lock_ds = NULL) : Tr_Base(gt, lock_ds), hidden_point_visitor(this) { } Regular_triangulation_3(Lock_data_structure *lock_ds, const Gt& gt = Gt()) : Tr_Base(lock_ds, gt), hidden_point_visitor(this) { } Regular_triangulation_3(const Regular_triangulation_3& rt) : Tr_Base(rt), hidden_point_visitor(this) { CGAL_triangulation_postcondition(is_valid()); } //insertion template < typename InputIterator > Regular_triangulation_3(InputIterator first, InputIterator last, const Gt& gt = Gt(), Lock_data_structure *lock_ds = NULL) : Tr_Base(gt, lock_ds), hidden_point_visitor(this) { insert(first, last); } template < typename InputIterator > Regular_triangulation_3(InputIterator first, InputIterator last, Lock_data_structure *lock_ds, const Gt& gt = Gt()) : Tr_Base(gt, lock_ds), hidden_point_visitor(this) { insert(first, last); } private: #ifdef CGAL_CONCURRENT_TRIANGULATION_3_ADD_TEMPORARY_POINTS_ON_FAR_SPHERE std::vector add_temporary_points_on_far_sphere(const size_t num_points) { std::vector far_sphere_vertices; const size_t MIN_NUM_POINTS_FOR_FAR_SPHERE_POINTS = 1000000; if(num_points >= MIN_NUM_POINTS_FOR_FAR_SPHERE_POINTS) { // Add temporary vertices on a "far sphere" to reduce contention on // the infinite vertex // Get bbox const Bbox_3& bbox = *this->get_bbox(); // Compute radius for far sphere const double& xdelta = bbox.xmax() - bbox.xmin(); const double& ydelta = bbox.ymax() - bbox.ymin(); const double& zdelta = bbox.zmax() - bbox.zmin(); const double radius = 1.3 * 0.5 * std::sqrt(xdelta*xdelta + ydelta*ydelta + zdelta*zdelta); // WARNING - TODO @fixme this code has to be fixed because Vector_3 is not // required by the traits concept const typename Gt::Vector_3 center(bbox.xmin() + 0.5*xdelta, bbox.ymin() + 0.5*ydelta, bbox.zmin() + 0.5*zdelta); Random_points_on_sphere_3 random_point(radius); const int NUM_PSEUDO_INFINITE_VERTICES = static_cast( tbb::task_scheduler_init::default_num_threads() * 3.5); typename Gt::Construct_weighted_point_3 cwp = geom_traits().construct_weighted_point_3_object(); std::vector points_on_far_sphere; for(int i = 0 ; i < NUM_PSEUDO_INFINITE_VERTICES ; ++i, ++random_point) points_on_far_sphere.push_back(cwp(*random_point + center)); // Spatial sorting can only be applied to bare points, so we need an adaptor typedef typename Geom_traits::Construct_point_3 Construct_point_3; typedef typename boost::result_of::type Ret; typedef CGAL::internal::boost_::function_property_map fpmap; typedef CGAL::Spatial_sort_traits_adapter_3 Search_traits_3; spatial_sort(points_on_far_sphere.begin(), points_on_far_sphere.end(), Search_traits_3( CGAL::internal::boost_::make_function_property_map( geom_traits().construct_point_3_object()), geom_traits())); typename std::vector::const_iterator it_p = points_on_far_sphere.begin(); typename std::vector::const_iterator it_p_end = points_on_far_sphere.end(); for(; it_p != it_p_end ; ++it_p) { Locate_type lt; Cell_handle c, hint; int li, lj; c = locate(*it_p, lt, li, lj, hint); Vertex_handle v = insert(*it_p, lt, c, li, lj); hint = (v == Vertex_handle() ? c : v->cell()); far_sphere_vertices.push_back(v); } } return far_sphere_vertices; } void remove_temporary_points_on_far_sphere( const std::vector& far_sphere_vertices) { if(!far_sphere_vertices.empty()) { // Remove the temporary vertices on far sphere remove(far_sphere_vertices.begin(), far_sphere_vertices.end()); } } #endif // CGAL_CONCURRENT_TRIANGULATION_3_ADD_TEMPORARY_POINTS_ON_FAR_SPHERE public: #ifndef CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO template < class InputIterator > std::ptrdiff_t insert(InputIterator first, InputIterator last, typename boost::enable_if< boost::is_convertible< typename std::iterator_traits::value_type, Weighted_point> >::type* = NULL) #else template < class InputIterator > std::ptrdiff_t insert(InputIterator first, InputIterator last) #endif //CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO { #ifdef CGAL_CONCURRENT_TRIANGULATION_3_PROFILING static Profile_branch_counter_3 bcounter( "early withdrawals / late withdrawals / successes [Regular_tri_3::insert]"); #endif #ifdef CGAL_TRIANGULATION_3_PROFILING WallClockTimer t; #endif size_type n = number_of_vertices(); std::vector points(first, last); // Spatial sorting can only be applied to bare points, so we need an adaptor // @todo Unary_function_to_property_map makes a copy (get() returns a value_type) but // we could hope to get a const& to the bare point. Unfortunately, the lazy // kernel creates temporaries and prevent it. typedef typename Geom_traits::Construct_point_3 Construct_point_3; typedef typename boost::result_of::type Ret; typedef CGAL::internal::boost_::function_property_map fpmap; typedef CGAL::Spatial_sort_traits_adapter_3 Search_traits_3; spatial_sort(points.begin(), points.end(), Search_traits_3( CGAL::internal::boost_::make_function_property_map( geom_traits().construct_point_3_object()), geom_traits())); // Parallel #ifdef CGAL_LINKED_WITH_TBB if(this->is_parallel()) { size_t num_points = points.size(); Cell_handle hint; #ifdef CGAL_CONCURRENT_TRIANGULATION_3_ADD_TEMPORARY_POINTS_ON_FAR_SPHERE std::vector far_sphere_vertices = add_temporary_points_on_far_sphere(num_points); #endif size_t i = 0; // Insert "num_points_seq" points sequentially // (or more if dim < 3 after that) size_t num_points_seq = (std::min)(num_points, (size_t)100); while (i < num_points_seq || (dimension() < 3 && i < num_points)) { Locate_type lt; Cell_handle c; int li, lj; c = locate(points[i], lt, li, lj, hint); Vertex_handle v = insert (points[i], lt, c, li, lj); hint = (v == Vertex_handle() ? c : v->cell()); ++i; } tbb::enumerable_thread_specific tls_hint(hint->vertex(0)); tbb::parallel_for(tbb::blocked_range(i, num_points), Insert_point(*this, points, tls_hint)); #ifdef CGAL_CONCURRENT_TRIANGULATION_3_ADD_TEMPORARY_POINTS_ON_FAR_SPHERE remove_temporary_points_on_far_sphere(far_sphere_vertices); #endif } // Sequential else #endif // CGAL_LINKED_WITH_TBB { Cell_handle hint; for(typename std::vector::const_iterator p = points.begin(), end = points.end(); p != end; ++p) { Locate_type lt; Cell_handle c; int li, lj; c = locate(*p, lt, li, lj, hint); Vertex_handle v = insert(*p, lt, c, li, lj); hint = v == Vertex_handle() ? c : v->cell(); } } #ifdef CGAL_TRIANGULATION_3_PROFILING std::cerr << "Points inserted in " << t.elapsed() << " seconds." << std::endl; #endif return number_of_vertices() - n; } #ifndef CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO private: //top stands for tuple-or-pair template const Weighted_point& top_get_first(const std::pair& pair) const { return pair.first; } template const Info& top_get_second(const std::pair& pair) const { return pair.second; } template const Weighted_point& top_get_first(const boost::tuple& tuple) const { return boost::get<0>(tuple); } template const Info& top_get_second(const boost::tuple& tuple) const { return boost::get<1>(tuple); } // Functor to go from an index of a container of Weighted_point to // the corresponding Bare_point template struct Index_to_Bare_point { typename boost::result_of::type operator()(const std::size_t& i) const { return cp(c[i]); } Index_to_Bare_point(const Container& c, const Construct_bare_point& cp) : c(c), cp(cp) { } const Container& c; const Construct_bare_point cp; }; template std::ptrdiff_t insert_with_info(InputIterator first,InputIterator last) { size_type n = number_of_vertices(); std::vector indices; std::vector points; std::vector infos; std::size_t index=0; for(InputIterator it=first;it!=last;++it) { Tuple_or_pair pair = *it; points.push_back(top_get_first(pair)); infos.push_back(top_get_second(pair)); indices.push_back(index++); } // We need to sort the points and their info at the same time through // the `indices` vector AND spatial sort can only handle Gt::Point_3. typedef typename Geom_traits::Construct_point_3 Construct_point_3; typedef Index_to_Bare_point > Access_bare_point; typedef typename boost::result_of::type Ret; typedef CGAL::internal::boost_::function_property_map fpmap; typedef CGAL::Spatial_sort_traits_adapter_3 Search_traits_3; Access_bare_point accessor(points, geom_traits().construct_point_3_object()); spatial_sort(indices.begin(), indices.end(), Search_traits_3( CGAL::internal::boost_::make_function_property_map< std::size_t, Ret, Access_bare_point>(accessor), geom_traits())); #ifdef CGAL_LINKED_WITH_TBB if(this->is_parallel()) { size_t num_points = points.size(); Cell_handle hint; #ifdef CGAL_CONCURRENT_TRIANGULATION_3_ADD_TEMPORARY_POINTS_ON_FAR_SPHERE std::vector far_sphere_vertices = add_temporary_points_on_far_sphere(num_points); #endif size_t i = 0; // Insert "num_points_seq" points sequentially // (or more if dim < 3 after that) size_t num_points_seq = (std::min)(num_points, (size_t)100); while (i < num_points_seq || (dimension() < 3 && i < num_points)) { Locate_type lt; Cell_handle c; int li, lj; c = locate(points[indices[i]], lt, li, lj, hint); Vertex_handle v = insert(points[indices[i]], lt, c, li, lj); if(v != Vertex_handle()) { v->info() = infos[indices[i]]; hint = v->cell(); } else hint = c; ++i; } tbb::enumerable_thread_specific tls_hint(hint->vertex(0)); tbb::parallel_for(tbb::blocked_range(i, num_points), Insert_point_with_info(*this, points, infos, indices, tls_hint)); #ifdef CGAL_CONCURRENT_TRIANGULATION_3_ADD_TEMPORARY_POINTS_ON_FAR_SPHERE remove_temporary_points_on_far_sphere(far_sphere_vertices); #endif } // Sequential else #endif // CGAL_LINKED_WITH_TBB { Cell_handle hint; for(typename std::vector::const_iterator it = indices.begin(), end = indices.end(); it != end; ++it) { Locate_type lt; Cell_handle c; int li, lj; c = locate(points[*it], lt, li, lj, hint); Vertex_handle v = insert(points[*it], lt, c, li, lj); if(v!=Vertex_handle()) { v->info()=infos[*it]; hint=v->cell(); } else { hint = c; } } } return number_of_vertices() - n; } public: template < class InputIterator > std::ptrdiff_t insert(InputIterator first, InputIterator last, typename boost::enable_if< boost::is_convertible< typename std::iterator_traits::value_type, std::pair::type> > >::type* = NULL) { return insert_with_info< std::pair::type> >(first,last); } template std::ptrdiff_t insert(boost::zip_iterator< boost::tuple > first, boost::zip_iterator< boost::tuple > last, typename boost::enable_if< boost::mpl::and_< typename boost::is_convertible< typename std::iterator_traits::value_type, Weighted_point >, typename boost::is_convertible< typename std::iterator_traits::value_type, typename internal::Info_check::type > > >::type* =NULL) { return insert_with_info< boost::tuple::type> >(first,last); } #endif //CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO Vertex_handle insert(const Weighted_point& p, Vertex_handle hint, bool *could_lock_zone = NULL) { return insert(p, hint == Vertex_handle() ? this->infinite_cell() : hint->cell(), could_lock_zone); } Vertex_handle insert(const Weighted_point& p, Cell_handle start = Cell_handle(), bool *could_lock_zone = NULL); Vertex_handle insert(const Weighted_point& p, Locate_type lt, Cell_handle c, int li, int, bool *could_lock_zone = NULL); template Vertex_handle insert_in_hole(const Weighted_point& p, CellIt cell_begin, CellIt cell_end, Cell_handle begin, int i); template Vertex_handle insert_in_hole(const Weighted_point& p, CellIt cell_begin, CellIt cell_end, Cell_handle begin, int i, Vertex_handle newv); template Triple find_conflicts(const Weighted_point& p, Cell_handle c, OutputIteratorBoundaryFacets bfit, OutputIteratorCells cit, OutputIteratorInternalFacets ifit, bool *could_lock_zone = NULL, const Facet *this_facet_must_be_in_the_cz = NULL, bool *the_facet_is_in_its_cz = NULL) const { CGAL_triangulation_precondition(dimension() >= 2); std::vector cells; cells.reserve(32); std::vector facets; facets.reserve(64); if(dimension() == 2) { Conflict_tester_2 tester(p, this); if(! tester(c)) return make_triple(bfit, cit, ifit); ifit = Tr_Base::find_conflicts(c, tester, make_triple(std::back_inserter(facets), std::back_inserter(cells), ifit), could_lock_zone, this_facet_must_be_in_the_cz, the_facet_is_in_its_cz).third; } else { Conflict_tester_3 tester(p, this); if(! tester(c)) return make_triple(bfit, cit, ifit); ifit = Tr_Base::find_conflicts(c, tester, make_triple(std::back_inserter(facets), std::back_inserter(cells), ifit), could_lock_zone, this_facet_must_be_in_the_cz, the_facet_is_in_its_cz).third; } // Reset the conflict flag on the boundary. for(typename std::vector::iterator fit = facets.begin(); fit != facets.end(); ++fit) { fit->first->neighbor(fit->second)->tds_data().clear(); *bfit++ = *fit; } // Reset the conflict flag in the conflict cells. for(typename std::vector::iterator ccit = cells.begin(); ccit != cells.end(); ++ccit) { (*ccit)->tds_data().clear(); *cit++ = *ccit; } return make_triple(bfit, cit, ifit); } template std::pair find_conflicts(const Weighted_point& p, Cell_handle c, OutputIteratorBoundaryFacets bfit, OutputIteratorCells cit, bool *could_lock_zone = NULL) const { Triple t = find_conflicts(p, c, bfit, cit, Emptyset_iterator(), could_lock_zone); return std::make_pair(t.first, t.second); } // Returns the vertices on the interior of the conflict hole. template OutputIterator vertices_inside_conflict_zone(const Weighted_point&p, Cell_handle c, OutputIterator res) const { CGAL_triangulation_precondition(dimension() >= 2); // Get the facets on the boundary of the hole, and the cells of the hole std::vector cells; std::vector facets; find_conflicts(p, c, std::back_inserter(facets), std::back_inserter(cells), Emptyset_iterator()); // Put all vertices on the hole in 'vertices' const int d = dimension(); std::set vertices; for(typename std::vector::const_iterator it = cells.begin(), end = cells.end(); it != end; ++it) { for(int i = 0; i <= d; ++i) vertices.insert((*it)->vertex(i)); } // Then extract the vertices of the boundary and remove them from // 'vertices' if(dimension() == 3) { for(typename std::vector::const_iterator i = facets.begin(); i != facets.end(); ++i) { vertices.erase(i->first->vertex((i->second+1)&3)); vertices.erase(i->first->vertex((i->second+2)&3)); vertices.erase(i->first->vertex((i->second+3)&3)); } } else { for(typename std::vector::const_iterator i = facets.begin(); i != facets.end(); ++i) { vertices.erase(i->first->vertex(cw(i->second))); vertices.erase(i->first->vertex(ccw(i->second))); } } return std::copy(vertices.begin(), vertices.end(), res); } #ifndef CGAL_NO_DEPRECATED_CODE // Returns the vertices on the boundary of the conflict hole. template OutputIterator vertices_in_conflict(const Weighted_point&p, Cell_handle c, OutputIterator res) const { return vertices_on_conflict_zone_boundary(p, c, res); } #endif // CGAL_NO_DEPRECATED_CODE // Returns the vertices on the boundary of the conflict hole. template OutputIterator vertices_on_conflict_zone_boundary(const Weighted_point&p, Cell_handle c, OutputIterator res) const { CGAL_triangulation_precondition(dimension() >= 2); // Get the facets on the boundary of the hole. std::vector facets; find_conflicts(p, c, std::back_inserter(facets), Emptyset_iterator(), Emptyset_iterator()); // Then extract uniquely the vertices. std::set vertices; if(dimension() == 3) { for(typename std::vector::const_iterator i = facets.begin(); i != facets.end(); ++i) { vertices.insert(i->first->vertex((i->second+1)&3)); vertices.insert(i->first->vertex((i->second+2)&3)); vertices.insert(i->first->vertex((i->second+3)&3)); } } else { for(typename std::vector::const_iterator i = facets.begin(); i != facets.end(); ++i) { vertices.insert(i->first->vertex(cw(i->second))); vertices.insert(i->first->vertex(ccw(i->second))); } } return std::copy(vertices.begin(), vertices.end(), res); } void remove(Vertex_handle v); // Concurrency-safe // See Triangulation_3::remove for more information bool remove(Vertex_handle v, bool *could_lock_zone); template < typename InputIterator > size_type remove(InputIterator first, InputIterator beyond) { CGAL_triangulation_precondition(!this->does_repeat_in_range(first, beyond)); size_type n = number_of_vertices(); #ifdef CGAL_TRIANGULATION_3_PROFILING WallClockTimer t; #endif // Parallel #ifdef CGAL_LINKED_WITH_TBB if(this->is_parallel()) { // TODO: avoid that by asking for ramdom-access iterators? std::vector vertices(first, beyond); tbb::concurrent_vector vertices_to_remove_sequentially; tbb::parallel_for(tbb::blocked_range(0, vertices.size()), Remove_point(*this, vertices, vertices_to_remove_sequentially)); // Do the rest sequentially for(typename tbb::concurrent_vector::const_iterator it = vertices_to_remove_sequentially.begin(), it_end = vertices_to_remove_sequentially.end() ; it != it_end ; ++it) { remove(*it); } } // Sequential else #endif // CGAL_LINKED_WITH_TBB { while(first != beyond) { remove(*first); ++first; } } #ifdef CGAL_TRIANGULATION_3_PROFILING std::cerr << "Points removed in " << t.elapsed() << " seconds." << std::endl; #endif return n - number_of_vertices(); } template void remove_and_give_new_cells(Vertex_handle v, OutputItCells cit) { Self tmp; Vertex_remover remover(tmp); Tr_Base::remove_and_give_new_cells(v, remover, cit); CGAL_triangulation_expensive_postcondition(is_valid()); } // Displacement works only for regular triangulation // without hidden points at any time Vertex_handle move_if_no_collision(Vertex_handle v, const Weighted_point& p); Vertex_handle move(Vertex_handle v, const Weighted_point& p); // REMOVE CLUSTER - works only when Regular has no hidden point at all // "regular as Delaunay" template < typename InputIterator > size_type remove_cluster(InputIterator first, InputIterator beyond) { Self tmp; Vertex_remover remover(tmp); return Tr_Base::remove(first, beyond, remover); } protected: Oriented_side side_of_oriented_power_sphere(const Weighted_point& p0, const Weighted_point& p1, const Weighted_point& p2, const Weighted_point& p3, const Weighted_point& p, bool perturb = false) const; Oriented_side side_of_oriented_power_circle(const Weighted_point& p0, const Weighted_point& p1, const Weighted_point& p2, const Weighted_point& p, bool perturb = false) const; Bounded_side side_of_bounded_power_circle(const Weighted_point& p0, const Weighted_point& p1, const Weighted_point& p2, const Weighted_point& p, bool perturb = false) const; Bounded_side side_of_bounded_power_segment(const Weighted_point& p0, const Weighted_point& p1, const Weighted_point& p, bool perturb = false) const; public: // Queries Bounded_side side_of_power_sphere(Cell_handle c, const Weighted_point& p, bool perturb = false) const; Bounded_side side_of_power_circle(const Facet& f, const Weighted_point& p, bool /* perturb */ = false) const { return side_of_power_circle(f.first, f.second, p); } Bounded_side side_of_power_circle(Cell_handle c, int i, const Weighted_point& p, bool perturb = false) const; Bounded_side side_of_power_segment(Cell_handle c, const Weighted_point& p, bool perturb = false) const; // Undocumented, needed for Mesh_3 (because of Periodic_3_mesh_3) bool greater_or_equal_power_distance(const Bare_point& p, const Weighted_point& q, const Weighted_point& r) const; Vertex_handle nearest_power_vertex_in_cell(const Bare_point& p, Cell_handle c) const; Vertex_handle nearest_power_vertex(const Bare_point& p, Cell_handle c = Cell_handle()) const; bool is_Gabriel(Cell_handle c, int i) const; bool is_Gabriel(Cell_handle c, int i, int j) const; bool is_Gabriel(const Facet& f)const ; bool is_Gabriel(const Edge& e) const; bool is_Gabriel(Vertex_handle v) const; // Dual functions Bare_point dual(Cell_handle c) const; Object dual(Cell_handle c, int i) const; Object dual(const Facet& facet) const; void dual_segment(Cell_handle c, int i, Bare_point& p, Bare_point&q) const; void dual_segment(const Facet& facet, Bare_point& p, Bare_point&q) const; void dual_segment_exact(const Facet& facet, Bare_point& p, Bare_point&q) const; void dual_ray(Cell_handle c, int i, Ray& ray) const; void dual_ray(const Facet& facet, Ray& ray) const; void dual_ray_exact(const Facet& facet, Ray& ray) const; template < class Stream> Stream& draw_dual(Stream& os) const; bool is_valid(bool verbose = false, int level = 0) const; protected: bool less_power_distance(const Bare_point& p, const Weighted_point& q, const Weighted_point& r) const { return geom_traits().compare_power_distance_3_object()(p, q, r) == SMALLER; } Bare_point construct_weighted_circumcenter(const Weighted_point& p, const Weighted_point& q, const Weighted_point& r, const Weighted_point& s) const { return geom_traits().construct_weighted_circumcenter_3_object()(p,q,r,s); } Bare_point construct_weighted_circumcenter(const Weighted_point& p, const Weighted_point& q, const Weighted_point& r) const { return geom_traits().construct_weighted_circumcenter_3_object()(p,q,r); } Segment construct_segment(const Bare_point& p, const Bare_point& q) const { return geom_traits().construct_segment_3_object()(p, q); } Line construct_perpendicular_line(const Plane& pl, const Bare_point& p) const { return geom_traits().construct_perpendicular_line_3_object()(pl, p); } Plane construct_plane(const Bare_point& p, const Bare_point& q, const Bare_point& r) const { return geom_traits().construct_plane_3_object()(p, q, r); } Ray construct_ray(const Bare_point& p, const Line& l) const { return geom_traits().construct_ray_3_object()(p, l); } Object construct_object(const Bare_point& p) const { return geom_traits().construct_object_3_object()(p); } Object construct_object(const Segment& s) const { return geom_traits().construct_object_3_object()(s); } Object construct_object(const Ray& r) const { return geom_traits().construct_object_3_object()(r); } Vertex_handle nearest_power_vertex(const Bare_point& p, Vertex_handle v, Vertex_handle w) const { // In case of equality, v is returned. CGAL_triangulation_precondition(v != w); if(is_infinite(v)) return w; if(is_infinite(w)) return v; return less_power_distance(p, w->point(), v->point()) ? w : v; } Oriented_side power_test(const Weighted_point& p, const Weighted_point& q) const { CGAL_triangulation_precondition(this->equal(p, q)); return geom_traits().power_side_of_oriented_power_sphere_3_object()(p, q); } Oriented_side power_test(const Weighted_point& p, const Weighted_point& q, const Weighted_point& r) const { CGAL_triangulation_precondition(this->collinear(p, q, r)); return geom_traits().power_side_of_oriented_power_sphere_3_object()(p, q, r); } Oriented_side power_test(const Weighted_point& p, const Weighted_point& q, const Weighted_point& r, const Weighted_point& s) const { CGAL_triangulation_precondition(this->coplanar(p, q, r, s)); return geom_traits().power_side_of_oriented_power_sphere_3_object()(p, q, r, s); } Oriented_side power_test(const Weighted_point& p, const Weighted_point& q, const Weighted_point& r, const Weighted_point& s, const Weighted_point& t) const { return geom_traits().power_side_of_oriented_power_sphere_3_object()(p, q, r, s, t); } bool in_conflict_3(const Weighted_point& p, const Cell_handle c) const { return side_of_power_sphere(c, p, true) == ON_BOUNDED_SIDE; } bool in_conflict_2(const Weighted_point& p, const Cell_handle c, int i) const { return side_of_power_circle(c, i, p, true) == ON_BOUNDED_SIDE; } bool in_conflict_1(const Weighted_point& p, const Cell_handle c) const { return side_of_power_segment(c, p, true) == ON_BOUNDED_SIDE; } bool in_conflict_0(const Weighted_point& p, const Cell_handle c) const { return power_test(c->vertex(0)->point(), p) == ON_POSITIVE_SIDE; } bool in_conflict(const Weighted_point& p, const Cell_handle c) const { switch(dimension()) { case 0: return in_conflict_0(p, c); case 1: return in_conflict_1(p, c); case 2: return in_conflict_2(p, c, 3); case 3: return in_conflict_3(p, c); } return true; } class Conflict_tester_3 { const Weighted_point& p; const Self *t; public: Conflict_tester_3(const Weighted_point& pt, const Self *tr) : p(pt), t(tr) { } bool operator()(const Cell_handle c) const { return t->in_conflict_3(p, c); } bool test_initial_cell(const Cell_handle c) const { return operator()(c); } Oriented_side compare_weight(const Weighted_point& wp1, const Weighted_point& wp2) const { return t->power_test(wp1, wp2); } }; class Conflict_tester_2 { const Weighted_point& p; const Self *t; public: Conflict_tester_2(const Weighted_point& pt, const Self *tr) : p(pt), t(tr) { } bool operator()(const Cell_handle c) const { return t->in_conflict_2(p, c, 3); } bool test_initial_cell(const Cell_handle c) const { return operator()(c); } Oriented_side compare_weight(const Weighted_point& wp1, const Weighted_point& wp2) const { return t->power_test(wp1, wp2); } }; class Conflict_tester_1 { const Weighted_point& p; const Self *t; public: Conflict_tester_1(const Weighted_point& pt, const Self *tr) : p(pt), t(tr) { } bool operator()(const Cell_handle c) const { return t->in_conflict_1(p, c); } bool test_initial_cell(const Cell_handle c) const { return operator()(c); } Oriented_side compare_weight(const Weighted_point& wp1, const Weighted_point& wp2) const { return t->power_test(wp1, wp2); } }; class Conflict_tester_0 { const Weighted_point& p; const Self *t; public: Conflict_tester_0(const Weighted_point& pt, const Self *tr) : p(pt), t(tr) { } bool operator()(const Cell_handle c) const { return t->in_conflict_0(p, c); } bool test_initial_cell(const Cell_handle c) const { return operator()(c); } int compare_weight(const Weighted_point& wp1, const Weighted_point& wp2) const { return t->power_test(wp1, wp2); } }; // Sequential version // "dummy" is here to allow the specialization (see below) // See http://groups.google.com/group/comp.lang.c++.moderated/browse_thread/thread/285ab1eec49e1cb6 template class Hidden_point_visitor { Self *t; mutable std::vector vertices; mutable std::vector hidden_points; public: Hidden_point_visitor(Self *tr) : t(tr) {} template void process_cells_in_conflict(InputIterator start, InputIterator end) const { int dim = t->dimension(); while(start != end) { std::copy((*start)->hidden_points_begin(), (*start)->hidden_points_end(), std::back_inserter(hidden_points)); for(int i=0; i<=dim; i++) { Vertex_handle v = (*start)->vertex(i); if(v->cell() != Cell_handle()) { vertices.push_back(v); v->set_cell(Cell_handle()); } } start ++; } } void reinsert_vertices(Vertex_handle v) { Cell_handle hc = v->cell(); for(typename std::vector::iterator vi = vertices.begin(); vi != vertices.end(); ++vi) { if((*vi)->cell() != Cell_handle()) continue; hc = t->locate((*vi)->point(), hc); hide_point(hc, (*vi)->point()); t->tds().delete_vertex(*vi); } vertices.clear(); for(typename std::vector::iterator hp = hidden_points.begin(); hp != hidden_points.end(); ++hp) { hc = t->locate(*hp, hc); hide_point (hc, *hp); } hidden_points.clear(); } Vertex_handle replace_vertex(Cell_handle c, int index, const Weighted_point& p) { Vertex_handle v = c->vertex(index); hide_point(c, v->point()); v->set_point(p); return v; } void hide_point(Cell_handle c, const Weighted_point& p) { c->hide_point(p); } }; #ifdef CGAL_LINKED_WITH_TBB // Parallel version specialization template class Hidden_point_visitor { typedef Hidden_point_visitor HPV; Self *t; mutable tbb::enumerable_thread_specific > vertices; mutable tbb::enumerable_thread_specific > hidden_points; public: Hidden_point_visitor(Self *tr) : t(tr) {} template void process_cells_in_conflict(InputIterator start, InputIterator end) const { int dim = t->dimension(); while(start != end) { std::copy((*start)->hidden_points_begin(), (*start)->hidden_points_end(), std::back_inserter(hidden_points.local())); for(int i=0; i<=dim; i++) { Vertex_handle v = (*start)->vertex(i); if(v->cell() != Cell_handle()) { vertices.local().push_back(v); v->set_cell(Cell_handle()); } } start ++; } } void reinsert_vertices(Vertex_handle v) { Cell_handle hc = v->cell(); for(typename std::vector::iterator vi = vertices.local().begin(); vi != vertices.local().end(); ++vi) { if((*vi)->cell() != Cell_handle()) continue; hc = t->locate((*vi)->point(), hc); hide_point(hc, (*vi)->point()); t->tds().delete_vertex(*vi); } vertices.local().clear(); for(typename std::vector::iterator hp = hidden_points.local().begin(); hp != hidden_points.local().end(); ++hp) { hc = t->locate(*hp, hc); hide_point (hc, *hp); } hidden_points.local().clear(); } Vertex_handle replace_vertex(Cell_handle c, int index, const Weighted_point& p) { Vertex_handle v = c->vertex(index); hide_point(c, v->point()); v->set_point(p); return v; } void hide_point(Cell_handle c, const Weighted_point& p) { c->hide_point(p); } }; // Functor for parallel insert(begin, end) function template class Insert_point { typedef typename RT::Weighted_point Weighted_point; typedef typename RT::Vertex_handle Vertex_handle; RT& m_rt; const std::vector& m_points; tbb::enumerable_thread_specific& m_tls_hint; public: // Constructor Insert_point(RT& rt, const std::vector& points, tbb::enumerable_thread_specific& tls_hint) : m_rt(rt), m_points(points), m_tls_hint(tls_hint) {} // Constructor Insert_point(const Insert_point& ip) : m_rt(ip.m_rt), m_points(ip.m_points), m_tls_hint(ip.m_tls_hint) {} // operator() void operator()(const tbb::blocked_range& r) const { #ifdef CGAL_CONCURRENT_TRIANGULATION_3_PROFILING static Profile_branch_counter_3 bcounter( "early withdrawals / late withdrawals / successes [Delaunay_tri_3::insert]"); #endif Vertex_handle& hint = m_tls_hint.local(); for(size_t i_point = r.begin() ; i_point != r.end() ; ++i_point) { bool success = false; const Weighted_point& p = m_points[i_point]; while(!success) { if(m_rt.try_lock_vertex(hint) && m_rt.try_lock_point(p)) { bool could_lock_zone; Locate_type lt; int li, lj; Cell_handle c = m_rt.locate(p, lt, li, lj, hint->cell(), &could_lock_zone); Vertex_handle v; if(could_lock_zone) v = m_rt.insert(p, lt, c, li, lj, &could_lock_zone); if(could_lock_zone) { hint = (v == Vertex_handle() ? c->vertex(0) : v); m_rt.unlock_all_elements(); success = true; #ifdef CGAL_CONCURRENT_TRIANGULATION_3_PROFILING ++bcounter; #endif } else { m_rt.unlock_all_elements(); #ifdef CGAL_CONCURRENT_TRIANGULATION_3_PROFILING bcounter.increment_branch_1(); // THIS is a late withdrawal! #endif } } else { m_rt.unlock_all_elements(); #ifdef CGAL_CONCURRENT_TRIANGULATION_3_PROFILING bcounter.increment_branch_2(); // THIS is an early withdrawal! #endif } } } } }; // Functor for parallel insert_with_info(begin, end) function template class Insert_point_with_info { typedef typename RT::Weighted_point Weighted_point; typedef typename RT::Vertex_handle Vertex_handle; typedef typename RT::Triangulation_data_structure::Vertex::Info Info; RT& m_rt; const std::vector& m_points; const std::vector& m_infos; const std::vector& m_indices; tbb::enumerable_thread_specific& m_tls_hint; public: // Constructor Insert_point_with_info(RT& rt, const std::vector& points, const std::vector& infos, const std::vector& indices, tbb::enumerable_thread_specific& tls_hint) : m_rt(rt), m_points(points), m_infos(infos), m_indices(indices), m_tls_hint(tls_hint) {} // Constructor Insert_point_with_info(const Insert_point_with_info &ip) : m_rt(ip.m_rt), m_points(ip.m_points), m_infos(ip.m_infos), m_indices(ip.m_indices), m_tls_hint(ip.m_tls_hint) {} // operator() void operator()(const tbb::blocked_range& r) const { #ifdef CGAL_CONCURRENT_TRIANGULATION_3_PROFILING static Profile_branch_counter_3 bcounter( "early withdrawals / late withdrawals / successes [Delaunay_tri_3::insert]"); #endif Vertex_handle& hint = m_tls_hint.local(); for(size_t i_idx = r.begin() ; i_idx != r.end() ; ++i_idx) { bool success = false; std::ptrdiff_t i_point = m_indices[i_idx]; const Weighted_point& p = m_points[i_point]; while(!success) { if(m_rt.try_lock_vertex(hint) && m_rt.try_lock_point(p)) { bool could_lock_zone; Locate_type lt; int li, lj; Cell_handle c = m_rt.locate(p, lt, li, lj, hint->cell(), &could_lock_zone); Vertex_handle v; if(could_lock_zone) v = m_rt.insert(p, lt, c, li, lj, &could_lock_zone); if(could_lock_zone) { if(v == Vertex_handle()) { hint = c->vertex(0); } else { v->info() = m_infos[i_point]; hint = v; } m_rt.unlock_all_elements(); success = true; #ifdef CGAL_CONCURRENT_TRIANGULATION_3_PROFILING ++bcounter; #endif } else { m_rt.unlock_all_elements(); #ifdef CGAL_CONCURRENT_TRIANGULATION_3_PROFILING bcounter.increment_branch_1(); // THIS is a late withdrawal! #endif } } else { m_rt.unlock_all_elements(); #ifdef CGAL_CONCURRENT_TRIANGULATION_3_PROFILING bcounter.increment_branch_2(); // THIS is an early withdrawal! #endif } } } } }; // Functor for parallel remove(begin, end) function template class Remove_point { typedef typename RT::Weighted_point Weighted_point; typedef typename RT::Vertex_handle Vertex_handle; RT& m_rt; const std::vector& m_vertices; tbb::concurrent_vector& m_vertices_to_remove_sequentially; public: // Constructor Remove_point(RT& rt, const std::vector& vertices, tbb::concurrent_vector& vertices_to_remove_sequentially) : m_rt(rt), m_vertices(vertices), m_vertices_to_remove_sequentially(vertices_to_remove_sequentially) {} // Constructor Remove_point(const Remove_point& rp) : m_rt(rp.m_rt), m_vertices(rp.m_vertices), m_vertices_to_remove_sequentially(rp.m_vertices_to_remove_sequentially) {} // operator() void operator()(const tbb::blocked_range& r) const { for(size_t i_vertex = r.begin() ; i_vertex != r.end() ; ++i_vertex) { Vertex_handle v = m_vertices[i_vertex]; bool could_lock_zone, needs_to_be_done_sequentially; do { needs_to_be_done_sequentially = !m_rt.remove(v, &could_lock_zone); m_rt.unlock_all_elements(); } while(!could_lock_zone); if(needs_to_be_done_sequentially) m_vertices_to_remove_sequentially.push_back(v); } } }; #endif // CGAL_LINKED_WITH_TBB Hidden_point_visitor& get_hidden_point_visitor() { return hidden_point_visitor; } template < class RegularTriangulation_3 > class Vertex_remover; template < class RegularTriangulation_3 > class Vertex_inserter; Hidden_point_visitor hidden_point_visitor; }; template < class Gt, class Tds, class Lds > typename Regular_triangulation_3::Vertex_handle Regular_triangulation_3:: nearest_power_vertex_in_cell(const Bare_point& p, Cell_handle c) const // Returns the finite vertex of the cell c with smaller // power distance to p. { CGAL_triangulation_precondition(dimension() >= 1); Vertex_handle nearest = nearest_power_vertex(p, c->vertex(0), c->vertex(1)); if(dimension() >= 2) { nearest = nearest_power_vertex(p, nearest, c->vertex(2)); if(dimension() == 3) nearest = nearest_power_vertex(p, nearest, c->vertex(3)); } return nearest; } template < class Gt, class Tds, class Lds > typename Regular_triangulation_3::Vertex_handle Regular_triangulation_3:: nearest_power_vertex(const Bare_point& p, Cell_handle start) const { if(number_of_vertices() == 0) return Vertex_handle(); // Use a brute-force algorithm if dimension < 3. if(dimension() < 3) { Finite_vertices_iterator vit = finite_vertices_begin(); Vertex_handle res = vit; ++vit; for(Finite_vertices_iterator end = finite_vertices_end(); vit != end; ++vit) res = nearest_power_vertex(p, res, vit); return res; } Locate_type lt; int li, lj; typename Gt::Construct_weighted_point_3 p2wp = geom_traits().construct_weighted_point_3_object(); Cell_handle c = locate(p2wp(p), lt, li, lj, start); // - start with the closest vertex from the located cell. // - repeatedly take the nearest of its incident vertices if any // - if not, we're done. Vertex_handle nearest = nearest_power_vertex_in_cell(p, c); std::vector vs; vs.reserve(32); while(true) { Vertex_handle tmp = nearest; adjacent_vertices(nearest, std::back_inserter(vs)); for(typename std::vector::const_iterator vsit = vs.begin(); vsit != vs.end(); ++vsit) tmp = nearest_power_vertex(p, tmp, *vsit); if(tmp == nearest) break; vs.clear(); nearest = tmp; } return nearest; } template < class Gt, class Tds, class Lds > typename Regular_triangulation_3::Bare_point Regular_triangulation_3:: dual(Cell_handle c) const { CGAL_triangulation_precondition(dimension()==3); CGAL_triangulation_precondition(! is_infinite(c)); return c->weighted_circumcenter(geom_traits()); } template < class Gt, class Tds, class Lds > void Regular_triangulation_3:: dual_segment(Cell_handle c, int i, Bare_point& p, Bare_point&q) const { Cell_handle n = c->neighbor(i); CGAL_assertion(! is_infinite(c) && ! is_infinite(n)); p = dual(c); q = dual(n); } template < class Gt, class Tds, class Lds > void Regular_triangulation_3:: dual_segment(const Facet& facet, Bare_point& p, Bare_point&q) const { return dual_segment(facet.first, facet.second, p, q); } template < class Gt, class Tds, class Lds > void Regular_triangulation_3:: dual_ray(Cell_handle c, int i, Ray& ray) const { Cell_handle n = c->neighbor(i); CGAL_triangulation_precondition((!is_infinite(c) != !is_infinite(n))); // xor // either n or c is infinite int in; if(is_infinite(c)) { in = n->index(c); } else { n = c; in = i; } // n now denotes a finite cell, either c or c->neighbor(i) int ind[3] = {(in+1)&3,(in+2)&3,(in+3)&3}; if((in&1) == 1) std::swap(ind[0], ind[1]); const Weighted_point& p = n->vertex(ind[0])->point(); const Weighted_point& q = n->vertex(ind[1])->point(); const Weighted_point& r = n->vertex(ind[2])->point(); const Bare_point& bp = construct_point(p); const Bare_point& bq = construct_point(q); const Bare_point& br = construct_point(r); Line l = construct_perpendicular_line(construct_plane(bp, bq, br), construct_weighted_circumcenter(p,q,r)); ray = construct_ray(dual(n), l); } template < class Gt, class Tds, class Lds > void Regular_triangulation_3:: dual_ray(const Facet& facet, Ray& ray) const { return dual_ray(facet.first, facet.second, ray); } // Exact versions of dual_segment() and dual_ray() for Mesh_3. // These functions are really dirty: they assume that the point type is nice enough // such that EPECK can manipulate it (e.g. convert it to EPECK::Point_3) AND // that the result of these manipulations will make sense. template < class Gt, class Tds, class Lds > void Regular_triangulation_3:: dual_segment_exact(const Facet& facet, Bare_point& p, Bare_point&q) const { typedef typename Kernel_traits::Kernel K; typedef Exact_predicates_exact_constructions_kernel EK; typedef Cartesian_converter To_exact; typedef Cartesian_converter Back_from_exact; typedef EK Exact_Rt; To_exact to_exact; Back_from_exact back_from_exact; Exact_Rt::Construct_weighted_circumcenter_3 exact_weighted_circumcenter = Exact_Rt().construct_weighted_circumcenter_3_object(); Cell_handle c = facet.first; int i = facet.second; Cell_handle n = c->neighbor(i); const typename Exact_Rt::Weighted_point_3& cp = to_exact(c->vertex(0)->point()); const typename Exact_Rt::Weighted_point_3& cq = to_exact(c->vertex(1)->point()); const typename Exact_Rt::Weighted_point_3& cr = to_exact(c->vertex(2)->point()); const typename Exact_Rt::Weighted_point_3& cs = to_exact(c->vertex(3)->point()); const typename Exact_Rt::Weighted_point_3& np = to_exact(n->vertex(0)->point()); const typename Exact_Rt::Weighted_point_3& nq = to_exact(n->vertex(1)->point()); const typename Exact_Rt::Weighted_point_3& nr = to_exact(n->vertex(2)->point()); const typename Exact_Rt::Weighted_point_3& ns = to_exact(n->vertex(3)->point()); p = back_from_exact(exact_weighted_circumcenter(cp, cq, cr, cs)); q = back_from_exact(exact_weighted_circumcenter(np, nq, nr, ns)); } template < class Gt, class Tds, class Lds > void Regular_triangulation_3:: dual_ray_exact(const Facet& facet, Ray& ray) const { Cell_handle c = facet.first; int i = facet.second; Cell_handle n = c->neighbor(i); CGAL_triangulation_precondition(!is_infinite(c) != !is_infinite(n)); // xor // either n or c is infinite int in; if(is_infinite(c)) { in = n->index(c); } else { n = c; in = i; } // n now denotes a finite cell, either c or c->neighbor(i) int ind[3] = {(in+1)&3,(in+2)&3,(in+3)&3}; if((in&1) == 1) std::swap(ind[0], ind[1]); // exact part typedef typename Kernel_traits::Kernel K; typedef Exact_predicates_exact_constructions_kernel EK; typedef Cartesian_converter To_exact; typedef Cartesian_converter Back_from_exact; typedef EK Exact_Rt; To_exact to_exact; Back_from_exact back_from_exact; Exact_Rt::Construct_weighted_circumcenter_3 exact_weighted_circumcenter = Exact_Rt().construct_weighted_circumcenter_3_object(); Exact_Rt::Construct_perpendicular_line_3 exact_perpendicular_line = Exact_Rt().construct_perpendicular_line_3_object(); Exact_Rt::Construct_plane_3 exact_plane_3 = Exact_Rt().construct_plane_3_object(); Exact_Rt::Construct_ray_3 exact_ray_3 = Exact_Rt().construct_ray_3_object(); Exact_Rt::Construct_point_3 exact_point_3 = Exact_Rt().construct_point_3_object(); const typename Exact_Rt::Weighted_point_3& p = to_exact(n->vertex(ind[0])->point()); const typename Exact_Rt::Weighted_point_3& q = to_exact(n->vertex(ind[1])->point()); const typename Exact_Rt::Weighted_point_3& r = to_exact(n->vertex(ind[2])->point()); const typename Exact_Rt::Weighted_point_3& s = to_exact(n->vertex(in)->point()); const typename Exact_Rt::Point_3& bp = exact_point_3(p); const typename Exact_Rt::Point_3& bq = exact_point_3(q); const typename Exact_Rt::Point_3& br = exact_point_3(r); typename Exact_Rt::Line_3 l = exact_perpendicular_line( exact_plane_3(bp, bq, br), exact_weighted_circumcenter(p, q, r)); ray = back_from_exact(exact_ray_3(exact_weighted_circumcenter(p, q, r, s), l)); } template < class Gt, class Tds, class Lds > typename Regular_triangulation_3::Object Regular_triangulation_3:: dual(Cell_handle c, int i) const { CGAL_triangulation_precondition(dimension()>=2); CGAL_triangulation_precondition(! is_infinite(c,i)); if(dimension() == 2) { CGAL_triangulation_precondition(i == 3); return construct_object(construct_weighted_circumcenter(c->vertex(0)->point(), c->vertex(1)->point(), c->vertex(2)->point())); } // dimension() == 3 Cell_handle n = c->neighbor(i); if(! is_infinite(c) && ! is_infinite(n)) { // dual is a segment Bare_point bp = dual(c); Bare_point np = dual(n); return construct_object(construct_segment(bp, np)); } // either n or c is infinite, dual is a ray Ray r; dual_ray(c, i, r); return construct_object(r); } template < class Gt, class Tds, class Lds > typename Regular_triangulation_3::Object Regular_triangulation_3:: dual(const Facet& facet) const { return dual(facet.first, facet.second); } template < class Gt, class Tds, class Lds > template < class Stream> Stream& Regular_triangulation_3:: draw_dual(Stream& os) const { for(Finite_facets_iterator fit = finite_facets_begin(), end = finite_facets_end(); fit != end; ++fit) { Object o = dual(*fit); if(const Segment* s = object_cast(&o)) os << *s; else if(const Ray* r = object_cast(&o)) os << *r; else if(const Bare_point* p = object_cast(&o)) os << *p; } return os; } template < class Gt, class Tds, class Lds > Oriented_side Regular_triangulation_3:: side_of_oriented_power_sphere(const Weighted_point& p0, const Weighted_point& p1, const Weighted_point& p2, const Weighted_point& p3, const Weighted_point& p, bool perturb) const { CGAL_triangulation_precondition(orientation(p0, p1, p2, p3) == POSITIVE); using namespace boost; Oriented_side os = power_test(p0, p1, p2, p3, p); if(os != ON_ORIENTED_BOUNDARY || !perturb) return os; // We are now in a degenerate case => we do a symbolic perturbation. // We sort the points lexicographically. const Weighted_point * points[5] = {&p0, &p1, &p2, &p3, &p}; std::sort(points, points + 5, typename Tr_Base::Perturbation_order(this)); // We successively look whether the leading monomial, then 2nd monomial // of the determinant has non null coefficient. for(int i=4; i>1; --i) { if(points[i] == &p) return ON_NEGATIVE_SIDE; // since p0 p1 p2 p3 are non coplanar and positively oriented Orientation o; if(points[i] == &p3 && (o = orientation(p0,p1,p2,p)) != COPLANAR) return o; if(points[i] == &p2 && (o = orientation(p0,p1,p,p3)) != COPLANAR) return o; if(points[i] == &p1 && (o = orientation(p0,p,p2,p3)) != COPLANAR) return o; if(points[i] == &p0 && (o = orientation(p,p1,p2,p3)) != COPLANAR) return o; } CGAL_triangulation_assertion(false); return ON_NEGATIVE_SIDE; } template < class Gt, class Tds, class Lds > Bounded_side Regular_triangulation_3:: side_of_power_sphere(Cell_handle c, const Weighted_point& p, bool perturb) const { CGAL_triangulation_precondition(dimension() == 3); int i3; if(! c->has_vertex(infinite_vertex(), i3)) { return Bounded_side(side_of_oriented_power_sphere(c->vertex(0)->point(), c->vertex(1)->point(), c->vertex(2)->point(), c->vertex(3)->point(), p, perturb)); } // else infinite cell : int i0,i1,i2; if((i3%2) == 1) { i0 = (i3+1)&3; i1 = (i3+2)&3; i2 = (i3+3)&3; } else { i0 = (i3+2)&3; i1 = (i3+1)&3; i2 = (i3+3)&3; } // general case Orientation o = orientation(c->vertex(i0)->point(), c->vertex(i1)->point(), c->vertex(i2)->point(), p); if(o != ZERO) return Bounded_side(o); // else p coplanar with i0,i1,i2 return side_of_bounded_power_circle(c->vertex(i0)->point(), c->vertex(i1)->point(), c->vertex(i2)->point(), p, perturb); } template < class Gt, class Tds, class Lds > Bounded_side Regular_triangulation_3:: side_of_bounded_power_circle(const Weighted_point& p0, const Weighted_point& p1, const Weighted_point& p2, const Weighted_point& p, bool perturb) const { CGAL_triangulation_precondition(coplanar_orientation(p0, p1, p2) != 0); if(coplanar_orientation(p0, p1, p2) == POSITIVE) return Bounded_side (side_of_oriented_power_circle(p0, p1, p2, p, perturb)); // Wrong because the low level power test already does a coplanar orientation test. // return Bounded_side (- side_of_oriented_power_circle (p0, p2, p1, p, perturb)); return Bounded_side (side_of_oriented_power_circle(p0, p2, p1, p, perturb)); } template < class Gt, class Tds, class Lds > Oriented_side Regular_triangulation_3:: side_of_oriented_power_circle(const Weighted_point& p0, const Weighted_point& p1, const Weighted_point& p2, const Weighted_point& p, bool perturb) const { CGAL_triangulation_precondition(coplanar_orientation(p0, p1, p2) == POSITIVE); using namespace boost; Oriented_side os = power_test(p0, p1, p2, p); if(os != ON_ORIENTED_BOUNDARY || !perturb) return os; // We are now in a degenerate case => we do a symbolic perturbation. // We sort the points lexicographically. const Weighted_point * points[4] = {&p0, &p1, &p2, &p}; std::sort(points, points + 4, typename Tr_Base::Perturbation_order(this)); // We successively look whether the leading monomial, then 2nd monomial // of the determinant has non null coefficient. // 2 iterations are enough (cf paper) for(int i=3; i>1; --i) { if(points[i] == &p) return ON_NEGATIVE_SIDE; // since p0 p1 p2 are non collinear and positively oriented Orientation o; if(points[i] == &p2 && (o = coplanar_orientation(p0,p1,p)) != COPLANAR) return o; if(points[i] == &p1 && (o = coplanar_orientation(p0,p,p2)) != COPLANAR) return o; if(points[i] == &p0 && (o = coplanar_orientation(p,p1,p2)) != COPLANAR) return o; } CGAL_triangulation_assertion(false); return ON_NEGATIVE_SIDE; } template < class Gt, class Tds, class Lds > Bounded_side Regular_triangulation_3:: side_of_power_circle(Cell_handle c, int i, const Weighted_point& p, bool perturb) const { CGAL_triangulation_precondition(dimension() >= 2); int i3 = 5; if(dimension() == 2) { CGAL_triangulation_precondition(i == 3); // the triangulation is supposed to be valid, ie the facet // with vertices 0 1 2 in this order is positively oriented if(! c->has_vertex(infinite_vertex(), i3)) return Bounded_side(side_of_oriented_power_circle(c->vertex(0)->point(), c->vertex(1)->point(), c->vertex(2)->point(), p, perturb)); // else infinite facet // v1, v2 finite vertices of the facet such that v1,v2,infinite // is positively oriented Vertex_handle v1 = c->vertex(ccw(i3)), v2 = c->vertex(cw(i3)); CGAL_triangulation_assertion( coplanar_orientation(v1->point(), v2->point(), mirror_vertex(c, i3)->point()) == NEGATIVE); Orientation o = coplanar_orientation(v1->point(), v2->point(), p); if(o != ZERO) return Bounded_side(o); // case when p collinear with v1v2 return side_of_bounded_power_segment(v1->point(), v2->point(), p, perturb); } // dim 2 // else dimension == 3 CGAL_triangulation_precondition((i >= 0) && (i < 4)); if((! c->has_vertex(infinite_vertex(),i3)) || (i3 != i)) { // finite facet // initialization of i0 i1 i2, vertices of the facet positively // oriented (if the triangulation is valid) int i0 = (i>0) ? 0 : 1; int i1 = (i>1) ? 1 : 2; int i2 = (i>2) ? 2 : 3; CGAL_triangulation_precondition(this->coplanar(c->vertex(i0)->point(), c->vertex(i1)->point(), c->vertex(i2)->point(), p)); return side_of_bounded_power_circle(c->vertex(i0)->point(), c->vertex(i1)->point(), c->vertex(i2)->point(), p, perturb); } //else infinite facet // v1, v2 finite vertices of the facet such that v1,v2,infinite // is positively oriented Vertex_handle v1 = c->vertex(next_around_edge(i3,i)), v2 = c->vertex(next_around_edge(i,i3)); Orientation o = (Orientation) (coplanar_orientation(v1->point(), v2->point(), c->vertex(i)->point()) * coplanar_orientation(v1->point(), v2->point(), p)); // then the code is duplicated from 2d case if(o != ZERO) return Bounded_side(-o); // because p is in f iff // it is not on the same side of v1v2 as c->vertex(i) // case when p collinear with v1v2 : return side_of_bounded_power_segment(v1->point(), v2->point(), p, perturb); } template < class Gt, class Tds, class Lds > Bounded_side Regular_triangulation_3:: side_of_bounded_power_segment(const Weighted_point& p0, const Weighted_point& p1, const Weighted_point& p, bool perturb) const { Oriented_side os = power_test(p0, p1, p); if(os != ON_ORIENTED_BOUNDARY || !perturb) return Bounded_side(os); // We are now in a degenerate case => we do a symbolic perturbation. switch (this->collinear_position(p0, p, p1)) { case Tr_Base::BEFORE: case Tr_Base::AFTER: return ON_UNBOUNDED_SIDE; case Tr_Base::MIDDLE: return ON_BOUNDED_SIDE; default: ; } CGAL_triangulation_assertion(false); return ON_UNBOUNDED_SIDE; } template < class Gt, class Tds, class Lds > Bounded_side Regular_triangulation_3:: side_of_power_segment(Cell_handle c, const Weighted_point& p, bool perturb) const { CGAL_triangulation_precondition(dimension() == 1); if(! is_infinite(c,0,1)) return side_of_bounded_power_segment(c->vertex(0)->point(), c->vertex(1)->point(), p, perturb); Locate_type lt; int i; Bounded_side soe = side_of_edge(p, c, lt, i); if(soe != ON_BOUNDARY) return soe; // Either we compare weights, or we use the finite neighboring edge Cell_handle finite_neighbor = c->neighbor(c->index(infinite_vertex())); CGAL_triangulation_assertion(!is_infinite(finite_neighbor,0,1)); return side_of_bounded_power_segment(finite_neighbor->vertex(0)->point(), finite_neighbor->vertex(1)->point(), p, perturb); } template < class Gt, class Tds, class Lds > bool Regular_triangulation_3:: greater_or_equal_power_distance(const Bare_point& p, const Weighted_point& q, const Weighted_point& r) const { return ! less_power_distance(p, q, r); } template < class Gt, class Tds, class Lds > bool Regular_triangulation_3:: is_Gabriel(const Facet& f) const { return is_Gabriel(f.first, f.second); } template < class Gt, class Tds, class Lds > bool Regular_triangulation_3:: is_Gabriel(Cell_handle c, int i) const { CGAL_triangulation_precondition(dimension() == 3 && !is_infinite(c,i)); typename Geom_traits::Power_side_of_bounded_power_sphere_3 side_of_bounded_orthogonal_sphere = geom_traits().power_side_of_bounded_power_sphere_3_object(); if((!is_infinite(c->vertex(i))) && side_of_bounded_orthogonal_sphere(c->vertex(vertex_triple_index(i,0))->point(), c->vertex(vertex_triple_index(i,1))->point(), c->vertex(vertex_triple_index(i,2))->point(), c->vertex(i)->point()) == ON_BOUNDED_SIDE) return false; Cell_handle neighbor = c->neighbor(i); int in = neighbor->index(c); if((!is_infinite(neighbor->vertex(in))) && side_of_bounded_orthogonal_sphere(c->vertex(vertex_triple_index(i,0))->point(), c->vertex(vertex_triple_index(i,1))->point(), c->vertex(vertex_triple_index(i,2))->point(), neighbor->vertex(in)->point()) == ON_BOUNDED_SIDE) return false; return true; } template < class Gt, class Tds, class Lds > bool Regular_triangulation_3:: is_Gabriel(const Edge& e) const { return is_Gabriel(e.first, e.second, e.third); } template < class Gt, class Tds, class Lds > bool Regular_triangulation_3:: is_Gabriel(Cell_handle c, int i, int j) const { CGAL_triangulation_precondition(dimension() == 3 && !is_infinite(c,i,j)); typename Geom_traits::Power_side_of_bounded_power_sphere_3 side_of_bounded_orthogonal_sphere = geom_traits().power_side_of_bounded_power_sphere_3_object(); Facet_circulator fcirc = incident_facets(c,i,j), fdone(fcirc); Vertex_handle v1 = c->vertex(i); Vertex_handle v2 = c->vertex(j); do { // test whether the vertex of cc opposite to *fcirc // is inside the sphere defined by the edge e = (s, i,j) Cell_handle cc = (*fcirc).first; int ii = (*fcirc).second; if(!is_infinite(cc->vertex(ii)) && side_of_bounded_orthogonal_sphere(v1->point(), v2->point(), cc->vertex(ii)->point()) == ON_BOUNDED_SIDE) return false; } while(++fcirc != fdone); return true; } template < class Gt, class Tds, class Lds > bool Regular_triangulation_3:: is_Gabriel(Vertex_handle v) const { typename Geom_traits::Power_side_of_bounded_power_sphere_3 side_of_bounded_orthogonal_sphere = geom_traits().power_side_of_bounded_power_sphere_3_object(); Vertex_handle nearest_v = nearest_power_vertex(geom_traits().construct_point_3_object()(v->point()), v->cell()); return (side_of_bounded_orthogonal_sphere(v->point(), nearest_v->point()) != CGAL::ON_BOUNDED_SIDE); } // Returns template < class Gt, class Tds, class Lds > typename Regular_triangulation_3::Vertex_handle Regular_triangulation_3:: insert(const Weighted_point& p, Cell_handle start, bool *could_lock_zone) { Locate_type lt; int li, lj; // Parallel if(could_lock_zone) { Cell_handle c = locate(p, lt, li, lj, start, could_lock_zone); if(*could_lock_zone) return insert(p, lt, c, li, lj, could_lock_zone); else return Vertex_handle(); } // Sequential else { Cell_handle c = locate(p, lt, li, lj, start); return insert(p, lt, c, li, lj); } } template < class Gt, class Tds, class Lds > typename Regular_triangulation_3::Vertex_handle Regular_triangulation_3:: insert(const Weighted_point& p, Locate_type lt, Cell_handle c, int li, int lj, bool *could_lock_zone) { switch(dimension()) { case 3: { Conflict_tester_3 tester(p, this); return insert_in_conflict(p, lt,c,li,lj, tester, get_hidden_point_visitor(), could_lock_zone); } case 2: { Conflict_tester_2 tester(p, this); return insert_in_conflict(p, lt,c,li,lj, tester, get_hidden_point_visitor(), could_lock_zone); } case 1: { Conflict_tester_1 tester(p, this); return insert_in_conflict(p, lt,c,li,lj, tester, get_hidden_point_visitor(), could_lock_zone); } } Conflict_tester_0 tester(p, this); return insert_in_conflict(p, lt,c,li,lj, tester, get_hidden_point_visitor(), could_lock_zone); } template < class Gt, class Tds, class Lds > template typename Regular_triangulation_3::Vertex_handle Regular_triangulation_3:: insert_in_hole(const Weighted_point& p, CellIt cell_begin, CellIt cell_end, Cell_handle begin, int i) { CGAL_triangulation_precondition(cell_begin != cell_end); get_hidden_point_visitor().process_cells_in_conflict(cell_begin,cell_end); Vertex_handle v = Tr_Base::insert_in_hole(p, cell_begin, cell_end, begin, i); // Store the hidden points in their new cells and hide vertices that // have to be hidden get_hidden_point_visitor().reinsert_vertices(v); return v; } template < class Gt, class Tds, class Lds > template typename Regular_triangulation_3::Vertex_handle Regular_triangulation_3:: insert_in_hole(const Weighted_point& p, CellIt cell_begin, CellIt cell_end, Cell_handle begin, int i, Vertex_handle newv) { CGAL_triangulation_precondition(cell_begin != cell_end); get_hidden_point_visitor().process_cells_in_conflict(cell_begin,cell_end); Vertex_handle v = Tr_Base::insert_in_hole(p, cell_begin, cell_end, begin, i, newv); // Store the hidden points in their new cells and hide vertices that // have to be hidden get_hidden_point_visitor().reinsert_vertices(v); return v; } template template class Regular_triangulation_3::Vertex_remover { typedef RegularTriangulation_3 Regular; typedef typename Regular::Weighted_point Weighted_point; public: typedef typename std::vector::iterator Hidden_points_iterator; Vertex_remover(Regular &tmp_) : tmp(tmp_) {} Regular& tmp; void add_hidden_points(Cell_handle ch) { std::copy(ch->hidden_points_begin(), ch->hidden_points_end(), std::back_inserter(hidden)); } Hidden_points_iterator hidden_points_begin() { return hidden.begin(); } Hidden_points_iterator hidden_points_end() { return hidden.end(); } Bounded_side side_of_bounded_circle(const Weighted_point& p, const Weighted_point& q, const Weighted_point& r, const Weighted_point& s, bool perturb = false) const { return tmp.side_of_bounded_power_circle(p,q,r,s,perturb); } private: // The removal of v may un-hide some points, // Space functions output them. std::vector hidden; }; // The displacement method works only // on regular triangulation without hidden points at any time // the vertex inserter is used only // for the purpose of displacements template template class Regular_triangulation_3::Vertex_inserter { typedef RegularTriangulation_3 Regular; public: typedef Nullptr_t Hidden_points_iterator; Vertex_inserter(Regular &tmp_) : tmp(tmp_) {} Regular& tmp; void add_hidden_points(Cell_handle) {} Hidden_points_iterator hidden_points_begin() { return NULL; } Hidden_points_iterator hidden_points_end() { return NULL; } Vertex_handle insert(const Weighted_point& p, Locate_type lt, Cell_handle c, int li, int lj) { return tmp.insert(p, lt, c, li, lj); } Vertex_handle insert(const Weighted_point& p, Cell_handle c) { return tmp.insert(p, c); } Vertex_handle insert(const Weighted_point& p) { return tmp.insert(p); } }; template < class Gt, class Tds, class Lds > void Regular_triangulation_3:: remove(Vertex_handle v) { Cell_handle c; if(dimension() > 0) c = v->cell()->neighbor(v->cell()->index(v)); Self tmp; Vertex_remover remover(tmp); Tr_Base::remove(v,remover); // Re-insert the points that v was hiding. for(typename Vertex_remover::Hidden_points_iterator hi = remover.hidden_points_begin(); hi != remover.hidden_points_end(); ++hi) { Vertex_handle hv = insert(*hi, c); if(hv != Vertex_handle()) c = hv->cell(); } CGAL_triangulation_expensive_postcondition(is_valid()); } template < class Gt, class Tds, class Lds > bool Regular_triangulation_3:: remove(Vertex_handle v, bool *could_lock_zone) { bool removed = true; // Locking vertex v... if(!this->try_lock_vertex(v)) { *could_lock_zone = false; } else { Vertex_handle hint = (v->cell()->vertex(0) == v ? v->cell()->vertex(1) : v->cell()->vertex(0)); Self tmp; Vertex_remover remover(tmp); removed = Tr_Base::remove(v, remover, could_lock_zone); if(*could_lock_zone && removed) { // Re-insert the points that v was hiding. for(typename Vertex_remover::Hidden_points_iterator hi = remover.hidden_points_begin(); hi != remover.hidden_points_end(); ++hi) { bool could_lock_zone = false; Vertex_handle hv; while(!could_lock_zone) { hv = insert(*hi, hint, &could_lock_zone); } if(hv != Vertex_handle()) hint = hv; } CGAL_triangulation_expensive_postcondition(is_valid()); } } return removed; } // Displacement works only for regular triangulation // without hidden points at any time template < class Gt, class Tds, class Lds > typename Regular_triangulation_3::Vertex_handle Regular_triangulation_3:: move_if_no_collision(Vertex_handle v, const Weighted_point& p) { Self tmp; Vertex_remover remover(tmp); Vertex_inserter inserter(*this); Vertex_handle res = Tr_Base::move_if_no_collision(v,p,remover,inserter); CGAL_triangulation_expensive_postcondition(is_valid()); return res; } template typename Regular_triangulation_3::Vertex_handle Regular_triangulation_3:: move(Vertex_handle v, const Weighted_point& p) { CGAL_triangulation_precondition(!is_infinite(v)); if(v->point() == p) return v; Self tmp; Vertex_remover remover(tmp); Vertex_inserter inserter(*this); return Tr_Base::move(v,p,remover,inserter); } template < class Gt, class Tds, class Lds > bool Regular_triangulation_3:: is_valid(bool verbose, int level) const { if(! Tr_Base::is_valid(verbose,level)) { if(verbose) std::cerr << "invalid base triangulation" << std::endl; CGAL_triangulation_assertion(false); return false; } switch(dimension()) { case 3: { for(Finite_cells_iterator it = finite_cells_begin(), end = finite_cells_end(); it != end; ++it) { is_valid_finite(it, verbose, level); for(int i=0; i<4; i++) { if(!is_infinite(it->neighbor(i)->vertex(it->neighbor(i)->index(it)))) { if(side_of_power_sphere(it, it->neighbor(i)->vertex( it->neighbor(i)->index(it))->point()) == ON_BOUNDED_SIDE) { if(verbose) std::cerr << "non-empty sphere " << std::endl; CGAL_triangulation_assertion(false); return false; } } } } break; } case 2: { for(Finite_facets_iterator it = finite_facets_begin(), end = finite_facets_end(); it!= end; ++it) { is_valid_finite((*it).first, verbose, level); for(int i=0; i<3; i++) { if(!is_infinite((*it).first->neighbor(i)->vertex( (((*it).first)->neighbor(i))->index((*it).first)))) { if(side_of_power_circle((*it).first, 3, (*it).first->neighbor(i)-> vertex((((*it).first)->neighbor(i)) ->index((*it).first))->point()) == ON_BOUNDED_SIDE) { if(verbose) std::cerr << "non-empty circle " << std::endl; CGAL_triangulation_assertion(false); return false; } } } } break; } case 1: { for(Finite_edges_iterator it = finite_edges_begin(), end = finite_edges_end(); it != end; ++it) { is_valid_finite((*it).first, verbose, level); for(int i=0; i<2; i++) { if(!is_infinite ((*it).first->neighbor(i)->vertex( (((*it).first)->neighbor(i))->index((*it).first)))) { if(side_of_power_segment((*it).first, (*it).first->neighbor(i)->vertex( (((*it).first)->neighbor(i))->index( (*it).first))->point()) == ON_BOUNDED_SIDE) { if(verbose) std::cerr << "non-empty edge " << std::endl; CGAL_triangulation_assertion(false); return false; } } } } break; } } if(verbose) std::cerr << "valid regular triangulation" << std::endl; return true; } } //namespace CGAL #include #endif // CGAL_REGULAR_TRIANGULATION_3_H