// Copyright (c) 1997-2010 INRIA Sophia-Antipolis (France). // All rights reserved. // // This file is part of CGAL (www.cgal.org). // You can redistribute it and/or modify it under the terms of the GNU // General Public License as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: GPL-3.0+ // // Author(s) : Olivier Devillers, Mariette Yvinec #ifndef CGAL_TRIANGULATION_2_H #define CGAL_TRIANGULATION_2_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef CGAL_NO_STRUCTURAL_FILTERING #include #include #include #endif // no CGAL_NO_STRUCTURAL_FILTERING namespace CGAL { template < class Gt, class Tds > class Triangulation_2; template < class Gt, class Tds > std::istream& operator>> (std::istream& is, Triangulation_2 &tr); template < class Gt, class Tds > std::ostream& operator<< (std::ostream& os, const Triangulation_2 &tr); #ifndef CGAL_NO_STRUCTURAL_FILTERING namespace internal { // structural filtering is performed only for EPIC struct Structural_filtering_2_tag {}; struct No_structural_filtering_2_tag {}; template struct Structural_filtering_selector_2 { typedef No_structural_filtering_2_tag Tag; }; template <> struct Structural_filtering_selector_2 { typedef Structural_filtering_2_tag Tag; }; } #endif // no CGAL_NO_STRUCTURAL_FILTERING template < class Gt, class Tds = Triangulation_data_structure_2 < Triangulation_vertex_base_2, Triangulation_face_base_2 > > class Triangulation_2 : public Triangulation_cw_ccw_2 { friend std::istream& operator>> <> (std::istream& is, Triangulation_2 &tr); typedef Triangulation_2 Self; public: typedef Tds Triangulation_data_structure; typedef Gt Geom_traits; // point types typedef typename Gt::Point_2 Point_2; typedef typename Tds::Vertex::Point Point; typedef typename Geom_traits::Segment_2 Segment; typedef typename Geom_traits::Triangle_2 Triangle; typedef typename Geom_traits::Orientation_2 Orientation_2; typedef typename Geom_traits::Compare_x_2 Compare_x; typedef typename Geom_traits::Compare_y_2 Compare_y; typedef typename Tds::size_type size_type; typedef typename Tds::difference_type difference_type; typedef typename Tds::Vertex Vertex; typedef typename Tds::Face Face; typedef typename Tds::Edge Edge; typedef typename Tds::Vertex_handle Vertex_handle; typedef typename Tds::Face_handle Face_handle; typedef typename Tds::Face_circulator Face_circulator; typedef typename Tds::Vertex_circulator Vertex_circulator; typedef typename Tds::Edge_circulator Edge_circulator; typedef typename Tds::Face_iterator All_faces_iterator; typedef typename Tds::Edge_iterator All_edges_iterator; typedef typename Tds::Halfedge_iterator All_halfedges_iterator; typedef typename Tds::Vertex_iterator All_vertices_iterator; class Perturbation_order { const Self *t; public: Perturbation_order(const Self *tr) : t(tr) {} bool operator()(const Point *p, const Point *q) const { return t->compare_xy(*p, *q) == SMALLER; } }; friend class Perturbation_order; // This class is used to generate the Finite_*_iterators. class Infinite_tester { const Triangulation_2 *t; public: Infinite_tester() {} Infinite_tester(const Triangulation_2 *tr) : t(tr) {} bool operator()(const All_vertices_iterator & vit) const { return t->is_infinite(vit); } bool operator()(const All_faces_iterator & fit ) const { return t->is_infinite(fit); } bool operator()(const All_edges_iterator & eit) const { return t->is_infinite(eit); } }; //We derive in order to add a conversion to handle. class Finite_vertices_iterator : public Filter_iterator { typedef Filter_iterator Base; typedef Finite_vertices_iterator Self; public: Finite_vertices_iterator() : Base() {} Finite_vertices_iterator(const Base &b) : Base(b) {} Self & operator++() { Base::operator++(); return *this; } Self & operator--() { Base::operator--(); return *this; } Self operator++(int) { Self tmp(*this); ++(*this); return tmp; } Self operator--(int) { Self tmp(*this); --(*this); return tmp; } operator Vertex_handle() const { return Base::base(); } }; class Finite_faces_iterator : public Filter_iterator { typedef Filter_iterator Base; typedef Finite_faces_iterator Self; public: Finite_faces_iterator() : Base() {} Finite_faces_iterator(const Base &b) : Base(b) {} Self & operator++() { Base::operator++(); return *this; } Self & operator--() { Base::operator--(); return *this; } Self operator++(int) { Self tmp(*this); ++(*this); return tmp; } Self operator--(int) { Self tmp(*this); --(*this); return tmp; } operator Face_handle() const { return Base::base(); } }; typedef Filter_iterator Finite_edges_iterator; //for backward compatibility typedef Finite_faces_iterator Face_iterator; typedef Finite_edges_iterator Edge_iterator; typedef Finite_vertices_iterator Vertex_iterator; typedef Triangulation_line_face_circulator_2 Line_face_circulator; // Auxiliary iterators for convenience // do not use default template argument to please VC++ typedef Project_point Proj_point; typedef boost::transform_iterator Point_iterator; typedef Point value_type; // to have a back_inserter typedef const value_type& const_reference; typedef value_type& reference; enum Locate_type {VERTEX=0, EDGE, //1 FACE, //2 OUTSIDE_CONVEX_HULL, //3 OUTSIDE_AFFINE_HULL}; //4 //Tag to distinguish regular triangulations from others typedef Tag_false Weighted_tag; // Tag to distinguish periodic triangulations from others typedef Tag_false Periodic_tag; protected: Gt _gt; Tds _tds; Vertex_handle _infinite_vertex; public: // CONSTRUCTORS Triangulation_2(const Geom_traits& geom_traits=Geom_traits()); Triangulation_2(const Triangulation_2 &tr); //Assignement Triangulation_2 &operator=(const Triangulation_2 &tr); //Helping void copy_triangulation(const Triangulation_2 &tr); void swap(Triangulation_2 &tr); void clear(); //ACCESS FUNCTION const Geom_traits& geom_traits() const { return _gt;} const Tds & tds() const { return _tds;} Tds & tds() { return _tds;} int dimension() const { return _tds.dimension();} size_type number_of_vertices() const {return _tds.number_of_vertices() - 1;} size_type number_of_faces() const; Vertex_handle infinite_vertex() const; Vertex_handle finite_vertex() const; Face_handle infinite_face() const; Infinite_tester infinite_tester() const; //SETTING void set_infinite_vertex(const Vertex_handle& v) {_infinite_vertex=v;} // CHECKING bool is_valid(bool verbose = false, int level = 0) const; // TEST INFINITE FEATURES AND OTHER FEATURES bool is_infinite(Face_handle f) const; bool is_infinite(Vertex_handle v) const; bool is_infinite(Face_handle f, int i) const; bool is_infinite(const Edge& e) const; bool is_infinite(const Edge_circulator& ec) const; bool is_infinite(const All_edges_iterator& ei) const; bool is_edge(Vertex_handle va, Vertex_handle vb) const; bool is_edge(Vertex_handle va, Vertex_handle vb, Face_handle& fr, int & i) const; bool includes_edge(Vertex_handle va, Vertex_handle vb, Vertex_handle& vbb, Face_handle& fr, int & i) const; bool is_face(Vertex_handle v1, Vertex_handle v2, Vertex_handle v3) const; bool is_face(Vertex_handle v1, Vertex_handle v2, Vertex_handle v3, Face_handle &fr) const; // GEOMETRIC FEATURES AND CONSTRUCTION Point_2 construct_point(const Point& p) const; const Point& point(Face_handle c, int i) const; const Point& point(Vertex_handle v) const; Segment segment(Face_handle f, int i) const; Segment segment(const Edge& e) const; Segment segment(const Edge_circulator& ec) const; Segment segment(const All_edges_iterator& ei) const; Segment segment(const Finite_edges_iterator& ei) const; Triangle triangle(Face_handle f) const; Point_2 circumcenter(Face_handle f) const; Point_2 circumcenter(const Point& p0, const Point& p1, const Point& p2) const; //MOVE - INSERTION - DELETION - Flip public: void flip(Face_handle f, int i); Vertex_handle insert_first(const Point& p); Vertex_handle insert_second(const Point& p); Vertex_handle insert_in_edge(const Point& p, Face_handle f,int i); Vertex_handle insert_in_face(const Point& p, Face_handle f); Vertex_handle insert_outside_convex_hull(const Point& p, Face_handle f); Vertex_handle insert_outside_affine_hull(const Point& p); Vertex_handle insert(const Point &p, Face_handle start = Face_handle() ); Vertex_handle insert(const Point& p, Locate_type lt, Face_handle loc, int li ); // template < class InputIterator > // std::ptrdiff_t insert(InputIterator first, InputIterator last); Vertex_handle push_back(const Point& a); void remove_degree_3(Vertex_handle v, Face_handle f = Face_handle()); void remove_first(Vertex_handle v); void remove_second(Vertex_handle v); void remove(Vertex_handle v); // MOVE Vertex_handle move_if_no_collision(Vertex_handle v, const Point &p); Vertex_handle move(Vertex_handle v, const Point &p); protected: // some internal methods // INSERT, REMOVE, MOVE GIVING NEW FACES template Vertex_handle insert_and_give_new_faces(const Point &p, OutputItFaces fit, Face_handle start = Face_handle() ); template Vertex_handle insert_and_give_new_faces(const Point& p, Locate_type lt, Face_handle loc, int li, OutputItFaces fit); template void remove_and_give_new_faces(Vertex_handle v, OutputItFaces fit); template Vertex_handle move_if_no_collision_and_give_new_faces(Vertex_handle v, const Point &p, OutputItFaces fit); public: // POINT LOCATION Face_handle march_locate_1D(const Point& t, Locate_type& lt, int& li) const ; Face_handle march_locate_2D(Face_handle start, const Point& t, Locate_type& lt, int& li) const; Face_handle march_locate_2D_LFC(Face_handle start, const Point& t, Locate_type& lt, int& li) const; void compare_walks(const Point& p, Face_handle c1, Face_handle c2, Locate_type& lt1, Locate_type& lt2, int li1, int li2) const; #ifdef CGAL_NO_STRUCTURAL_FILTERING Face_handle locate(const Point& p, Locate_type& lt, int& li, Face_handle start = Face_handle()) const; Face_handle locate(const Point &p, Face_handle start = Face_handle()) const; #else // no CGAL_NO_STRUCTURAL_FILTERING # ifndef CGAL_T2_STRUCTURAL_FILTERING_MAX_VISITED_CELLS # define CGAL_T2_STRUCTURAL_FILTERING_MAX_VISITED_CELLS 2500 # endif // no CGAL_T2_STRUCTURAL_FILTERING_MAX_VISITED_CELLS protected: Face_handle exact_locate(const Point& p, Locate_type& lt, int& li, Face_handle start) const; Face_handle generic_locate(const Point& p, Locate_type& lt, int& li, Face_handle start, internal::Structural_filtering_2_tag) const { return exact_locate(p, lt, li, inexact_locate(p, start)); } Face_handle generic_locate(const Point& p, Locate_type& lt, int& li, Face_handle start, internal::No_structural_filtering_2_tag) const { return exact_locate(p, lt, li, start); } bool has_inexact_negative_orientation(const Point &p, const Point &q, const Point &r) const; public: Face_handle inexact_locate(const Point& p, Face_handle start = Face_handle(), int max_num_cells = CGAL_T2_STRUCTURAL_FILTERING_MAX_VISITED_CELLS) const; Face_handle locate(const Point & p, Locate_type & lt, int & li, Face_handle start = Face_handle()) const { typedef Triangulation_structural_filtering_traits TSFT; typedef typename internal::Structural_filtering_selector_2< TSFT::Use_structural_filtering_tag::value >::Tag Should_filter_tag; return generic_locate(p, lt, li, start, Should_filter_tag()); } Face_handle locate(const Point & p, Face_handle start = Face_handle()) const { Locate_type lt; int li; return locate(p, lt, li, start); } #endif // no CGAL_NO_STRUCTURAL_FILTERING //TRAVERSING : ITERATORS AND CIRCULATORS Finite_faces_iterator finite_faces_begin() const; Finite_faces_iterator finite_faces_end() const; Finite_vertices_iterator finite_vertices_begin() const; Finite_vertices_iterator finite_vertices_end() const; Finite_edges_iterator finite_edges_begin() const; Finite_edges_iterator finite_edges_end() const; Point_iterator points_begin() const; Point_iterator points_end() const; All_faces_iterator all_faces_begin() const; All_faces_iterator all_faces_end() const; All_vertices_iterator all_vertices_begin() const; All_vertices_iterator all_vertices_end() const; All_edges_iterator all_edges_begin() const; All_edges_iterator all_edges_end() const; All_halfedges_iterator all_halfedges_begin() const; All_halfedges_iterator all_halfedges_end() const; //for compatibility with previous versions Face_iterator faces_begin() const {return finite_faces_begin();} Face_iterator faces_end() const {return finite_faces_end();} Edge_iterator edges_begin() const {return finite_edges_begin();} Edge_iterator edges_end() const {return finite_edges_end();} Vertex_iterator vertices_begin() const {return finite_vertices_begin();} Vertex_iterator vertices_end() const {return finite_vertices_end();} Face_circulator incident_faces( Vertex_handle v, Face_handle f = Face_handle()) const; Vertex_circulator incident_vertices(Vertex_handle v, Face_handle f = Face_handle()) const; Edge_circulator incident_edges(Vertex_handle v, Face_handle f = Face_handle()) const; size_type degree(Vertex_handle v) const; Vertex_handle mirror_vertex(Face_handle f, int i) const; int mirror_index(Face_handle v, int i) const; Edge mirror_edge(Edge e) const; Line_face_circulator line_walk(const Point& p, const Point& q, Face_handle f = Face_handle()) const; // TO DEBUG void show_all() const; void show_vertex(Vertex_handle vh) const; void show_face( Face_handle fh) const; // IO // template < class Stream > // Stream& draw_triangulation(Stream& os) const; //PREDICATES Oriented_side oriented_side(const Point &p0, const Point &p1, const Point &p2, const Point &p) const; Bounded_side bounded_side(const Point &p0, const Point &p1, const Point &p2, const Point &p) const; Oriented_side oriented_side(Face_handle f, const Point &p) const; Oriented_side side_of_oriented_circle(const Point &p0, const Point &p1, const Point &p2, const Point &p, bool perturb) const; Oriented_side side_of_oriented_circle(Face_handle f, const Point & p, bool perturb = false) const; bool collinear_between(const Point& p, const Point& q, const Point& r) const; Comparison_result compare_x(const Point& p, const Point& q) const; Comparison_result compare_xy(const Point& p, const Point& q) const; Comparison_result compare_y(const Point& p, const Point& q) const; bool xy_equal(const Point& p, const Point& q) const; Orientation orientation(const Point& p, const Point& q, const Point& r) const; protected: void remove_1D(Vertex_handle v); void remove_2D(Vertex_handle v); bool test_dim_down(Vertex_handle v) const; void fill_hole(Vertex_handle v, std::list & hole); void fill_hole_delaunay(std::list & hole); // output faces template void fill_hole(Vertex_handle v, std::list & hole, OutputItFaces fit); template void fill_hole_delaunay(std::list & hole, OutputItFaces fit); void make_hole(Vertex_handle v, std::list & hole, std::set &faces_set); public: void make_hole(Vertex_handle v, std::list & hole); // template // Vertex_handle star_hole( Point p, // EdgeIt edge_begin, // EdgeIt edge_end); // template // Vertex_handle star_hole( Point p, // EdgeIt edge_begin, // EdgeIt edge_end, // FaceIt face_begin, // FaceIt face_end); Face_handle create_face(Face_handle f1d, int i1, Face_handle f2, int i2, Face_handle f3, int i3); Face_handle create_face(Face_handle f1, int i1, Face_handle f2, int i2); Face_handle create_face(Face_handle f, int i, Vertex_handle v); Face_handle create_face(Vertex_handle v1, Vertex_handle v2,Vertex_handle v3); Face_handle create_face(Vertex_handle v1, Vertex_handle v2,Vertex_handle v3, Face_handle f1, Face_handle f2, Face_handle f3); Face_handle create_face(); Face_handle create_face(Face_handle); //calls copy constructor of Face void delete_face(Face_handle f); void delete_vertex(Vertex_handle v); Vertex_handle collapse_edge(Edge e) { return _tds.collapse_edge(e); } Vertex_handle file_input(std::istream& is); void file_output(std::ostream& os) const; private: Vertex_handle insert_outside_convex_hull_1(const Point& p, Face_handle f); Vertex_handle insert_outside_convex_hull_2(const Point& p, Face_handle f); // template members public: template < class Stream > Stream& draw_triangulation(Stream& os) const { Finite_edges_iterator it = finite_edges_begin(); for( ;it != finite_edges_end() ; ++it) { os << segment(it); } return os; } template < class InputIterator > std::ptrdiff_t insert(InputIterator first, InputIterator last) { size_type n = number_of_vertices(); std::vector points (first, last); typedef typename Geom_traits::Construct_point_2 Construct_point_2; typedef typename boost::result_of::type Ret; typedef CGAL::internal::boost_::function_property_map fpmap; typedef CGAL::Spatial_sort_traits_adapter_2 Search_traits_2; spatial_sort(points.begin(), points.end(), Search_traits_2( CGAL::internal::boost_::make_function_property_map( geom_traits().construct_point_2_object()), geom_traits())); Face_handle f; for (typename std::vector::const_iterator p = points.begin(), end = points.end(); p != end; ++p) f = insert (*p, f)->face(); return number_of_vertices() - n; } bool well_oriented(Vertex_handle v) const { Face_circulator fc = incident_faces(v), done(fc); do { if(!is_infinite(fc)) { Vertex_handle v0 = fc->vertex(0); Vertex_handle v1 = fc->vertex(1); Vertex_handle v2 = fc->vertex(2); if(orientation(v0->point(),v1->point(),v2->point()) != COUNTERCLOCKWISE) return false; } } while(++fc != done); return true; } bool from_convex_hull(Vertex_handle v) { CGAL_triangulation_precondition(!is_infinite(v)); Vertex_circulator vc = incident_vertices(v), done(vc); do { if(is_infinite(vc)) return true; } while(++vc != done); return false; } public: template Vertex_handle star_hole( const Point& p, EdgeIt edge_begin, EdgeIt edge_end) { std::list empty_list; return star_hole(p, edge_begin, edge_end, empty_list.begin(), empty_list.end()); } template Vertex_handle star_hole( const Point& p, EdgeIt edge_begin, EdgeIt edge_end, FaceIt face_begin, FaceIt face_end) { Vertex_handle v = _tds.star_hole( edge_begin, edge_end, face_begin, face_end); v->set_point(p); return v; } }; // CONSTRUCTORS template Triangulation_2:: Triangulation_2(const Geom_traits& geom_traits) : _gt(geom_traits), _tds() { _infinite_vertex = _tds.insert_first(); } // copy constructor duplicates vertices and faces template Triangulation_2:: Triangulation_2(const Triangulation_2 &tr) : _gt(tr._gt) { _infinite_vertex = _tds.copy_tds(tr._tds, tr.infinite_vertex()); } //Assignement template Triangulation_2 & Triangulation_2:: operator=(const Triangulation_2 &tr) { copy_triangulation(tr); return *this; } // Helping functions template void Triangulation_2:: copy_triangulation(const Triangulation_2 &tr) { _tds.clear(); _gt = tr._gt; _infinite_vertex = _tds.copy_tds(tr._tds, tr._infinite_vertex); } template void Triangulation_2:: swap(Triangulation_2 &tr) { Vertex_handle v= _infinite_vertex; _infinite_vertex = tr._infinite_vertex; tr._infinite_vertex = v; _tds.swap(tr._tds); Geom_traits t = geom_traits(); _gt = tr.geom_traits(); tr._gt = t; } template void Triangulation_2:: clear() { _tds.clear(); //detruit tous les sommets et toutes les faces _infinite_vertex = _tds.insert_first(); } template typename Triangulation_2::size_type Triangulation_2:: number_of_faces() const { size_type count = _tds.number_of_faces(); Face_circulator fc = incident_faces(infinite_vertex()), done(fc); if ( ! fc.is_empty() ) { do { --count; ++fc; } while (fc != done); } return count; } template inline typename Triangulation_2::Vertex_handle Triangulation_2:: infinite_vertex() const { return _infinite_vertex; } template inline typename Triangulation_2::Vertex_handle Triangulation_2:: finite_vertex() const { CGAL_triangulation_precondition (number_of_vertices() >= 1); return (finite_vertices_begin()); } template inline typename Triangulation_2::Face_handle Triangulation_2:: infinite_face() const { return infinite_vertex()->face(); } template inline typename Triangulation_2::Infinite_tester Triangulation_2:: infinite_tester() const { return Infinite_tester(this); } template bool Triangulation_2:: is_valid(bool verbose, int level) const { bool result = _tds.is_valid(verbose, level); if (dimension() <= 0 || (dimension()==1 && number_of_vertices() == 2 ) ) return result; if (dimension() == 1) { Finite_vertices_iterator it1 = finite_vertices_begin(), it2(it1), it3(it1); ++it2; ++it3; ++it3; while( it3 != finite_vertices_end()) { Orientation s = orientation(it1->point(), it2->point(), it3->point()); result = result && s == COLLINEAR ; CGAL_triangulation_assertion(result); ++it1 ; ++it2; ++it3; } } else { //dimension() == 2 for(Finite_faces_iterator it=finite_faces_begin(); it!=finite_faces_end(); it++) { CGAL_triangulation_assertion( ! is_infinite(it)); Orientation s = orientation(it->vertex(0)->point(), it->vertex(1)->point(), it->vertex(2)->point()); CGAL_triangulation_assertion( s == LEFT_TURN ); result = result && ( s == LEFT_TURN ); } Vertex_circulator start = incident_vertices(infinite_vertex()); Vertex_circulator pc(start); Vertex_circulator qc(start); ++qc; Vertex_circulator rc(start); ++rc; ++rc; do { Orientation s = orientation(pc->point(), qc->point(), rc->point()); CGAL_triangulation_assertion( s != LEFT_TURN ); result = result && ( s != LEFT_TURN ); ++pc ; ++qc ; ++rc; } while(pc != start); // check number of faces. This cannot be done by the Tds // which does not know the number of components nor the genus result = result && (number_of_faces() == 2*(number_of_vertices()+1) - 4 - degree(infinite_vertex())); CGAL_triangulation_assertion( result); } return result; } template inline bool Triangulation_2:: is_infinite(Face_handle f) const { return f->has_vertex(infinite_vertex()); } template inline bool Triangulation_2:: is_infinite(Vertex_handle v) const { return v == infinite_vertex(); } template inline bool Triangulation_2:: is_infinite(Face_handle f, int i) const { return is_infinite(f->vertex(ccw(i))) || is_infinite(f->vertex(cw(i))); } template inline bool Triangulation_2:: is_infinite(const Edge& e) const { return is_infinite(e.first,e.second); } template inline bool Triangulation_2:: is_infinite(const Edge_circulator& ec) const { return is_infinite(*ec); } template inline bool Triangulation_2:: is_infinite(const All_edges_iterator& ei) const { return is_infinite(*ei); } template inline bool Triangulation_2:: is_edge(Vertex_handle va, Vertex_handle vb) const { return _tds.is_edge( va, vb); } template inline bool Triangulation_2:: is_edge(Vertex_handle va, Vertex_handle vb, Face_handle& fr, int & i) const { return _tds.is_edge(va, vb, fr, i); } template bool Triangulation_2:: includes_edge(Vertex_handle va, Vertex_handle vb, Vertex_handle & vbb, Face_handle& fr, int & i) const // returns true if the line segment ab contains an edge e of t // incident to a, false otherwise // if true, vbb becomes the vertex of e distinct from a // fr is the face incident to e and e=(fr,i) // fr is on the right side of a->b { Vertex_handle v; Orientation orient; int indv; Edge_circulator ec = incident_edges(va), done(ec); if (ec != 0) { do { //find the index of the other vertex of *ec indv = 3 - ((*ec).first)->index(va) - (*ec).second ; v = ((*ec).first)->vertex(indv); if (!is_infinite(v)) { if (v==vb) { vbb = vb; fr=(*ec).first; i= (*ec).second; return true; } else { orient = orientation(va->point(), vb->point(), v->point()); if((orient==COLLINEAR) && (collinear_between (va->point(), v->point(), vb->point()))) { vbb = v; fr=(*ec).first; i= (*ec).second; return true; } } } } while (++ec != done); } return false; } template inline bool Triangulation_2:: is_face(Vertex_handle v1, Vertex_handle v2, Vertex_handle v3) const { return _tds.is_face(v1, v2, v3); } template inline bool Triangulation_2:: is_face(Vertex_handle v1, Vertex_handle v2, Vertex_handle v3, Face_handle &fr) const { return _tds.is_face(v1, v2, v3, fr); } template typename Triangulation_2::Point_2 Triangulation_2:: construct_point(const Point& p) const { return geom_traits().construct_point_2_object()(p); } template const typename Triangulation_2::Point& Triangulation_2:: point(Face_handle f, int i) const { CGAL_triangulation_precondition( dimension() >= 0 ); CGAL_triangulation_precondition( i >= 0 && i <= dimension() ); CGAL_triangulation_precondition( ! is_infinite(f->vertex(i)) ); return f->vertex(i)->point(); } template const typename Triangulation_2::Point& Triangulation_2:: point(Vertex_handle v) const { CGAL_triangulation_precondition( dimension() >= 0 ); CGAL_triangulation_precondition( ! is_infinite(v) ); return v->point(); } template typename Triangulation_2::Segment Triangulation_2:: segment(Face_handle f, int i) const { CGAL_triangulation_precondition( ! is_infinite(f,i)); typename Gt::Construct_segment_2 construct_segment = geom_traits().construct_segment_2_object(); return construct_segment(construct_point(f->vertex(ccw(i))->point()), construct_point(f->vertex(cw(i))->point())); } template typename Triangulation_2::Segment Triangulation_2:: segment(const Edge& e) const { CGAL_triangulation_precondition(! is_infinite(e)); typename Gt::Construct_segment_2 construct_segment = geom_traits().construct_segment_2_object(); return construct_segment(construct_point(e.first->vertex(ccw(e.second))->point()), construct_point(e.first->vertex( cw(e.second))->point())); } template typename Triangulation_2::Segment Triangulation_2:: segment(const Edge_circulator& ec) const { return segment(*ec); } template typename Triangulation_2::Segment Triangulation_2:: segment(const Finite_edges_iterator& ei) const { return segment(*ei); } template typename Triangulation_2::Segment Triangulation_2:: segment(const All_edges_iterator& ei) const { return segment(*ei); } template typename Triangulation_2::Triangle Triangulation_2:: triangle(Face_handle f) const { CGAL_triangulation_precondition( ! is_infinite(f) ); typename Gt::Construct_triangle_2 construct_triangle = geom_traits().construct_triangle_2_object(); return construct_triangle(construct_point(f->vertex(0)->point()), construct_point(f->vertex(1)->point()), construct_point(f->vertex(2)->point())); } template void Triangulation_2:: flip(Face_handle f, int i) { CGAL_triangulation_precondition ( f != Face_handle() ); CGAL_triangulation_precondition (i == 0 || i == 1 || i == 2); CGAL_triangulation_precondition( dimension()==2); CGAL_triangulation_precondition( !is_infinite(f) && !is_infinite(f->neighbor(i)) ); CGAL_triangulation_precondition( orientation(f->vertex(i)->point(), f->vertex(cw(i))->point(), mirror_vertex(f,i)->point()) == RIGHT_TURN && orientation(f->vertex(i)->point(), f->vertex(ccw(i))->point(), mirror_vertex(f,i)->point()) == LEFT_TURN); _tds.flip(f, i); return; } template typename Triangulation_2::Vertex_handle Triangulation_2:: insert_first(const Point& p) { CGAL_triangulation_precondition(number_of_vertices() == 0); Vertex_handle v = _tds.insert_second(); v->set_point(p); return v; } template typename Triangulation_2::Vertex_handle Triangulation_2:: insert_second(const Point& p) { CGAL_triangulation_precondition(number_of_vertices() == 1); Vertex_handle v = _tds.insert_dim_up(infinite_vertex(), true); v->set_point(p); return v; } template typename Triangulation_2::Vertex_handle Triangulation_2:: insert_in_edge(const Point& p, Face_handle f,int i) { CGAL_triangulation_exactness_precondition( orientation(f->vertex(cw(i))->point(), p, f->vertex(ccw(i))->point()) == COLLINEAR && collinear_between(f->vertex(cw(i))->point(), p, f->vertex(ccw(i))->point() ) ); Vertex_handle v = _tds.insert_in_edge(f,i); v->set_point(p); return v; } template typename Triangulation_2::Vertex_handle Triangulation_2:: insert_in_face(const Point& p, Face_handle f) { CGAL_triangulation_precondition(oriented_side(f,p) == ON_POSITIVE_SIDE); Vertex_handle v= _tds.insert_in_face(f); v->set_point(p); return v; } template typename Triangulation_2::Vertex_handle Triangulation_2:: insert_outside_convex_hull(const Point& p, Face_handle f) { CGAL_triangulation_precondition(is_infinite(f) && dimension() >= 1); Vertex_handle v; if (dimension() == 1) v=insert_outside_convex_hull_1(p, f); else v=insert_outside_convex_hull_2(p, f); v->set_point(p); return v; } template typename Triangulation_2::Vertex_handle Triangulation_2:: insert_outside_convex_hull_1(const Point& p, Face_handle f) { CGAL_triangulation_precondition( is_infinite(f) && dimension()==1); CGAL_triangulation_precondition( orientation(mirror_vertex(f, f->index(infinite_vertex()))->point(), f->vertex(1- f->index(infinite_vertex()))->point(), p) == COLLINEAR && collinear_between(mirror_vertex(f,f->index(infinite_vertex()))->point(), f->vertex(1- f->index(infinite_vertex()))->point(), p) ); Vertex_handle v=_tds.insert_in_edge(f, 2); v->set_point(p); return v; } template typename Triangulation_2::Vertex_handle Triangulation_2:: insert_outside_convex_hull_2(const Point& p, Face_handle f) { CGAL_triangulation_precondition(is_infinite(f)); int li = f->index(infinite_vertex()); CGAL_triangulation_precondition( orientation(p, f->vertex(ccw(li))->point(), f->vertex(cw(li))->point()) == LEFT_TURN); std::list ccwlist; std::list cwlist; Face_circulator fc = incident_faces(infinite_vertex(), f); bool done = false; while(! done) { fc--; li = fc->index(infinite_vertex()); const Point& q = fc->vertex(ccw(li))->point(); const Point& r = fc->vertex(cw(li))->point(); if(orientation(p,q,r) == LEFT_TURN ) { ccwlist.push_back(fc); } else {done=true;} } fc = incident_faces(infinite_vertex(), f); done = false; while(! done){ fc++; li = fc->index(infinite_vertex()); const Point& q = fc->vertex(ccw(li))->point(); const Point& r = fc->vertex(cw(li))->point(); if(orientation(p,q,r) == LEFT_TURN ) { cwlist.push_back(fc);} else {done=true;} } Vertex_handle v = _tds.insert_in_face(f); v->set_point(p); Face_handle fh; while ( ! ccwlist.empty()) { fh = ccwlist.front(); li = ccw(fh->index(infinite_vertex())); _tds.flip( fh, li); ccwlist.pop_front(); } while ( ! cwlist.empty()) { fh = cwlist.front(); li = cw(fh->index(infinite_vertex())); _tds.flip( fh, li); cwlist.pop_front(); } //reset infinite_vertex()->face(); fc = incident_faces(v); while( ! is_infinite(fc)) { fc++;} infinite_vertex()->set_face(fc); return v; } template typename Triangulation_2::Vertex_handle Triangulation_2:: insert_outside_affine_hull(const Point& p) { CGAL_triangulation_precondition(dimension() < 2); bool conform = false; if (dimension() == 1) { Face_handle f = (*finite_edges_begin()).first; Orientation orient = orientation( f->vertex(0)->point(), f->vertex(1)->point(), p); CGAL_triangulation_precondition(orient != COLLINEAR); conform = ( orient == COUNTERCLOCKWISE); } Vertex_handle v = _tds.insert_dim_up( infinite_vertex(), conform); v->set_point(p); return v; } template typename Triangulation_2::Vertex_handle Triangulation_2:: insert(const Point &p, Face_handle start) { Locate_type lt; int li; Face_handle loc = locate (p, lt, li, start); return insert(p, lt, loc, li); } template typename Triangulation_2::Vertex_handle Triangulation_2:: insert(const Point& p, Locate_type lt, Face_handle loc, int li) // insert a point p, whose localisation is known (lt, f, i) { if(number_of_vertices() == 0) { return(insert_first(p)); } if(number_of_vertices() == 1) { if (lt == VERTEX) return finite_vertex(); else return(insert_second(p)); } switch(lt) { case FACE: return insert_in_face(p,loc); case EDGE: return insert_in_edge(p,loc,li); case OUTSIDE_CONVEX_HULL: return insert_outside_convex_hull(p,loc); case OUTSIDE_AFFINE_HULL: return insert_outside_affine_hull(p); case VERTEX: return loc->vertex(li); } CGAL_triangulation_assertion(false); // locate step failed return Vertex_handle(); } template inline typename Triangulation_2::Vertex_handle Triangulation_2:: push_back(const Point &p) { return insert(p); } template inline void Triangulation_2:: remove_degree_3(Vertex_handle v, Face_handle f) { if (f == Face_handle()) f=v->face(); _tds.remove_degree_3(v, f); return; } template inline void Triangulation_2:: remove_first(Vertex_handle v) { _tds.remove_second(v); return; } template inline void Triangulation_2:: remove_second(Vertex_handle v) { _tds.remove_dim_down(v); return; } template void Triangulation_2:: remove(Vertex_handle v) { CGAL_triangulation_precondition( v != Vertex_handle()); CGAL_triangulation_precondition( !is_infinite(v)); if (number_of_vertices() == 1) remove_first(v); else if (number_of_vertices() == 2) remove_second(v); else if ( dimension() == 1) remove_1D(v); else remove_2D(v); return; } template inline void Triangulation_2:: remove_1D(Vertex_handle v) { _tds.remove_1D(v); } template bool Triangulation_2:: test_dim_down(Vertex_handle v) const { //test the dimensionality of the resulting triangulation //upon removing of vertex v //it goes down to 1 iff // 1) any finite face is incident to v // 2) all vertices are collinear CGAL_triangulation_precondition(dimension() == 2); bool dim1 = true; Finite_faces_iterator fit = finite_faces_begin(); while (dim1==true && fit != finite_faces_end()) { dim1 = dim1 && fit->has_vertex(v); fit++; } Face_circulator fic = incident_faces(v); while (is_infinite(fic)) {++fic;} Face_circulator done(fic); Face_handle start(fic); int iv = start->index(v); const Point& p = start->vertex(cw(iv))->point(); const Point& q = start->vertex(ccw(iv))->point(); while ( dim1 && ++fic != done) { iv = fic->index(v); if (fic->vertex(ccw(iv)) != infinite_vertex()) { dim1 = dim1 && orientation(p, q, fic->vertex(ccw(iv))->point()) == COLLINEAR; } } return dim1; } template void Triangulation_2:: remove_2D(Vertex_handle v) { if (test_dim_down(v)) { _tds.remove_dim_down(v); } else { std::list hole; make_hole(v, hole); fill_hole(v, hole); delete_vertex(v); } return; } template < class Gt, class Tds > template < class OutputItFaces > inline typename Triangulation_2::Vertex_handle Triangulation_2:: insert_and_give_new_faces(const Point &p, OutputItFaces oif, Face_handle start) { Vertex_handle v = insert(p, start); int dimension = this->dimension(); if(dimension == 2) { Face_circulator fc = incident_faces(v), done(fc); do { *oif++ = fc; } while(++fc != done); } else if(dimension == 1) { Face_handle c = v->face(); *oif++ = c; *oif++ = c->neighbor((~(c->index(v)))&1); } else *oif++ = v->face(); // dimension == 0 return v; } template < class Gt, class Tds > template < class OutputItFaces > inline typename Triangulation_2::Vertex_handle Triangulation_2:: insert_and_give_new_faces(const Point &p, Locate_type lt, Face_handle loc, int li, OutputItFaces oif) { Vertex_handle v = insert(p, lt, loc, li); int dimension = this->dimension(); if(dimension == 2) { Face_circulator fc = incident_faces(v), done(fc); do { *oif++ = fc; } while(++fc != done); } else if(dimension == 1) { Face_handle c = v->face(); *oif++ = c; *oif++ = c->neighbor((~(c->index(v)))&1); } else *oif++ = v->face(); // dimension == 0 return v; } template < class Gt, class Tds > template void Triangulation_2:: remove_and_give_new_faces(Vertex_handle v, OutputItFaces fit) { CGAL_triangulation_precondition( v != Vertex_handle()); CGAL_triangulation_precondition( !is_infinite(v)); if(number_of_vertices() == 1) remove_first(v); else if(number_of_vertices() == 2) remove_second(v); else if( dimension() == 1) { Point p = v->point(); remove(v); *fit++ = locate(p); } else if (test_dim_down(v)) { _tds.remove_dim_down(v); for(All_faces_iterator afi = tds().face_iterator_base_begin(); afi != tds().face_iterator_base_begin(); afi++) *fit++ = afi; } else { std::list hole; make_hole(v, hole); fill_hole(v, hole, fit); delete_vertex(v); } return; } template void Triangulation_2:: make_hole ( Vertex_handle v, std::list & hole) { std::vector to_delete; to_delete.reserve(16); Face_handle f, fn; int i, in ; Vertex_handle vv; Face_circulator fc = incident_faces(v); Face_circulator done(fc); do { f = fc; fc++; i = f->index(v); fn = f->neighbor(i); in = fn->index(f); vv = f->vertex(cw(i)); vv->set_face(fn); vv = f->vertex(ccw(i)); vv->set_face(fn); fn->set_neighbor(in, Face_handle()); hole.push_back(Edge(fn,in)); to_delete.push_back(f); } while(fc != done); std::size_t size = to_delete.size(); for(std::size_t i=0; i void Triangulation_2:: make_hole(Vertex_handle v, std::list & hole, std::set &faces_set) { std::vector to_delete; to_delete.reserve(16); Face_handle f, fn; int i, in ; Vertex_handle vv; Face_circulator fc = incident_faces(v); Face_circulator done(fc); do { f = fc; fc++; i = f->index(v); fn = f->neighbor(i); in = fn->index(f); vv = f->vertex(cw(i)); vv->set_face(fn); vv = f->vertex(ccw(i)); vv->set_face(fn); fn->set_neighbor(in, Face_handle()); hole.push_back(Edge(fn,in)); to_delete.push_back(f); } while(fc != done); std::size_t size = to_delete.size(); for(std::size_t i=0; i void Triangulation_2:: fill_hole(Vertex_handle v, std::list< Edge > & hole) { // uses the fact that the hole is starshaped // with repect to v->point() typedef std::list Hole; Face_handle ff, fn; int ii, in; Vertex_handle v0, v1, v2; Bounded_side side; //stack algorithm to create faces // create face v0,v1,v2 //if v0,v1,v2 are finite vertices // and form a left_turn // and triangle v0v1v2 does not contain v->point() if( hole.size() != 3) { typename Hole::iterator hit = hole.begin(); typename Hole::iterator next= hit; while( hit != hole.end() && hole.size() != 3) { ff = (*hit).first; ii = (*hit).second; v0 = ff->vertex(cw(ii)); v1 = ff->vertex(ccw(ii)); if( !is_infinite(v0) && !is_infinite(v1)) { next=hit; next++; if(next == hole.end()) next=hole.begin(); fn = (*next).first; in = (*next).second; v2 = fn->vertex(ccw(in)); if ( !is_infinite(v2) && orientation(v0->point(), v1->point(), v2->point()) == LEFT_TURN ) { side = bounded_side(v0->point(), v1->point(), v2->point(), v->point()); if( side == ON_UNBOUNDED_SIDE || (side == ON_BOUNDARY && orientation(v0->point(), v->point(), v2->point()) == COLLINEAR && collinear_between(v0->point(),v->point(),v2->point()) )) { //create face Face_handle newf = create_face(ff,ii,fn,in); typename Hole::iterator tempo=hit; hit = hole.insert(hit,Edge(newf,1)); //push newf hole.erase(tempo); //erase ff hole.erase(next); //erase fn if (hit != hole.begin() ) --hit; continue; } } } ++hit; } } // either the hole has only three edges // or all its finite vertices are reflex or flat // except may be one vertex whose corresponding ear // includes the vertex being removed // deal with the last left_turn if any if(hole.size() != 3) { typename Hole::iterator hit=hole.begin(); while(hit != hole.end()) { ff = (*hit).first; ii = (*hit).second; hit++; if(hit != hole.end()) { fn = (*hit).first; in = (*hit).second;} else { fn = ((hole.front()).first); in = (hole.front()).second;} if ( !is_infinite(ff->vertex(cw(ii))) && !is_infinite(fn->vertex(cw(in))) && !is_infinite(fn->vertex(ccw(in))) && orientation(ff->vertex(cw(ii))->point(), fn->vertex(cw(in))->point(), fn->vertex(ccw(in))->point()) == LEFT_TURN) { create_face(ff,ii,fn,in); break; } } } // deal with a reflex chain of convex hull edges if(hole.size() != 3) { // look for infinite vertex ff = (hole.front()).first; ii = (hole.front()).second; while ( ! is_infinite(ff->vertex(cw(ii)))){ hole.push_back(hole.front()); hole.pop_front(); ff = (hole.front()).first; ii = (hole.front()).second; } //create faces while(hole.size() != 3){ ff = (hole.front()).first; ii = (hole.front()).second; hole.pop_front(); fn = (hole.front()).first; in = (hole.front()).second; hole.pop_front(); Face_handle newf = create_face(ff,ii,fn,in); hole.push_front(Edge(newf,1)); } } // now hole has three edges typename Hole::iterator hit; hit = hole.begin(); // // I don't know why the following yelds a segmentation fault // create_face( (*hit).first, (*hit).second, // (* ++hit).first, (*hit).second, // (* ++hit).first, (*hit).second); ff = (*hit).first; ii = (*hit).second; fn = (* ++hit).first; in = (*hit).second; Face_handle f3 = (* ++hit).first; int i3 = (*hit).second; create_face(ff,ii,fn,in,f3,i3); } template < class Gt, class Tds > template void Triangulation_2:: fill_hole(Vertex_handle v, std::list & hole, OutputItFaces fit) { // uses the fact that the hole is starshaped // with repect to v->point() typedef std::list Hole; Face_handle ff, fn; int ii , in; Vertex_handle v0, v1, v2; Bounded_side side; //stack algorithm to create faces // create face v0,v1,v2 //if v0,v1,v2 are finite vertices // and form a left_turn // and triangle v0v1v2 does not contain v->point() if( hole.size() != 3) { typename Hole::iterator hit = hole.begin(); typename Hole::iterator next= hit; while( hit != hole.end() && hole.size() != 3) { ff = (*hit).first; ii = (*hit).second; v0 = ff->vertex(cw(ii)); v1 = ff->vertex(ccw(ii)); if( !is_infinite(v0) && !is_infinite(v1)) { next=hit; next++; if(next == hole.end()) next=hole.begin(); fn = (*next).first; in = (*next).second; v2 = fn->vertex(ccw(in)); if ( !is_infinite(v2) && orientation(v0->point(), v1->point(), v2->point()) == LEFT_TURN ) { side = bounded_side(v0->point(), v1->point(), v2->point(), v->point()); if( side == ON_UNBOUNDED_SIDE || (side == ON_BOUNDARY && orientation(v0->point(), v->point(), v2->point()) == COLLINEAR && collinear_between(v0->point(),v->point(),v2->point()) )) { //create face Face_handle newf = create_face(ff,ii,fn,in); *fit++ = newf; typename Hole::iterator tempo=hit; hit = hole.insert(hit,Edge(newf,1)); //push newf hole.erase(tempo); //erase ff hole.erase(next); //erase fn if (hit != hole.begin() ) --hit; continue; } } } ++hit; } } // either the hole has only three edges // or all its finite vertices are reflex or flat // except may be one vertex whose corresponding ear // includes the vertex being removed // deal with the last left_turn if any if(hole.size() != 3) { typename Hole::iterator hit=hole.begin(); while(hit != hole.end()) { ff = (*hit).first; ii = (*hit).second; hit++; if(hit != hole.end()) { fn = (*hit).first; in = (*hit).second;} else { fn = ((hole.front()).first); in = (hole.front()).second;} if ( !is_infinite(ff->vertex(cw(ii))) && !is_infinite(fn->vertex(cw(in))) && !is_infinite(fn->vertex(ccw(in))) && orientation(ff->vertex(cw(ii))->point(), fn->vertex(cw(in))->point(), fn->vertex(ccw(in))->point()) == LEFT_TURN) { Face_handle newf = create_face(ff,ii,fn,in); *fit++ = newf; break; } } } // deal with a reflex chain of convex hull edges if(hole.size() != 3) { // look for infinite vertex ff = (hole.front()).first; ii = (hole.front()).second; while ( ! is_infinite(ff->vertex(cw(ii)))){ hole.push_back(hole.front()); hole.pop_front(); ff = (hole.front()).first; ii = (hole.front()).second; } //create faces while(hole.size() != 3){ ff = (hole.front()).first; ii = (hole.front()).second; hole.pop_front(); fn = (hole.front()).first; in = (hole.front()).second; hole.pop_front(); Face_handle newf = create_face(ff,ii,fn,in); *fit++ = newf; hole.push_front(Edge(newf,1)); } } // now hole has three edges typename Hole::iterator hit; hit = hole.begin(); // // I don't know why the following yelds a segmentation fault // create_face( (*hit).first, (*hit).second, // (* ++hit).first, (*hit).second, // (* ++hit).first, (*hit).second); ff = (*hit).first; ii = (*hit).second; fn = (* ++hit).first; in = (*hit).second; Face_handle f3 = (* ++hit).first; int i3 = (*hit).second; Face_handle newf = create_face(ff,ii,fn,in,f3,i3); *fit++ = newf; } template void Triangulation_2:: fill_hole_delaunay(std::list & first_hole) { typedef std::list Hole; typedef std::list Hole_list; Face_handle f, ff, fn; int i, ii, in; Hole_list hole_list; hole_list.push_front(first_hole); while( ! hole_list.empty()) { Hole& hole = hole_list.front(); typename Hole::iterator hit = hole.begin(); // if the hole has only three edges, create the triangle if (hole.size() == 3) { hit = hole.begin(); f = (*hit).first; i = (*hit).second; ff = (* ++hit).first; ii = (*hit).second; fn = (* ++hit).first; in = (*hit).second; create_face(f,i,ff,ii,fn,in); hole_list.pop_front(); continue; } // else find an edge with two finite vertices // on the hole boundary // and the new triangle adjacent to that edge // cut the hole and push it back // first, ensure that a neighboring face // whose vertices on the hole boundary are finite // is the first of the hole bool finite= false; while (!finite){ ff = (hole.front()).first; ii = (hole.front()).second; if ( is_infinite(ff->vertex(cw(ii))) || is_infinite(ff->vertex(ccw(ii)))) { hole.push_back(hole.front()); hole.pop_front(); } else finite=true; } // take the first neighboring face and pop it; ff = (hole.front()).first; ii =(hole.front()).second; hole.pop_front(); Vertex_handle v0 = ff->vertex(cw(ii)); Vertex_handle v1 = ff->vertex(ccw(ii)); Vertex_handle v2 = infinite_vertex(); Vertex_handle v3; const Point& p0 = v0->point(); const Point& p1 = v1->point(); typename Hole::iterator hdone = hole.end(); hit = hole.begin(); typename Hole::iterator cut_after(hit); // if tested vertex is c with respect to the vertex opposite // to NULL neighbor, // stop at the before last face; hdone--; while( hit != hdone) { fn = (*hit).first; in = (*hit).second; Vertex_handle vv = fn->vertex(ccw(in)); if (is_infinite(vv)) { if(is_infinite(v2)) cut_after = hit; } else { // vv is a finite vertex const Point & p = vv->point(); if (orientation(p0,p1,p) == COUNTERCLOCKWISE) { if (is_infinite(v2)) { v2=vv; v3=vv; cut_after=hit;} else{ // if (this->side_of_oriented_circle(p0,p1,v3->point(),p,true) == ON_POSITIVE_SIDE){ v2=vv; v3=vv; cut_after=hit;} } } } ++hit; } // create new triangle and update adjacency relations Face_handle newf; //update the hole and push back in the Hole_List stack // if v2 belongs to the neighbor following or preceding *f // the hole remain a single hole // otherwise it is split in two holes fn = (hole.front()).first; in = (hole.front()).second; if (fn->has_vertex(v2, i) && i == fn->ccw(in)) { newf = create_face(ff,ii,fn,in); hole.pop_front(); hole.push_front(Edge( newf,1)); } else{ fn = (hole.back()).first; in = (hole.back()).second; if (fn->has_vertex(v2, i) && i== fn->cw(in)) { newf = create_face(fn,in,ff,ii); hole.pop_back(); hole.push_back(Edge(newf,1)); } else { // split the hole in two holes newf = create_face(ff,ii,v2); Hole new_hole; ++cut_after; while( hole.begin() != cut_after ) { new_hole.push_back(hole.front()); hole.pop_front(); } hole.push_front(Edge( newf,1)); new_hole.push_front(Edge( newf,0)); hole_list.push_front(new_hole); } } } } template < class Gt, class Tds > template void Triangulation_2:: fill_hole_delaunay(std::list & first_hole, OutputItFaces fit) { typedef typename Gt::Side_of_oriented_circle_2 In_circle; typedef std::list Hole; typedef std::list Hole_list; In_circle in_circle = geom_traits().side_of_oriented_circle_2_object(); Face_handle f, ff, fn; int i, ii, in; Hole_list hole_list; hole_list.push_front(first_hole); while(!hole_list.empty()) { Hole& hole = hole_list.front(); typename Hole::iterator hit = hole.begin(); if (hole.size() == 3) { hit = hole.begin(); f = (*hit).first; i = (*hit).second; ff = (* ++hit).first; ii = (*hit).second; fn = (* ++hit).first; in = (*hit).second; Face_handle newf = create_face(f,i,ff,ii,fn,in); *fit++ = newf; hole_list.pop_front(); continue; } bool finite= false; while (!finite){ ff = (hole.front()).first; ii = (hole.front()).second; if ( is_infinite(ff->vertex(cw(ii))) || is_infinite(ff->vertex(ccw(ii)))) { hole.push_back(hole.front()); hole.pop_front(); } else finite=true; } ff = (hole.front()).first; ii =(hole.front()).second; hole.pop_front(); Vertex_handle v0 = ff->vertex(cw(ii)); Vertex_handle v1 = ff->vertex(ccw(ii)); Vertex_handle v2 = infinite_vertex(); const Point& p0 = v0->point(); const Point& p1 = v1->point(); typename Hole::iterator hdone = hole.end(); hit = hole.begin(); typename Hole::iterator cut_after(hit); hdone--; while( hit != hdone) { fn = (*hit).first; in = (*hit).second; Vertex_handle vv = fn->vertex(ccw(in)); if (is_infinite(vv)) { if(is_infinite(v2)) cut_after = hit; } else { // vv is a finite vertex const Point & p = vv->point(); if (orientation(p0,p1,p) == CGAL::COUNTERCLOCKWISE) { if (is_infinite(v2)) { v2 = vv; cut_after = hit;} else{ if (in_circle(p0,p1,v2->point(),p) == CGAL::ON_POSITIVE_SIDE){ v2 = vv; cut_after = hit; } } } } ++hit; } Face_handle newf; fn = (hole.front()).first; in = (hole.front()).second; if (fn->has_vertex(v2, i) && i == fn->ccw(in)) { newf = create_face(ff,ii,fn,in); hole.pop_front(); hole.push_front(Edge( newf,1)); } else { fn = (hole.back()).first; in = (hole.back()).second; if (fn->has_vertex(v2, i) && i== fn->cw(in)) { newf = create_face(fn,in,ff,ii); hole.pop_back(); hole.push_back(Edge(newf,1)); } else { newf = create_face(ff,ii,v2); Hole new_hole; ++cut_after; while( hole.begin() != cut_after ) { new_hole.push_back(hole.front()); hole.pop_front(); } hole.push_front(Edge(newf, 1)); new_hole.push_front(Edge(newf, 0)); hole_list.push_front(new_hole); } } *fit++ = newf; } } template typename Triangulation_2::Vertex_handle Triangulation_2:: move_if_no_collision(Vertex_handle v, const Point &p) { CGAL_triangulation_precondition(!is_infinite(v)); if(v->point() == p) return v; const int dim = dimension(); Locate_type lt; int li; Face_handle loc = locate(p, lt, li, v->face()); if(lt == VERTEX) return loc->vertex(li); if(dim == 0) { v->set_point(p); return v; } size_type n_vertices = tds().number_of_vertices(); if((lt == OUTSIDE_AFFINE_HULL) && (dim == 1) && (n_vertices == 3)) { v->set_point(p); return v; } if((lt != OUTSIDE_AFFINE_HULL) && (dim == 1)) { if(loc->has_vertex(v)) { v->set_point(p); } else { Vertex_handle inserted = insert(p, lt, loc, li); Face_handle f = v->face(); int i = f->index(v); if (i==0) {f = f->neighbor(1);} CGAL_triangulation_assertion(f->index(v) == 1); Face_handle g= f->neighbor(0); f->set_vertex(1, g->vertex(1)); f->set_neighbor(0,g->neighbor(0)); g->neighbor(0)->set_neighbor(1,f); g->vertex(1)->set_face(f); delete_face(g); Face_handle f_ins = inserted->face(); i = f_ins->index(inserted); if (i==0) {f_ins = f_ins->neighbor(1);} CGAL_triangulation_assertion(f_ins->index(inserted) == 1); Face_handle g_ins = f_ins->neighbor(0); f_ins->set_vertex(1, v); g_ins->set_vertex(0, v); v->set_point(p); v->set_face(inserted->face()); delete_vertex(inserted); } return v; } if((lt != OUTSIDE_AFFINE_HULL) && test_dim_down(v)) { // verify if p and two static vertices are collinear in this case int iinf = 0; Face_circulator finf = incident_faces(infinite_vertex()), fdone(finf); do { if(!finf->has_vertex(v)) { iinf = ~(finf->index(infinite_vertex())); break; } } while(++finf != fdone); if(this->orientation(finf->vertex(iinf&1)->point(), finf->vertex(iinf&2)->point(), p) == COLLINEAR) { v->set_point(p); _tds.dim_down(loc, loc->index(v)); return v; } } Vertex_handle inserted = insert(p, lt, loc, li); std::list hole; make_hole(v, hole); fill_hole(v, hole); // fixing pointer Face_circulator fc = this->incident_faces(inserted), done(fc); std::vector faces_pt; faces_pt.reserve(16); do { faces_pt.push_back(fc); } while(++fc != done); std::size_t ss = faces_pt.size(); for(std::size_t k=0; kindex(inserted); f->set_vertex(i, v); } v->set_point(p); v->set_face(inserted->face()); delete_vertex(inserted); return v; } template typename Triangulation_2::Vertex_handle Triangulation_2:: move(Vertex_handle v, const Point &p) { CGAL_triangulation_precondition(!is_infinite(v)); if(v->point() == p) return v; Vertex_handle w = move_if_no_collision(v,p); if(w != v) { remove(v); return w; } return v; } template template typename Triangulation_2::Vertex_handle Triangulation_2:: move_if_no_collision_and_give_new_faces(Vertex_handle v, const Point &p, OutputItFaces oif) { CGAL_triangulation_precondition(!is_infinite(v)); if(v->point() == p) return v; const int dim = this->dimension(); Locate_type lt; int li; Vertex_handle inserted; Face_handle loc = locate(p, lt, li, v->face()); if(lt == VERTEX) return loc->vertex(li); if(dim == 0) { v->set_point(p); return v; } int n_vertices = tds().number_of_vertices(); if((lt == OUTSIDE_AFFINE_HULL) && (dim == 1) && (n_vertices == 3)) { v->set_point(p); for(All_faces_iterator afi = tds().face_iterator_base_begin(); afi != tds().face_iterator_base_begin(); afi++) *oif++ = afi; return v; } if((lt != OUTSIDE_AFFINE_HULL) && (dim == 1)) { if(loc->has_vertex(v)) { v->set_point(p); } else { inserted = insert(p, lt, loc, li); Face_handle f = v->face(); int i = f->index(v); if (i==0) {f = f->neighbor(1);} CGAL_triangulation_assertion(f->index(v) == 1); Face_handle g= f->neighbor(0); f->set_vertex(1, g->vertex(1)); f->set_neighbor(0,g->neighbor(0)); g->neighbor(0)->set_neighbor(1,f); g->vertex(1)->set_face(f); delete_face(g); *oif++ = f; Face_handle f_ins = inserted->face(); i = f_ins->index(inserted); if (i==0) {f_ins = f_ins->neighbor(1);} CGAL_triangulation_assertion(f_ins->index(inserted) == 1); Face_handle g_ins = f_ins->neighbor(0); f_ins->set_vertex(1, v); g_ins->set_vertex(0, v); v->set_point(p); v->set_face(inserted->face()); delete_vertex(inserted); } *oif++ = v->face(); if(v->face()->neighbor(0)->has_vertex(v)) *oif++ = v->face()->neighbor(0); if(v->face()->neighbor(1)->has_vertex(v)) *oif++ = v->face()->neighbor(1); return v; } if((lt != OUTSIDE_AFFINE_HULL) && test_dim_down(v)) { // verify if p and two static vertices are collinear in this case int iinf; Face_circulator finf = incident_faces(infinite_vertex()), fdone(finf); do { if(!finf->has_vertex(v)) { iinf = ~(finf->index(infinite_vertex())); break; } } while (++finf != fdone); if(this->orientation(finf->vertex(iinf&1)->point(), finf->vertex(iinf&2)->point(), p) == COLLINEAR) { v->set_point(p); _tds.dim_down(loc, loc->index(v)); return v; } for(All_faces_iterator afi = tds().face_iterator_base_begin(); afi != tds().face_iterator_base_begin(); afi++) *oif++ = afi; } std::set faces_set; inserted = insert(p, lt, loc, li); Face_circulator fc = incident_faces(inserted), done(fc); do { faces_set.insert(fc); } while (++fc != done); std::list hole; make_hole(v, hole, faces_set); fill_hole(v, hole, oif); fc = this->incident_faces(inserted), done(fc); std::vector faces_pt; faces_pt.reserve(16); do { faces_pt.push_back(fc); } while (++fc != done); int ss = faces_pt.size(); for(int k=0; kindex(inserted); f->set_vertex(i, v); } v->set_point(p); v->set_face(inserted->face()); delete_vertex(inserted); for(typename std::set::iterator ib = faces_set.begin(), iend = faces_set.end(); ib != iend; ib++) *oif++ = *ib; return v; } template inline typename Triangulation_2::Face_handle Triangulation_2:: create_face(Face_handle f1, int i1, Face_handle f2, int i2, Face_handle f3, int i3) { return _tds.create_face(f1, i1, f2, i2, f3, i3); } template inline typename Triangulation_2::Face_handle Triangulation_2:: create_face(Face_handle f1, int i1, Face_handle f2, int i2) { return _tds.create_face(f1, i1, f2, i2); } template inline typename Triangulation_2::Face_handle Triangulation_2:: create_face(Face_handle f, int i, Vertex_handle v) { return _tds.create_face(f, i, v); } template inline typename Triangulation_2::Face_handle Triangulation_2:: create_face(Vertex_handle v1, Vertex_handle v2, Vertex_handle v3) { return _tds.create_face(v1, v2, v3); } template inline typename Triangulation_2::Face_handle Triangulation_2:: create_face(Vertex_handle v1, Vertex_handle v2, Vertex_handle v3, Face_handle f1, Face_handle f2, Face_handle f3) { return _tds.create_face(v1, v2, v3, f1, f2, f3); } template inline typename Triangulation_2::Face_handle Triangulation_2:: create_face(Face_handle fh) { return _tds.create_face(fh); } template inline typename Triangulation_2::Face_handle Triangulation_2:: create_face() { return _tds.create_face(); } template inline void Triangulation_2:: delete_face(Face_handle f) { _tds.delete_face(f); } template inline void Triangulation_2:: delete_vertex(Vertex_handle v) { _tds.delete_vertex(v); } // POINT LOCATION template typename Triangulation_2::Face_handle Triangulation_2:: march_locate_1D(const Point& t, Locate_type& lt, int& li) const { Face_handle ff = infinite_face(); int iv = ff->index(infinite_vertex()); Face_handle f = ff->neighbor(iv); Orientation pqt = orientation(f->vertex(0)->point(), f->vertex(1)->point(), t); if(pqt == RIGHT_TURN || pqt == LEFT_TURN) { lt = OUTSIDE_AFFINE_HULL; li = 4 ;// should not be used return Face_handle(); } int i= f->index(ff); if (collinear_between(t,f->vertex(1-i)->point(),f->vertex(i)->point())) { lt = OUTSIDE_CONVEX_HULL; li = iv; return ff; } if( xy_equal(t,f->vertex(1-i)->point()) ){ lt = VERTEX; li=1-i; return f; } ff = ff->neighbor(1-iv); //the other infinite face iv = ff->index(infinite_vertex()); f = ff->neighbor(iv); i = f->index(ff); if (collinear_between(t,f->vertex(1-i)->point(),f->vertex(i)->point())) { lt = OUTSIDE_CONVEX_HULL; li = iv; return ff; } if( xy_equal(t,f->vertex(1-i)->point()) ){ lt = VERTEX; li=1-i; return f; } Finite_edges_iterator eit= finite_edges_begin(); Vertex_handle u,v; for( ; eit != finite_edges_end() ; eit++) { u = (*eit).first->vertex(0); v = (*eit).first->vertex(1); if(xy_equal(t,v->point())){ lt = VERTEX; li = 1; return (*eit).first; } if(collinear_between(u->point(), t, v->point())){ lt = EDGE; li = 2; return (*eit).first; } } CGAL_triangulation_assertion(false); return Face_handle(); } template typename Triangulation_2::Face_handle Triangulation_2:: march_locate_2D_LFC(Face_handle start, const Point& t, Locate_type& lt, int& li) const { // CGAL_triangulation_precondition( ! is_infinite(start) ); const Point& p = start->vertex(0)->point(); const Point& q = start->vertex(1)->point(); const Point& r = start->vertex(2)->point(); if(xy_equal(t,p)) { lt = VERTEX; li = 0; return start; } Line_face_circulator lfc; Orientation o2 = orientation(p, q, t); Orientation o0 = orientation(q, r, t); Orientation o1 = orientation(r, p, t); if( (o2 == LEFT_TURN)&& (o1 == LEFT_TURN)) { lfc = Line_face_circulator(start, 0, Line_face_circulator::vertex_edge, this, p, t); } else if ( (o0 == LEFT_TURN)&& (o2 == LEFT_TURN)) { lfc = Line_face_circulator(start, 1, Line_face_circulator::vertex_edge, this, q, t); } else if ( (o1 == LEFT_TURN)&& (o0 == LEFT_TURN)) { lfc = Line_face_circulator(start, 2, Line_face_circulator::vertex_edge, this, r, t); } if( (o2 == RIGHT_TURN)&& (o1 == RIGHT_TURN)) { lfc = Line_face_circulator(start, 0, Line_face_circulator::edge_vertex, this, p, t); } else if ( (o0 == RIGHT_TURN)&& (o2 == RIGHT_TURN)) { lfc = Line_face_circulator(start, 1, Line_face_circulator::edge_vertex, this, q, t); } else if ( (o1 == RIGHT_TURN)&& (o0 == RIGHT_TURN)) { lfc = Line_face_circulator(start, 2, Line_face_circulator::edge_vertex, this, r, t); }else { lfc = Line_face_circulator(start->vertex(0), this, t); } if(lfc==0 || lfc.collinear_outside()){ // point t lies outside or on the convex hull // we walk on the convex hull to find it out Face_circulator fc = incident_faces(infinite_vertex()); Face_circulator done(fc); int ic = fc->index(infinite_vertex()); if (xy_equal(t,fc->vertex(cw(ic))->point())){ lt = VERTEX; li = cw(ic); return fc; } Orientation ori; do{ // walking ccw around convex hull ic = fc->index(infinite_vertex()); if (xy_equal(t,fc->vertex(ccw(ic))->point())){ lt = VERTEX; li = ccw(ic); return fc; } ori = orientation( fc->vertex(cw(ic))->point(), fc->vertex(ccw(ic))->point(), t); if (ori == RIGHT_TURN) { lt = OUTSIDE_CONVEX_HULL; li = ic; return fc; } if (ori == COLLINEAR && collinear_between(fc->vertex(cw(ic))->point(), t, fc->vertex(ccw(ic))->point()) ) { lt = EDGE; li = ic; return fc; } } while (--fc != done); //should not arrive there; CGAL_triangulation_assertion(fc != done); } while(! lfc.locate(t, lt, li) ){ ++lfc; } return lfc; } template void Triangulation_2:: compare_walks(const Point& p, Face_handle c1, Face_handle c2, Locate_type& lt1, Locate_type& lt2, int li1, int li2) const { bool b = true; b = b && (lt1 == lt2); if((lt1 == lt2) && (lt1 == VERTEX)) { b = b && ( c1->vertex(li1) == c2->vertex(li2) ); } else if((lt1 == lt2) && (lt1 == EDGE)) { b = b && ((c1 == c2) || ( (c1->neighbor(li1) == c2) && (c2->neighbor(li2) == c1))); } else if((lt1 == lt2) && (lt1 == OUTSIDE_CONVEX_HULL)) { b = b && (is_infinite(c1) && is_infinite(c2)); } else { b = b && (lt1 == lt2); b = b && (lt1 == FACE); b = b && (c1 == c2); } if ( c1 != c2) { std::cerr << "from compare_walks " << std::endl; std::cerr << "point " << p << std::endl; std::cerr << "locate 1 " << &*c1 << "\t" << lt1 << "\t" << li1 << std::endl; std::cerr << "locate 2 " << &*c2 << "\t" << lt2 << "\t" << li2 << std::endl; std::cerr << std::endl; show_face(c1); std::cerr << std::endl; show_face(c2); std::cerr << std::endl; } CGAL_triangulation_assertion(b); } #if 1 template typename Triangulation_2::Face_handle Triangulation_2:: march_locate_2D(Face_handle c, const Point& t, Locate_type& lt, int& li) const { CGAL_triangulation_assertion(! is_infinite(c)); boost::rand48 rng; boost::uniform_smallint<> two(0, 1); boost::variate_generator > coin(rng, two); Face_handle prev = Face_handle(); bool first = true; while (1) { if ( is_infinite(c) ) { // c must contain t in its interior lt = OUTSIDE_CONVEX_HULL; li = c->index(infinite_vertex()); return c; } // else c is finite // Instead of testing its edges in a random order we do the following // until we find a neighbor to go further: // As we come from prev we do not have to check the edge leading to prev // Now we flip a coin in order to decide if we start checking the // edge before or the edge after the edge leading to prev // We do loop unrolling in order to find out if this is faster. // In the very beginning we do not have a prev, but for the first step // we do not need randomness int left_first = coin()%2; const Point & p0 = c->vertex( 0 )->point(); const Point & p1 = c->vertex( 1 )->point(); const Point & p2 = c->vertex( 2 )->point(); Orientation o0, o1, o2; if(first){ prev = c; first = false; o0 = orientation(p0,p1,t); if ( o0 == NEGATIVE ) { c = c->neighbor( 2 ); continue; } o1 = orientation(p1,p2,t); if ( o1 == NEGATIVE ) { c = c->neighbor( 0 ); continue; } o2 = orientation(p2,p0,t); if ( o2 == NEGATIVE ) { c = c->neighbor( 1 ); continue; } } else if(left_first){ if(c->neighbor(0) == prev){ prev = c; o0 = orientation(p0,p1,t); if ( o0 == NEGATIVE ) { c = c->neighbor( 2 ); continue; } o2 = orientation(p2,p0,t); if ( o2 == NEGATIVE ) { c = c->neighbor( 1 ); continue; } o1 = POSITIVE; } else if(c->neighbor(1) == prev){ prev = c; o1 = orientation(p1,p2,t); if ( o1 == NEGATIVE ) { c = c->neighbor( 0 ); continue; } o0 = orientation(p0,p1,t); if ( o0 == NEGATIVE ) { c = c->neighbor( 2 ); continue; } o2 = POSITIVE; } else { prev = c; o2 = orientation(p2,p0,t); if ( o2 == NEGATIVE ) { c = c->neighbor( 1 ); continue; } o1 = orientation(p1,p2,t); if ( o1 == NEGATIVE ) { c = c->neighbor( 0 ); continue; } o0 = POSITIVE; } } else { // right_first if(c->neighbor(0) == prev){ prev = c; o2 = orientation(p2,p0,t); if ( o2 == NEGATIVE ) { c = c->neighbor( 1 ); continue; } o0 = orientation(p0,p1,t); if ( o0 == NEGATIVE ) { c = c->neighbor( 2 ); continue; } o1 = POSITIVE; } else if(c->neighbor(1) == prev){ prev = c; o0 = orientation(p0,p1,t); if ( o0 == NEGATIVE ) { c = c->neighbor( 2 ); continue; } o1 = orientation(p1,p2,t); if ( o1 == NEGATIVE ) { c = c->neighbor( 0 ); continue; } o2 = POSITIVE; } else { prev = c; o1 = orientation(p1,p2,t); if ( o1 == NEGATIVE ) { c = c->neighbor( 0 ); continue; } o2 = orientation(p2,p0,t); if ( o2 == NEGATIVE ) { c = c->neighbor( 1 ); continue; } o0 = POSITIVE; } } // now p is in c or on its boundary int sum = ( o0 == COLLINEAR ) + ( o1 == COLLINEAR ) + ( o2 == COLLINEAR ); switch (sum) { case 0: { lt = FACE; li = 4; break; } case 1: { lt = EDGE; li = ( o0 == COLLINEAR ) ? 2 : ( o1 == COLLINEAR ) ? 0 : 1; break; } case 2: { lt = VERTEX; li = ( o0 != COLLINEAR ) ? 2 : ( o1 != COLLINEAR ) ? 0 : 1; break; } } return c; } } #else // not 1 template typename Triangulation_2::Face_handle Triangulation_2:: march_locate_2D(Face_handle c, const Point& t, Locate_type& lt, int& li) const { CGAL_triangulation_assertion(! is_infinite(c)); boost::uniform_smallint<> three(0, 2); boost::variate_generator > die3(rng, three); Face_handle prev = Face_handle(); while (1) { if ( is_infinite(c) ) { // c must contain t in its interior lt = OUTSIDE_CONVEX_HULL; li = c->index(infinite_vertex()); return c; } // else c is finite // we test its edges in a random order until we find a // neighbor to go further int i = die3(); int ccwi = ccw(i); int cwi = cw(i); const Point & p0 = c->vertex( i )->point(); const Point & p1 = c->vertex( ccwi )->point(); Orientation o0, o1, o2; CGAL_triangulation_assertion(orientation(p0,p1,c->vertex( cwi )->point())==POSITIVE); if(c->neighbor(cwi) == prev){ o0 = POSITIVE; } else { o0 = orientation(p0,p1,t); if ( o0 == NEGATIVE ) { prev = c; c = c->neighbor( cwi ); continue; } } const Point & p2 = c->vertex( cwi )->point(); if(c->neighbor(i) == prev){ o1 = POSITIVE; } else { o1 = orientation(p1,p2,t); if ( o1 == NEGATIVE ) { prev = c; c = c->neighbor( i ); continue; } } if(c->neighbor(ccwi) == prev){ o2 = POSITIVE; } else { o2 = orientation(p2,p0,t); if ( o2 == NEGATIVE ) { prev = c; c = c->neighbor( ccwi ); continue; } } // now p is in c or on its boundary int sum = ( o0 == COLLINEAR ) + ( o1 == COLLINEAR ) + ( o2 == COLLINEAR ); switch (sum) { case 0: { lt = FACE; li = 4; break; } case 1: { lt = EDGE; li = ( o0 == COLLINEAR ) ? cwi : ( o1 == COLLINEAR ) ? i : ccwi; break; } case 2: { lt = VERTEX; li = ( o0 != COLLINEAR ) ? cwi : ( o1 != COLLINEAR ) ? i : ccwi; break; } } return c; } } #endif // not 1 template typename Triangulation_2::Face_handle Triangulation_2:: #ifdef CGAL_NO_STRUCTURAL_FILTERING locate(const Point& p, Locate_type& lt, int& li, Face_handle start) const #else // no CGAL_NO_STRUCTURAL_FILTERING exact_locate(const Point& p, Locate_type& lt, int& li, Face_handle start) const #endif // no CGAL_NO_STRUCTURAL_FILTERING { if (dimension() < 0) { lt = OUTSIDE_AFFINE_HULL; li = 4; // li should not be used in this case return Face_handle(); } if( dimension() == 0) { // Do not use finite_vertex directly because there can be hidden vertices // (regular triangulations) if (xy_equal(p,finite_vertex()->face()->vertex(0)->point())){ lt = VERTEX ; } else{ lt = OUTSIDE_AFFINE_HULL; } li = 4; // li should not be used in this case return Face_handle(); } if(dimension() == 1){ return march_locate_1D(p, lt, li); } if(start == Face_handle()) { start = infinite_face()-> neighbor(infinite_face()->index(infinite_vertex())); } else if(is_infinite(start)) { start = start->neighbor(start->index(infinite_vertex())); } #if ( ! defined(CGAL_ZIG_ZAG_WALK)) && ( ! defined(CGAL_LFC_WALK)) #define CGAL_ZIG_ZAG_WALK #endif #ifdef CGAL_ZIG_ZAG_WALK Face_handle res1 = march_locate_2D(start, p, lt, li); #endif #ifdef CGAL_LFC_WALK Locate_type lt2; int li2; Face_handle res2 = march_locate_2D_LFC(start, p, lt2, li2); #endif #if defined(CGAL_ZIG_ZAG_WALK) && defined(CGAL_LFC_WALK) compare_walks(p, res1, res2, lt, lt2, li, li2); #endif #ifdef CGAL_ZIG_ZAG_WALK return res1; #endif #ifdef CGAL_LFC_WALK lt = lt2; li = li2; return res2; #endif } #ifdef CGAL_NO_STRUCTURAL_FILTERING template typename Triangulation_2:: Face_handle Triangulation_2:: locate(const Point &p, Face_handle start) const { Locate_type lt; int li; return locate(p, lt, li, start); } #else template inline typename Triangulation_2::Face_handle Triangulation_2:: inexact_locate(const Point & t, Face_handle start, int n_of_turns) const { if(dimension() < 2) return start; if(start == Face_handle()){ start = infinite_face()-> neighbor(infinite_face()->index(infinite_vertex())); } else if(is_infinite(start)){ start = start->neighbor(start->index(infinite_vertex())); } Face_handle prev = Face_handle(), c = start; bool first = true; while (1) { if(!(n_of_turns--)) return c; if ( is_infinite(c) ) return c; const Point & p0 = c->vertex( 0 )->point(); const Point & p1 = c->vertex( 1 )->point(); const Point & p2 = c->vertex( 2 )->point(); if(first) { prev = c; first = false; if(has_inexact_negative_orientation(p0,p1,t) ) { c = c->neighbor( 2 ); continue; } if(has_inexact_negative_orientation(p1,p2,t) ) { c = c->neighbor( 0 ); continue; } if (has_inexact_negative_orientation(p2,p0,t) ) { c = c->neighbor( 1 ); continue; } } else { if(c->neighbor(0) == prev){ prev = c; if (has_inexact_negative_orientation(p0,p1,t) ) { c = c->neighbor( 2 ); continue; } if (has_inexact_negative_orientation(p2,p0,t) ) { c = c->neighbor( 1 ); continue; } } else if(c->neighbor(1) == prev){ prev = c; if (has_inexact_negative_orientation(p0,p1,t) ) { c = c->neighbor( 2 ); continue; } if (has_inexact_negative_orientation(p1,p2,t) ) { c = c->neighbor( 0 ); continue; } } else { prev = c; if (has_inexact_negative_orientation(p2,p0,t) ) { c = c->neighbor( 1 ); continue; } if (has_inexact_negative_orientation(p1,p2,t) ) { c = c->neighbor( 0 ); continue; } } } break; } return c; } template inline bool Triangulation_2:: has_inexact_negative_orientation(const Point &p, const Point &q, const Point &r) const { // So that this code works well with Lazy_kernel internal::Static_filters_predicates::Get_approx get_approx; const double px = to_double(get_approx(p).x()); const double py = to_double(get_approx(p).y()); const double qx = to_double(get_approx(q).x()); const double qy = to_double(get_approx(q).y()); const double rx = to_double(get_approx(r).x()); const double ry = to_double(get_approx(r).y()); const double pqx = qx - px; const double pqy = qy - py; const double prx = rx - px; const double pry = ry - py; return ( determinant(pqx, pqy, prx, pry) < 0); } #endif template typename Triangulation_2::Finite_faces_iterator Triangulation_2:: finite_faces_begin() const { if ( dimension() < 2 ) return finite_faces_end(); return CGAL::filter_iterator( all_faces_end(), Infinite_tester(this), all_faces_begin() ); } template typename Triangulation_2::Finite_faces_iterator Triangulation_2:: finite_faces_end() const { return CGAL::filter_iterator( all_faces_end(), Infinite_tester(this) ); } template typename Triangulation_2::Finite_vertices_iterator Triangulation_2:: finite_vertices_begin() const { if ( number_of_vertices() <= 0 ) return finite_vertices_end(); return CGAL::filter_iterator( all_vertices_end(), Infinite_tester(this), all_vertices_begin() ); } template typename Triangulation_2::Finite_vertices_iterator Triangulation_2:: finite_vertices_end() const { return CGAL::filter_iterator(all_vertices_end(), Infinite_tester(this)); } template typename Triangulation_2::Finite_edges_iterator Triangulation_2:: finite_edges_begin() const { if ( dimension() < 1 ) return finite_edges_end(); return CGAL::filter_iterator( all_edges_end(), infinite_tester(), all_edges_begin()); } template typename Triangulation_2::Finite_edges_iterator Triangulation_2:: finite_edges_end() const { return CGAL::filter_iterator(all_edges_end(), infinite_tester() ); } template typename Triangulation_2::Point_iterator Triangulation_2:: points_begin() const { return Point_iterator(finite_vertices_begin()); } template typename Triangulation_2::Point_iterator Triangulation_2:: points_end() const { return Point_iterator(finite_vertices_end()); } template typename Triangulation_2::All_faces_iterator Triangulation_2:: all_faces_begin() const { return _tds.faces_begin(); } template typename Triangulation_2::All_faces_iterator Triangulation_2:: all_faces_end() const { return _tds.faces_end();; } template typename Triangulation_2::All_vertices_iterator Triangulation_2:: all_vertices_begin() const { return _tds.vertices_begin(); } template typename Triangulation_2::All_vertices_iterator Triangulation_2:: all_vertices_end() const { return _tds.vertices_end(); } template typename Triangulation_2::All_edges_iterator Triangulation_2:: all_edges_begin() const { return _tds.edges_begin(); } template typename Triangulation_2::All_edges_iterator Triangulation_2:: all_edges_end() const { return _tds.edges_end(); } template typename Triangulation_2::All_halfedges_iterator Triangulation_2:: all_halfedges_begin() const { return _tds.halfedges_begin(); } template typename Triangulation_2::All_halfedges_iterator Triangulation_2:: all_halfedges_end() const { return _tds.halfedges_end(); } template inline typename Triangulation_2::Face_circulator Triangulation_2:: incident_faces(Vertex_handle v, Face_handle f) const { return _tds.incident_faces(v,f); } template inline typename Triangulation_2::Vertex_circulator Triangulation_2:: incident_vertices(Vertex_handle v, Face_handle f) const { return _tds.incident_vertices(v,f); } template inline typename Triangulation_2::Edge_circulator Triangulation_2:: incident_edges(Vertex_handle v, Face_handle f) const { return _tds.incident_edges(v,f); } template inline typename Triangulation_2::size_type Triangulation_2:: degree(Vertex_handle v) const { return _tds.degree(v); } template inline typename Triangulation_2::Vertex_handle Triangulation_2:: mirror_vertex(Face_handle f, int i) const { return _tds.mirror_vertex(f,i); } template inline int Triangulation_2:: mirror_index(Face_handle f, int i) const { return _tds.mirror_index(f,i); } template inline typename Triangulation_2::Edge Triangulation_2:: mirror_edge(const Edge e) const { return _tds.mirror_edge(e); } template typename Triangulation_2::Line_face_circulator Triangulation_2:: line_walk(const Point& p, const Point& q, Face_handle f) const { CGAL_triangulation_precondition( (dimension() == 2) && ! xy_equal(p,q)); Line_face_circulator lfc = (f == Face_handle()) ? Line_face_circulator(p, q, this) : Line_face_circulator(p, q, f, this); // the following lines may be useless : // Line_face_circulator(p,q...) returns either a null circulator // or a pointer to a finite face (to be checked) if( (!lfc.is_empty()) && is_infinite( lfc )){ do { ++lfc ;} while (is_infinite(lfc)); } return lfc; } template Oriented_side Triangulation_2:: oriented_side(const Point &p0, const Point &p1, const Point &p2, const Point &p) const { // return position of point p with respect to the oriented triangle p0p1p2 // depends on the orientation of the vertices Bounded_side bs=bounded_side(p0,p1,p2,p); if (bs == ON_BOUNDARY) return ON_ORIENTED_BOUNDARY; Orientation ot = orientation(p0, p1, p2); if (bs == ON_BOUNDED_SIDE) return (ot == LEFT_TURN) ? ON_POSITIVE_SIDE : ON_NEGATIVE_SIDE; // bs == ON_UNBOUNDED_SIDE return (ot == LEFT_TURN) ? ON_NEGATIVE_SIDE : ON_POSITIVE_SIDE; } template Bounded_side Triangulation_2:: bounded_side(const Point &p0, const Point &p1, const Point &p2, const Point &p) const { // return position of point p with respect to triangle p0p1p2 CGAL_triangulation_precondition( orientation(p0, p1, p2) != COLLINEAR); Orientation o1 = orientation(p0, p1, p), o2 = orientation(p1, p2, p), o3 = orientation(p2, p0, p); if (o1 == COLLINEAR){ if (o2 == COLLINEAR || o3 == COLLINEAR) return ON_BOUNDARY; if (collinear_between(p0, p, p1)) return ON_BOUNDARY; return ON_UNBOUNDED_SIDE; } if (o2 == COLLINEAR){ if (o3 == COLLINEAR) return ON_BOUNDARY; if (collinear_between(p1, p, p2)) return ON_BOUNDARY; return ON_UNBOUNDED_SIDE; } if (o3 == COLLINEAR){ if (collinear_between(p2, p, p0)) return ON_BOUNDARY; return ON_UNBOUNDED_SIDE; } // from here none ot, o1, o2 and o3 are known to be non null if (o1 == o2 && o2 == o3) return ON_BOUNDED_SIDE; return ON_UNBOUNDED_SIDE; } template Oriented_side Triangulation_2:: oriented_side(Face_handle f, const Point &p) const { CGAL_triangulation_precondition ( dimension()==2); return oriented_side(f->vertex(0)->point(), f->vertex(1)->point(), f->vertex(2)->point(), p); } template Oriented_side Triangulation_2:: side_of_oriented_circle(const Point &p0, const Point &p1, const Point &p2, const Point &p, bool perturb) const { //CGAL_triangulation_precondition( orientation(p0, p1, p2) == POSITIVE ); // no reason for such precondition and it invalidates fast removal in Delaunay typename Gt::Side_of_oriented_circle_2 pred = geom_traits().side_of_oriented_circle_2_object(); Oriented_side os = pred(construct_point(p0), construct_point(p1), construct_point(p2), construct_point(p)); if ((os != ON_ORIENTED_BOUNDARY) || (! perturb)) return os; // We are now in a degenerate case => we do a symbolic perturbation. // We sort the points lexicographically. const Point * points[4] = {&p0, &p1, &p2, &p}; std::sort(points, points+4, Perturbation_order(this) ); // We successively look whether the leading monomial, then 2nd monomial // of the determinant has non null coefficient. // 2 iterations are enough if p0p1p2 is positive (cf paper) for (int i=3; i>0; --i) { if (points[i] == &p) return ON_NEGATIVE_SIDE; // since p0 p1 p2 are non collinear // and "conceptually" positively oriented Orientation o; if (points[i] == &p2 && (o = orientation(p0,p1,p)) != COLLINEAR ) return Oriented_side(o); if (points[i] == &p1 && (o = orientation(p0,p,p2)) != COLLINEAR ) return Oriented_side(o); if (points[i] == &p0 && (o = orientation(p,p1,p2)) != COLLINEAR ) return Oriented_side(o); } // CGAL_triangulation_assertion(false); //no reason for such precondition and it invalidates fast removal in Delaunay return ON_NEGATIVE_SIDE; } template < class Gt, class Tds > Oriented_side Triangulation_2:: side_of_oriented_circle(Face_handle f, const Point & p, bool perturb) const { if ( ! is_infinite(f) ) { return this->side_of_oriented_circle(f->vertex(0)->point(), f->vertex(1)->point(), f->vertex(2)->point(),p, perturb); } int i = f->index(infinite_vertex()); Orientation o = orientation(f->vertex(ccw(i))->point(), f->vertex(cw(i))->point(), p); return (o == NEGATIVE) ? ON_NEGATIVE_SIDE : (o == POSITIVE) ? ON_POSITIVE_SIDE : ON_ORIENTED_BOUNDARY; } template bool Triangulation_2:: collinear_between(const Point& p, const Point& q, const Point& r) const { // return true if point q is strictly between p and r // p,q and r are supposed to be collinear points Comparison_result c_pr = compare_x(p, r); Comparison_result c_pq; Comparison_result c_qr; if(c_pr == EQUAL) { //c_pr = compare_y(p, r); c_pq = compare_y(p, q); c_qr = compare_y(q, r); } else { c_pq = compare_x(p, q); c_qr = compare_x(q, r); } return ( (c_pq == SMALLER) && (c_qr == SMALLER) ) || ( (c_pq == LARGER) && (c_qr == LARGER) ); } template inline Comparison_result Triangulation_2:: compare_x(const Point& p, const Point& q) const { return geom_traits().compare_x_2_object()(construct_point(p), construct_point(q)); } template inline Comparison_result Triangulation_2:: compare_xy(const Point& p, const Point& q) const { Comparison_result res = geom_traits().compare_x_2_object()(construct_point(p), construct_point(q)); if(res == EQUAL){ return geom_traits().compare_y_2_object()(construct_point(p), construct_point(q)); } return res; } template inline Comparison_result Triangulation_2:: compare_y(const Point& p, const Point& q) const { return geom_traits().compare_y_2_object()(construct_point(p), construct_point(q)); } template inline bool Triangulation_2:: xy_equal(const Point& p, const Point& q) const { return compare_x(p,q)== EQUAL && compare_y(p,q)== EQUAL ; } template inline Orientation Triangulation_2:: orientation(const Point& p, const Point& q,const Point& r ) const { return geom_traits().orientation_2_object()(construct_point(p), construct_point(q), construct_point(r)); } template inline typename Triangulation_2::Point_2 Triangulation_2:: circumcenter(const Point& p0, const Point& p1, const Point& p2) const { return geom_traits().construct_circumcenter_2_object()(construct_point(p0), construct_point(p1), construct_point(p2)); } template typename Triangulation_2::Point_2 Triangulation_2:: circumcenter(Face_handle f) const { CGAL_triangulation_precondition (dimension()==2); return circumcenter((f->vertex(0))->point(), (f->vertex(1))->point(), (f->vertex(2))->point()); } template void Triangulation_2:: show_all() const { std::cerr<< "PRINT THE COMPLETE TRIANGULATION :"< "<< this; std::cerr << " dimension " << dimension() << std::endl; std::cerr << "nb of vertices " << number_of_vertices() << std::endl; if (dimension() < 1) return; if(dimension() == 1) { std::cerr<<" all edges "<first); } return; } std::cerr<<" finite faces "<1) { std::cerr << "print vertices of the regular triangulation" <face())))<< std::endl;; } std::cerr< void Triangulation_2:: show_vertex(Vertex_handle vh) const { if(is_infinite(vh)) std::cerr << "inf \t"; else std::cerr << vh->point() << "\t"; return; } template void Triangulation_2:: show_face(Face_handle fh) const { std::cerr << "face : "<<(void*)&(*fh)<<" => "<dimension(); switch(i){ case 0: std::cerr <<"point :" ; show_vertex(fh->vertex(0)); std::cerr <<" / neighbor " << &(*(fh->neighbor(0))); std::cerr <<"[" ; show_vertex(fh->neighbor(0)->vertex(0)); std::cerr <<"]" << std::endl; break; case 1: std::cerr <<"point :" ; show_vertex(fh->vertex(0)); std::cerr <<" / neighbor " << &(*(fh->neighbor(0))); std::cerr <<"[" ; show_vertex(fh->neighbor(0)->vertex(0)); std::cerr <<"/" ; show_vertex(fh->neighbor(0)->vertex(1)); std::cerr <<"]" <vertex(1)); std::cerr <<" / neighbor " << &(*(fh->neighbor(1))); std::cerr <<"[" ; show_vertex(fh->neighbor(1)->vertex(0)); std::cerr <<"/" ; show_vertex(fh->neighbor(1)->vertex(1)); std::cerr <<"]" <vertex(0)); std::cerr <<" / neighbor " << &(*(fh->neighbor(0))); std::cerr <<"[" ; show_vertex(fh->neighbor(0)->vertex(0)); std::cerr <<"/" ; show_vertex(fh->neighbor(0)->vertex(1)); std::cerr <<"/" ; show_vertex(fh->neighbor(0)->vertex(2)); std::cerr <<"]" <vertex(1)); std::cerr <<" / neighbor " << &(*(fh->neighbor(1))); std::cerr <<"[" ; show_vertex(fh->neighbor(1)->vertex(0)); std::cerr <<"/" ; show_vertex(fh->neighbor(1)->vertex(1)); std::cerr <<"/" ; show_vertex(fh->neighbor(1)->vertex(2)); std::cerr <<"]" <vertex(2)); std::cerr <<" / neighbor " << &(*(fh->neighbor(2))); std::cerr <<"[" ; show_vertex(fh->neighbor(2)->vertex(0)); std::cerr <<"/" ; show_vertex(fh->neighbor(2)->vertex(1)); std::cerr <<"/" ; show_vertex(fh->neighbor(2)->vertex(2)); std::cerr <<"]" < void Triangulation_2:: file_output(std::ostream& os) const { _tds.file_output(os, infinite_vertex(), true); } template typename Triangulation_2::Vertex_handle Triangulation_2:: file_input(std::istream& is) { clear(); Vertex_handle v= _tds.file_input(is, true); set_infinite_vertex(v); return v; } template std::ostream& operator<<(std::ostream& os, const Triangulation_2 &tr) { tr.file_output(os); return os ; } template < class Gt, class Tds > std::istream& operator>>(std::istream& is, Triangulation_2 &tr) { tr.file_input(is); CGAL_triangulation_assertion(tr.is_valid()); return is; } } //namespace CGAL #include #endif //CGAL_TRIANGULATION_2_H