// Copyright (c) 2005 Rijksuniversiteit Groningen (Netherlands) // All rights reserved. // // This file is part of CGAL (www.cgal.org). // You can redistribute it and/or modify it under the terms of the GNU // General Public License as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: GPL-3.0+ // // // Author(s) : Nico Kruithof #ifndef CGAL_TRIANGULATE_MIXED_COMPLEX_3 #define CGAL_TRIANGULATE_MIXED_COMPLEX_3 #include // #include #include #include #include #include #include #include // NGHK: move this one to SkinSurfaceTraits #include #include namespace CGAL { template > class Mixed_complex_triangulator_3 { public: typedef typename RegularTriangulation_3::Geom_traits Regular_traits; typedef RegularTriangulation_3 Regular; typedef TriangulatedMixedComplex_3 Triangulated_mixed_complex; typedef TriangulatedMixedComplexObserver_3 Triangulated_mixed_complex_observer; private: typedef typename Regular::Vertex_handle Rt_Vertex_handle; typedef typename Regular::Edge Rt_Edge; typedef typename Regular::Facet Rt_Facet; typedef typename Regular::Cell_handle Rt_Cell_handle; typedef typename Regular::Finite_vertices_iterator Rt_Finite_vertices_iterator; typedef typename Regular::Finite_edges_iterator Rt_Finite_edges_iterator; typedef typename Regular::Finite_facets_iterator Rt_Finite_facets_iterator; typedef typename Regular::All_cells_iterator Rt_All_cells_iterator; typedef typename Regular::Finite_cells_iterator Rt_Finite_cells_iterator; typedef typename Regular::Cell_circulator Rt_Cell_circulator; typedef Triangulation_simplex_3 Rt_Simplex; typedef typename Regular::Bare_point Rt_Bare_point; typedef typename Regular_traits::FT Rt_FT; typedef typename Regular::Weighted_point Rt_Weighted_point; typedef typename Triangulated_mixed_complex::Vertex_handle Tmc_Vertex_handle; typedef typename Triangulated_mixed_complex::Edge Tmc_Edge; typedef typename Triangulated_mixed_complex::Facet Tmc_Facet; typedef typename Triangulated_mixed_complex::Cell_handle Tmc_Cell_handle; typedef typename Triangulated_mixed_complex::Finite_vertices_iterator Tmc_Finite_vertices_iterator; typedef typename Triangulated_mixed_complex::Finite_edges_iterator Tmc_Finite_edges_iterator; typedef typename Triangulated_mixed_complex::Finite_facets_iterator Tmc_Finite_facets_iterator; typedef typename Triangulated_mixed_complex::All_cells_iterator Tmc_All_cells_iterator; typedef typename Triangulated_mixed_complex::Finite_cells_iterator Tmc_Finite_cells_iterator; typedef typename Triangulated_mixed_complex::Cell_circulator Tmc_Cell_circulator; typedef typename Triangulated_mixed_complex::Geom_traits Tmc_traits; typedef typename Tmc_traits::Point_3 Tmc_Point; typedef typename Tmc_traits::RT Tmc_RT; typedef Triangulation_incremental_builder_3 Triangulation_incremental_builder; typedef Compute_anchor_3 Compute_anchor; typedef std::pair Symb_anchor; // You might get type differences here: // The map that maps a Rt_Simplex to an iterator of the map // (used as union_find_structure) // struct Anchor_map_iterator_tmp; // typedef std::map Anchor_map; // struct Anchor_map_iterator_tmp : Anchor_map::iterator { // Anchor_map_iterator_tmp() // : Anchor_map::iterator() {} // Anchor_map_iterator_tmp(typename Anchor_map::iterator const &it) // : Anchor_map::iterator(it) {} // }; // typedef typename Anchor_map::iterator Anchor_map_iterator; typedef Union_find Union_find_anchor; typedef std::map Simplex_UF_map; public: Mixed_complex_triangulator_3(Regular ®ular, Rt_FT const &shrink, Triangulated_mixed_complex &triangulated_mixed_complex, Triangulated_mixed_complex_observer &observer, bool verbose) : regular(regular), shrink(shrink), _tmc(triangulated_mixed_complex), observer(observer), triangulation_incr_builder(triangulated_mixed_complex), r2t_converter_object(), construct_anchor_point_3_obj(r2t_converter_object(shrink)), compute_anchor_obj(regular), verbose(verbose) { build(); } private: void build() { triangulation_incr_builder.begin_triangulation(3); if (verbose) std::cout << "Construct vertices" << std::endl; construct_vertices(); // mixed cells corresponding to regular vertices if (verbose) std::cout << "Construct 0 cells" << std::endl; for (Rt_Finite_vertices_iterator vit = regular.finite_vertices_begin(); vit != regular.finite_vertices_end(); vit ++) { construct_0_cell(vit); } // mixed cells corresponding to regular edges if (verbose) std::cout << "Construct 1 cells" << std::endl; for (Rt_Finite_edges_iterator eit = regular.finite_edges_begin(); eit != regular.finite_edges_end(); eit ++) { construct_1_cell(eit); } // mixed cells corresponding to regular facets if (verbose) std::cout << "Construct 2 cells" << std::endl; for (Rt_Finite_facets_iterator fit = regular.finite_facets_begin(); fit != regular.finite_facets_end(); fit ++) { construct_2_cell(fit); } // mixed cells corresponding to regular cells if (verbose) std::cout << "Construct 3 cells" << std::endl; for (Rt_Finite_cells_iterator cit = regular.finite_cells_begin(); cit != regular.finite_cells_end(); cit++) { construct_3_cell(cit); } triangulation_incr_builder.end_triangulation(); anchors.clear(); } Tmc_Vertex_handle add_vertex(Symb_anchor const &anchor); Tmc_Cell_handle add_cell(Tmc_Vertex_handle vh[], int orient, Rt_Simplex s); Tmc_Vertex_handle get_vertex(Rt_Simplex &sDel, Rt_Simplex &sVor); void construct_anchor_del(Rt_Simplex const &sDel); void construct_anchor_vor(Rt_Simplex const &sVor); void construct_anchors(); Rt_Simplex &get_anchor_del(Rt_Simplex const &sDel) { typename Simplex_UF_map::iterator it = anchor_del_map.find(sDel); CGAL_assertion(it != anchor_del_map.end()); return *anchor_del_uf.find(it->second); } Rt_Simplex &get_anchor_vor(Rt_Simplex const &sVor) { typename Simplex_UF_map::iterator it = anchor_vor_map.find(sVor); CGAL_assertion(it != anchor_vor_map.end()); return *anchor_vor_uf.find(it->second); } // Anchor_map_iterator find_anchor(Anchor_map &a_map, Rt_Simplex const&s) { // return find_anchor(a_map, a_map.find(s)); // } // Anchor_map_iterator find_anchor(Anchor_map &a_map, // Anchor_map_iterator const&it) // { // CGAL_assertion(it != a_map.end()); // Anchor_map_iterator it2 = it->second; // while (it2 != it2->second) { // it->second = it2->second; // // NGHK: changed the type for the map-iterator-hack // it2->second = it; // it2 = it->second; // } // return it2; // } void construct_vertices(); Tmc_Point get_weighted_circumcenter(Rt_Simplex const &s); Tmc_Point get_anchor(Rt_Simplex const &sDel, Rt_Simplex const &sVor); template Point construct_anchor_point(const Point ¢er_del, const Point ¢er_vor) { return construct_anchor_point_3_obj(center_del,center_vor); } void construct_0_cell(Rt_Vertex_handle rt_vh); void construct_1_cell(const Rt_Finite_edges_iterator &eit); void construct_2_cell(const Rt_Finite_facets_iterator &fit); void construct_3_cell(Rt_Cell_handle rt_ch); void remove_small_edges(); bool is_collapsible(Tmc_Vertex_handle vh, Tmc_Vertex_handle &vh_collapse_to, Tmc_RT sq_length); void do_collapse(Tmc_Vertex_handle vh, Tmc_Vertex_handle vh_collapse_to); Sign orientation(Tmc_Cell_handle ch); private: Regular const ®ular; Rt_FT const &shrink; Triangulated_mixed_complex &_tmc; Triangulated_mixed_complex_observer &observer; Triangulation_incremental_builder triangulation_incr_builder; typename Tmc_traits::Construct_weighted_circumcenter_3 weighted_circumcenter_obj; Cartesian_converter r2t_converter_object; Construct_anchor_point_3 construct_anchor_point_3_obj; typename Tmc_traits::Compute_squared_radius_smallest_orthogonal_sphere_3 orthoweight_obj; Compute_anchor_3 compute_anchor_obj; bool verbose; static const int edge_index[4][4]; struct Index_c4 { Tmc_Vertex_handle V[4]; }; struct Index_c6 { Tmc_Vertex_handle V[6]; }; struct Index_c44 { Tmc_Vertex_handle V[4][4]; }; struct Index_v { Unique_hash_map < Rt_Vertex_handle, Tmc_Vertex_handle > V; }; // index to vertex Unique_hash_map < Rt_Cell_handle, Index_c4 > index_03; Union_find_anchor anchor_del_uf, anchor_vor_uf; Simplex_UF_map anchor_del_map, anchor_vor_map; // Anchor_map anchor_del2, anchor_vor2; std::map anchors; }; template const int Mixed_complex_triangulator_3:: edge_index[4][4] = {{-1,0,1,2},{0,-1,3,4},{1,3,-1,5},{2,4,5,-1}}; template void Mixed_complex_triangulator_3:: construct_anchor_del(Rt_Simplex const &sDel) { Rt_Simplex s = compute_anchor_obj.anchor_del(sDel); typename Union_find_anchor::handle sDel_handle, s_handle; sDel_handle = anchor_del_uf.make_set(sDel); anchor_del_map[sDel] = sDel_handle; typename Simplex_UF_map::iterator s_it = anchor_del_map.find(s); CGAL_assertion(s_it != anchor_del_map.end()); anchor_del_uf.unify_sets(sDel_handle, s_it->second); // degenerate simplices: if (compute_anchor_obj.is_degenerate()) { typename Compute_anchor::Simplex_iterator degenerate_it; typename Simplex_UF_map::iterator deg_map_it; for (degenerate_it = compute_anchor_obj.equivalent_anchors_begin(); degenerate_it != compute_anchor_obj.equivalent_anchors_end(); degenerate_it++) { deg_map_it = anchor_del_map.find(*degenerate_it); CGAL_assertion(deg_map_it != anchor_del_map.end()); anchor_del_uf.unify_sets(sDel_handle, deg_map_it->second); } } } template void Mixed_complex_triangulator_3:: construct_anchor_vor(Rt_Simplex const &sVor) { Rt_Simplex s = compute_anchor_obj.anchor_vor(sVor); typename Union_find_anchor::handle sVor_handle, s_handle; sVor_handle = anchor_vor_uf.make_set(sVor); anchor_vor_map[sVor] = sVor_handle; typename Simplex_UF_map::iterator s_it = anchor_vor_map.find(s); CGAL_assertion(s_it != anchor_vor_map.end()); anchor_vor_uf.unify_sets(sVor_handle, s_it->second); // degenerate simplices: if (compute_anchor_obj.is_degenerate()) { typename Compute_anchor::Simplex_iterator degenerate_it; typename Simplex_UF_map::iterator deg_map_it; for (degenerate_it = compute_anchor_obj.equivalent_anchors_begin(); degenerate_it != compute_anchor_obj.equivalent_anchors_end(); degenerate_it++) { deg_map_it = anchor_vor_map.find(*degenerate_it); // Possibly not found for 2 Voronoi vertices with the same center, // If the first vertex is inserted and the second is already found. // see compute_anchor_obj.anchor_vor(Cell_handle) if (deg_map_it != anchor_vor_map.end()) { anchor_vor_uf.unify_sets(sVor_handle, deg_map_it->second); } } } // Rt_Simplex s = compute_anchor_obj.anchor_vor(sVor); // anchor_vor2[sVor] = Anchor_map_iterator(); // // Anchor_map_iterator it = anchor_vor2.find(sVor); // Anchor_map_iterator it2 = anchor_vor2.find(s); // CGAL_assertion(it != anchor_vor2.end()); // CGAL_assertion(it2 != anchor_vor2.end()); // it->second = it2; // // // degenerate simplices: // if (compute_anchor_obj.is_degenerate()) { // it = find_anchor(anchor_vor2, it); // typename Compute_anchor::Simplex_iterator degenerate_it; // for (degenerate_it = compute_anchor_obj.equivalent_anchors_begin(); // degenerate_it != compute_anchor_obj.equivalent_anchors_end(); // degenerate_it++) { // Anchor_map_iterator tmp; // it2 = anchor_vor2.find(*degenerate_it); // // Possibly not found for 2 Voronoi vertices with the same center, // // If the first vertex is inserted and the second is already found. // // see compute_anchor_obj.anchor_vor(Cell_handle) // if (it2 != anchor_vor2.end()) { // CGAL_assertion(it2 != anchor_vor2.end()); // // Merge sets: // while (it2 != it2->second) { // tmp = it2->second; // it2->second = it->second; // it2 = tmp; // CGAL_assertion(it2 != anchor_vor2.end()); // } // it2->second = it->second; // } // } // } } template void Mixed_complex_triangulator_3:: construct_anchors() { Rt_Finite_vertices_iterator vit; Rt_Finite_edges_iterator eit; Rt_Finite_facets_iterator fit; Rt_Finite_cells_iterator cit; Rt_Simplex s; // Compute anchor points: for (vit=regular.finite_vertices_begin(); vit!=regular.finite_vertices_end(); vit++) { construct_anchor_del(Rt_Simplex(vit)); } for (eit=regular.finite_edges_begin(); eit!=regular.finite_edges_end(); eit++) { s = Rt_Simplex(*eit); construct_anchor_del(s); CGAL_assertion(s.dimension() == 1); } for (fit=regular.finite_facets_begin(); fit!=regular.finite_facets_end(); fit++) { s = Rt_Simplex(*fit); construct_anchor_del(s); CGAL_assertion(s.dimension() == 2); } for (cit=regular.finite_cells_begin(); cit!=regular.finite_cells_end(); cit++) { s = Rt_Simplex(cit); construct_anchor_del(s); construct_anchor_vor(s); CGAL_assertion(s.dimension() == 3); } for (fit=regular.finite_facets_begin(); fit!=regular.finite_facets_end(); fit++) { s = Rt_Simplex(*fit); construct_anchor_vor(s); CGAL_assertion(s.dimension() == 2); } for (eit=regular.finite_edges_begin(); eit!=regular.finite_edges_end(); eit++) { s = Rt_Simplex(*eit); construct_anchor_vor(s); CGAL_assertion(s.dimension() == 1); } for (vit=regular.finite_vertices_begin(); vit!=regular.finite_vertices_end(); vit++) { CGAL_assertion(vit->cell() != Rt_Cell_handle()); s = Rt_Simplex(vit); construct_anchor_vor(s); CGAL_assertion(s.dimension() == 0); } } // Constructs the vertices of the simplicial complex template void Mixed_complex_triangulator_3:: construct_vertices() { Rt_All_cells_iterator acit; Rt_Finite_cells_iterator cit; Rt_Finite_facets_iterator fit; Rt_Finite_edges_iterator eit; Rt_Finite_vertices_iterator vit; Rt_Cell_circulator ccir, cstart; Rt_Vertex_handle v1, v2, v3; Rt_Edge e; Rt_Cell_handle c1, c2; Rt_Simplex sDel, sVor; Tmc_Vertex_handle vh; if (verbose) std::cout << "construct_anchors" << std::endl; construct_anchors(); if (verbose) std::cout << "9 "; // anchor dimDel=0, dimVor=3 for (cit=regular.finite_cells_begin(); cit!=regular.finite_cells_end(); cit++) { sVor = get_anchor_vor(Rt_Simplex(cit)); for (int i=0; i<4; i++) { sDel = get_anchor_del(Rt_Simplex(cit->vertex(i))); if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) { vh = add_vertex(Symb_anchor(sDel,sVor)); anchors[Symb_anchor(sDel,sVor)] = vh; CGAL_assertion(vh == get_vertex(sDel, sVor)); } } } if (verbose) std::cout << "8 "; // anchor dimDel=1, dimVor=3 for (cit=regular.finite_cells_begin(); cit!=regular.finite_cells_end(); cit++) { sVor = get_anchor_vor(Rt_Simplex(cit)); for (int i=0; i<3; i++) { for (int j=i+1; j<4; j++) { sDel = get_anchor_del(Rt_Simplex(Rt_Edge(cit,i,j))); if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) { vh = add_vertex(Symb_anchor(sDel,sVor)); anchors[Symb_anchor(sDel,sVor)] = vh; CGAL_assertion(vh == get_vertex(sDel, sVor)); } } } } if (verbose) std::cout << "7 "; // anchor dimDel=2, dimVor=3 and dimDel=0, dimVor=2 for (fit=regular.finite_facets_begin(); fit!=regular.finite_facets_end(); fit++) { // anchor dimDel=2, dimVor=3 c1 = fit->first; c2 = c1->neighbor(fit->second); sDel = get_anchor_del(*fit); if (!regular.is_infinite(c1)) { sVor = get_anchor_vor(c1); if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) { vh = add_vertex(Symb_anchor(sDel,sVor)); anchors[Symb_anchor(sDel,sVor)] = vh; CGAL_assertion(vh == get_vertex(sDel, sVor)); } } if (!regular.is_infinite(c2)) { sVor = get_anchor_vor(c2); if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) { vh = add_vertex(Symb_anchor(sDel,sVor)); anchors[Symb_anchor(sDel,sVor)] = vh; CGAL_assertion(vh == get_vertex(sDel, sVor)); } } // anchor dimDel=0, dimVor=2 sVor = get_anchor_vor(*fit); for (int i=1; i<4; i++) { sDel = get_anchor_del(Rt_Simplex(c1->vertex((fit->second+i)&3))); if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) { vh = add_vertex(Symb_anchor(sDel,sVor)); anchors[Symb_anchor(sDel,sVor)] = vh; CGAL_assertion(vh == get_vertex(sDel, sVor)); } else { vh = get_vertex(sDel, sVor); } } } if (verbose) std::cout << "6 "; // anchor dimDel=0, dimVor=1 for (eit=regular.finite_edges_begin(); eit!=regular.finite_edges_end(); eit++) { sVor = get_anchor_vor(*eit); v1 = eit->first->vertex(eit->second); v2 = eit->first->vertex(eit->third); sDel = get_anchor_del(v1); if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) { vh = add_vertex(Symb_anchor(sDel,sVor)); anchors[Symb_anchor(sDel,sVor)] = vh; CGAL_assertion(vh == get_vertex(sDel, sVor)); } sDel = get_anchor_del(v2); if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) { vh = add_vertex(Symb_anchor(sDel,sVor)); anchors[Symb_anchor(sDel,sVor)] = vh; CGAL_assertion(vh == get_vertex(sDel, sVor)); } } if (verbose) std::cout << "5 "; // anchor dimDel=3, dimVor=3 for (cit=regular.finite_cells_begin(); cit!=regular.finite_cells_end(); cit++) { sDel = get_anchor_del(Rt_Simplex(cit)); sVor = get_anchor_vor(Rt_Simplex(cit)); if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) { vh = add_vertex(Symb_anchor(sDel,sVor)); anchors[Symb_anchor(sDel,sVor)] = vh; CGAL_assertion(vh == get_vertex(sDel, sVor)); } } if (verbose) std::cout << "4 "; // anchor dimDel=0, dimVor=0 for (vit=regular.finite_vertices_begin(); vit!=regular.finite_vertices_end(); vit++) { sDel = get_anchor_del(Rt_Simplex(vit)); sVor = get_anchor_vor(Rt_Simplex(vit)); if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) { vh = add_vertex(Symb_anchor(sDel,sVor)); anchors[Symb_anchor(sDel,sVor)] = vh; CGAL_assertion(vh == get_vertex(sDel, sVor)); } } if (verbose) std::cout << "3 "; // anchor dimDel=1, dimVor=2 for (fit=regular.finite_facets_begin(); fit!=regular.finite_facets_end(); fit++) { c1 = fit->first; c2 = c1->neighbor(fit->second); sVor = get_anchor_vor(Rt_Simplex(*fit)); for (int i=1; i<3; i++) { for (int j=i+1; j<4; j++) { e.first = c1; e.second = (fit->second+i)&3; e.third = (fit->second+j)&3; sDel = get_anchor_del(Rt_Simplex(e)); if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) { vh = add_vertex(Symb_anchor(sDel,sVor)); anchors[Symb_anchor(sDel,sVor)] = vh; CGAL_assertion(vh == get_vertex(sDel, sVor)); } } } } if (verbose) std::cout << "2 "; // anchor dimDel=2, dimVor=2 for (fit=regular.finite_facets_begin(); fit!=regular.finite_facets_end(); fit++) { c1 = fit->first; c2 = c1->neighbor(fit->second); sVor = get_anchor_vor(Rt_Simplex(*fit)); sDel = get_anchor_del(Rt_Simplex(*fit)); if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) { vh = add_vertex(Symb_anchor(sDel,sVor)); anchors[Symb_anchor(sDel,sVor)] = vh; CGAL_assertion(vh == get_vertex(sDel, sVor)); } } if (verbose) std::cout << "1" << std::endl; // anchor dimDel=1, dimVor=1 for (eit=regular.finite_edges_begin(); eit!=regular.finite_edges_end(); eit++) { v1 = eit->first->vertex(eit->second); v2 = eit->first->vertex(eit->third); sVor = get_anchor_vor(Rt_Simplex(*eit)); sDel = get_anchor_del(Rt_Simplex(*eit)); if (anchors.find(Symb_anchor(sDel,sVor)) == anchors.end()) { vh = add_vertex(Symb_anchor(sDel,sVor)); anchors[Symb_anchor(sDel,sVor)] = vh; CGAL_assertion(vh == get_vertex(sDel, sVor)); } } } // Constructs the cells of the mixed complex corresponding // to Regular vertices template void Mixed_complex_triangulator_3< RegularTriangulation_3, TriangulatedMixedComplex_3, TriangulatedMixedComplexObserver_3>:: construct_0_cell(Rt_Vertex_handle rt_vh) { Rt_Simplex sDel_v, sVor_v, sVor_e, sVor_f, sVor_c; Tmc_Vertex_handle vh[4]; Rt_Simplex simplex(rt_vh); sDel_v = get_anchor_del(Rt_Simplex(rt_vh)); sVor_v = get_anchor_vor(Rt_Simplex(rt_vh)); vh[0] = get_vertex(sDel_v,sVor_v); std::list adj_cells; typename std::list::iterator adj_cell; regular.incident_cells(rt_vh, std::back_inserter(adj_cells)); // Construct cells: for (adj_cell = adj_cells.begin(); adj_cell != adj_cells.end(); adj_cell ++) { if (!regular.is_infinite(*adj_cell)) { sVor_c = get_anchor_vor(Rt_Simplex(*adj_cell)); vh[3] = get_vertex(sDel_v,sVor_c); int index = (*adj_cell)->index(rt_vh); for (int i=1; i<4; i++) { sVor_f = get_anchor_vor(Rt_Simplex(Rt_Facet(*adj_cell,(index+i)&3))); vh[2] = get_vertex(sDel_v,sVor_f); for (int j=1; j<4; j++) { if (j!=i) { sVor_e = get_anchor_vor( Rt_Simplex(Rt_Edge(*adj_cell,index,(index+j)&3))); vh[1] = get_vertex(sDel_v,sVor_e); if ((vh[0] != vh[1]) && (vh[1] != vh[2]) && (vh[2] != vh[3])) { CGAL_assertion(sVor_v != sVor_e); CGAL_assertion(sVor_e != sVor_f); CGAL_assertion(sVor_f != sVor_c); // Tmc_Cell_handle ch = add_cell(vh,(index + (j==(i%3+1)? 1:0))&1,simplex); } } } } } } } // Constructs 1-cells of the mixed complex corresponding to edges // of the regular triangulation template < class RegularTriangulation_3, class TriangulatedMixedComplex_3, class TriangulatedMixedComplexObserver_3> void Mixed_complex_triangulator_3:: construct_1_cell(const Rt_Finite_edges_iterator &e) { Rt_Simplex sDel_v, sDel_e, sVor_e, sVor_f, sVor_c; Tmc_Vertex_handle vh[4]; Rt_Vertex_handle v[2]; Tmc_Cell_handle ch; Rt_Simplex mixed_cell_simplex(*e); sDel_e = get_anchor_del(Rt_Simplex(*e)); sVor_e = get_anchor_vor(Rt_Simplex(*e)); v[0] = e->first->vertex(e->second); v[1] = e->first->vertex(e->third); // Construct cells on the side of v[vi]: for (int vi=0; vi<2; vi++) { sDel_v = get_anchor_del(Rt_Simplex(v[vi])); if (!(sDel_v == sDel_e)) { Rt_Cell_circulator ccir, cstart; ccir = cstart = regular.incident_cells(*e); do { if (!regular.is_infinite(ccir)) { int index0 = ccir->index(v[vi]); int index1 = ccir->index(v[1-vi]); sVor_c = get_anchor_vor(Rt_Simplex(ccir)); for (int fi=1; fi<4; fi++) { if (((index0+fi)&3) != index1) { sVor_f = get_anchor_vor(Rt_Simplex(Rt_Facet(ccir,(index0+fi)&3))); if ((sVor_c != sVor_f) && (sVor_f != sVor_e)) { vh[0] = get_vertex(sDel_v, sVor_e); vh[1] = get_vertex(sDel_e, sVor_e); vh[2] = get_vertex(sDel_e, sVor_f); vh[3] = get_vertex(sDel_e, sVor_c); int orient; if (((4+index1-index0)&3) == 1) { orient = (index1 + (fi==2))&1; } else { orient = (index1 + (fi==1))&1; } // vh: dimension are (01,11,12,13) ch = add_cell(vh,orient,mixed_cell_simplex); vh[1] = get_vertex(sDel_v, sVor_f); // vh: dimension are (01,02,12,13) ch = add_cell(vh,1-orient,mixed_cell_simplex); vh[2] = get_vertex(sDel_v, sVor_c); // vh: dimension are (01,02,03,13) ch = add_cell(vh,orient,mixed_cell_simplex); } } } } ccir ++; } while (ccir != cstart); } } } // Constructs 2-cells of the mixed complex corresponding to facets // of the regular triangulation template void Mixed_complex_triangulator_3:: construct_2_cell(const Rt_Finite_facets_iterator &fit) { Rt_Simplex sDel_v, sDel_e, sDel_f, sVor_f, sVor_c; Tmc_Vertex_handle vh[4]; // Implicit function over vLabels is increasing ... Rt_Cell_handle rt_ch; int index; rt_ch = fit->first; index = fit->second; Rt_Simplex simplex(*fit); sDel_f = get_anchor_del(Rt_Simplex(*fit)); sVor_f = get_anchor_vor(Rt_Simplex(*fit)); for (int i=0; i<2; i++) { // Do this twice if (!regular.is_infinite(rt_ch)) { sVor_c = get_anchor_vor(Rt_Simplex(rt_ch)); vh[3] = get_vertex(sDel_f, sVor_c); Tmc_Vertex_handle vh2 = get_vertex(sDel_f, sVor_f); if (vh2 != vh[3]) { // Facet and cell do not coincide .. for (int vi=1; vi<4; vi++) { sDel_v = get_anchor_del(Rt_Simplex(rt_ch->vertex((index+vi)&3))); //index_02[rt_ch].V[index][(index+vi)&3]; vh[0] = get_vertex(sDel_v, sVor_f); for (int ei=1; ei<4; ei++) { if (vi != ei) { vh[2] = vh2; int index0 = (index+vi)&3; int index1 = (index+ei)&3; int fi = (6+index-vi-ei)&3;//6-index-index0-index1; sDel_e = get_anchor_del(Rt_Simplex(Rt_Edge(rt_ch, index0, index1))); vh[1] = get_vertex(sDel_e, sVor_f); //index_12[rt_ch].V[index][(6+index-vi-ei)&3]; if ((vh[0] != vh[1]) && (vh[1] != vh[2])) { // index0: v0 // index1: v1 // index0+fi&3 == facet int orient; if (((4+index1-index0)&3) == 3) { orient = (index1 + (((4+index0-fi)&3)==2))&1; } else { orient = (index1 + (((4+index0-fi)&3)==1))&1; } add_cell(vh,orient,simplex); vh[2] = get_vertex(sDel_e, sVor_c); add_cell(vh,1-orient,simplex); vh[1] = get_vertex(sDel_v, sVor_c); add_cell(vh,orient,simplex); } } } } } } // swap to the other cell Rt_Cell_handle ch_old = rt_ch; rt_ch = rt_ch->neighbor(index); index = rt_ch->index(ch_old); } CGAL_assertion(rt_ch == fit->first); CGAL_assertion(index == fit->second); } // Constructs 3-cells of the mixed complex corresponding to cells // of the regular triangulation template void Mixed_complex_triangulator_3:: construct_3_cell(Rt_Cell_handle rt_ch) { Rt_Simplex sDel_v, sDel_e, sDel_f, sDel_c, sVor_c; Tmc_Vertex_handle vh[4]; Tmc_Cell_handle ch; // construct the tetrahedron: // C[ch], C[Facet(ch,fi)], C[Edge(ch,ei,vi)], C[ch->vertex(vi)] sDel_c = get_anchor_del(Rt_Simplex(rt_ch)); sVor_c = get_anchor_vor(Rt_Simplex(rt_ch)); Rt_Simplex simplex = Rt_Simplex(rt_ch); vh[0] = get_vertex(sDel_c, sVor_c); for (int fi=0; fi<4; fi++) { sDel_f = get_anchor_del(Rt_Simplex(Rt_Facet(rt_ch, fi))); vh[1] = get_vertex(sDel_f, sVor_c); if (vh[0] != vh[1]) { for (int vi=1; vi<4; vi++) { int index0 = (fi+vi)&3; sDel_v = get_anchor_del(Rt_Simplex(rt_ch->vertex(index0))); for (int ei=1; ei<4; ei++) { int index1 = (fi+ei)&3; if (vi != ei) { sDel_e = get_anchor_del(Rt_Simplex(Rt_Edge(rt_ch, index0, index1))); vh[2] = get_vertex(sDel_e, sVor_c); // index_13[rt_ch].V[edge_index[index0][index1]]; vh[3] = get_vertex(sDel_v, sVor_c); // index_03[rt_cit].V[index0]; if ((vh[1] != vh[2]) && (vh[2] != vh[3])) { int orient; if (((4+index1-index0)&3) == 1) { orient = (index1 + (vi==2))&1; } else { orient = (index1 + (vi==3))&1; } ch = add_cell(vh, orient, simplex); } } } } } } } // Adds a vertex to the simplicial complex template typename Mixed_complex_triangulator_3< RegularTriangulation_3, TriangulatedMixedComplex_3, TriangulatedMixedComplexObserver_3>::Tmc_Vertex_handle Mixed_complex_triangulator_3:: add_vertex (Symb_anchor const &anchor) { Tmc_Vertex_handle vh; vh = triangulation_incr_builder.add_vertex(); observer.after_vertex_insertion(anchor.first, anchor.second, vh); Protect_FPU_rounding P; vh->point() = get_anchor(anchor.first, anchor.second); // std::cout << "@ [" // << vh->info().first << " - " // << vh->info().second << "] -- [" // << vh->point() << "] -- [" // << get_weighted_circumcenter(vh->info().first) << " - " // << get_weighted_circumcenter(vh->info().second) // << "]" << std::endl; return vh; } // Gets a vertex from the simplicial complex based on the anchors template typename Mixed_complex_triangulator_3< RegularTriangulation_3, TriangulatedMixedComplex_3, TriangulatedMixedComplexObserver_3>::Tmc_Vertex_handle Mixed_complex_triangulator_3:: get_vertex(Rt_Simplex &sDel, Rt_Simplex &sVor) { Rt_Simplex sDel2 = get_anchor_del(sDel); Rt_Simplex sVor2 = get_anchor_vor(sVor); CGAL_assertion(sDel == sDel2); CGAL_assertion(sVor == sVor2); Tmc_Vertex_handle vh = anchors[Symb_anchor(sDel2,sVor2)]; CGAL_assertion(vh != Tmc_Vertex_handle()); return vh; } // Adds a cell to the simplicial complex template typename Mixed_complex_triangulator_3< RegularTriangulation_3, TriangulatedMixedComplex_3, TriangulatedMixedComplexObserver_3>::Tmc_Cell_handle Mixed_complex_triangulator_3:: add_cell(Tmc_Vertex_handle vh[], int orient, Rt_Simplex s) { CGAL_assertion((orient==0) || (orient==1)); CGAL_assertion(vh[0] != Tmc_Vertex_handle()); CGAL_assertion(vh[1] != Tmc_Vertex_handle()); CGAL_assertion(vh[2] != Tmc_Vertex_handle()); CGAL_assertion(vh[3] != Tmc_Vertex_handle()); CGAL_assertion(vh[0] != vh[1]); CGAL_assertion(vh[0] != vh[2]); CGAL_assertion(vh[0] != vh[3]); CGAL_assertion(vh[1] != vh[2]); CGAL_assertion(vh[1] != vh[3]); CGAL_assertion(vh[2] != vh[3]); Tmc_Cell_handle ch; if (orient) { ch = triangulation_incr_builder.add_cell(vh[0], vh[1], vh[2], vh[3]); } else { ch = triangulation_incr_builder.add_cell(vh[0], vh[1], vh[3], vh[2]); } CGAL_assertion(orientation(ch) == POSITIVE); observer.after_cell_insertion(s, ch); return ch; } template typename Mixed_complex_triangulator_3< RegularTriangulation_3, TriangulatedMixedComplex_3, TriangulatedMixedComplexObserver_3>::Tmc_Point Mixed_complex_triangulator_3:: get_weighted_circumcenter(Rt_Simplex const &s) { Rt_Vertex_handle vh; Rt_Edge e; Rt_Facet f; Rt_Cell_handle ch; Tmc_Point result; switch (s.dimension()) { case 0: vh=s; result = Tmc_traits().construct_point_3_object()(r2t_converter_object(vh->point())); break; case 1: e=s; result = weighted_circumcenter_obj( r2t_converter_object(e.first->vertex(e.second)->point()), r2t_converter_object(e.first->vertex(e.third)->point())); break; case 2: f=s; result = weighted_circumcenter_obj( r2t_converter_object(f.first->vertex((f.second+1)&3)->point()), r2t_converter_object(f.first->vertex((f.second+2)&3)->point()), r2t_converter_object(f.first->vertex((f.second+3)&3)->point())); break; case 3: ch=s; result = weighted_circumcenter_obj( r2t_converter_object(ch->vertex(0)->point()), r2t_converter_object(ch->vertex(1)->point()), r2t_converter_object(ch->vertex(2)->point()), r2t_converter_object(ch->vertex(3)->point())); break; default: CGAL_error(); } return result; } template typename Mixed_complex_triangulator_3< RegularTriangulation_3, TriangulatedMixedComplex_3, TriangulatedMixedComplexObserver_3>::Tmc_Point Mixed_complex_triangulator_3:: get_anchor(Rt_Simplex const &sDel, Rt_Simplex const &sVor) { Protect_FPU_rounding P; Tmc_Point dfoc = get_weighted_circumcenter(sDel); Tmc_Point vfoc = get_weighted_circumcenter(sVor); return construct_anchor_point(dfoc, vfoc); } template void Mixed_complex_triangulator_3:: remove_small_edges() { Bbox_3 bbox; for (Tmc_Finite_vertices_iterator vit = _tmc.finite_vertices_begin(); vit != _tmc.finite_vertices_end(); vit++) { bbox = bbox+vit->point().bbox(); } // Tmc_RT sq_length = ((bbox.xmax()-bbox.xmin())*(bbox.xmax()-bbox.xmin()) + // (bbox.ymax()-bbox.ymin())*(bbox.ymax()-bbox.ymin()) + // (bbox.zmax()-bbox.zmin())*(bbox.zmax()-bbox.zmin()))/100000000; Tmc_RT sq_length = 1e-6; // NGHK: This may intrudoce rounding errors, since the quadratic surface // may change: Tmc_Vertex_handle vh, vh_collapse_to; for (Tmc_Finite_vertices_iterator vit = _tmc.finite_vertices_begin(); vit != _tmc.finite_vertices_end(); ) { vh = vit; vit++; if (is_collapsible(vh, vh_collapse_to,sq_length)) { do_collapse(vh,vh_collapse_to); } } } template bool Mixed_complex_triangulator_3:: is_collapsible(Tmc_Vertex_handle vh, Tmc_Vertex_handle &vh_collapse_to, Tmc_RT sq_length) { std::vector incident_cells; CGAL_assertion(_tmc.is_vertex(vh)); incident_cells.reserve(64); _tmc.incident_cells(vh, std::back_inserter(incident_cells)); std::set incident_vertices; for(typename std::vector::iterator cit = incident_cells.begin(); cit != incident_cells.end(); ++cit) { // Put all incident vertices in incident_vertices. for (int j=0; j<4; ++j) if ((*cit)->vertex(j) != vh) incident_vertices.insert((*cit)->vertex(j)); } for (typename std::set::iterator it = incident_vertices.begin(); it != incident_vertices.end(); it++) { if ((_tmc.geom_traits().compute_squared_distance_3_object()(vh->point(), (*it)->point()) < sq_length) && (vh->cell()->surf == (*it)->cell()->surf) && (vh->sign() == (*it)->sign())) { bool ok = true; for (typename std::vector::iterator cit = incident_cells.begin(); ok && (cit != incident_cells.end()); cit++) { if (!(*cit)->has_vertex(*it)) { const Tmc_Point* pts[4] = { &((*cit)->vertex(0)->point()), &((*cit)->vertex(1)->point()), &((*cit)->vertex(2)->point()), &((*cit)->vertex(3)->point()) }; pts[(*cit)->index(vh)] = &(*it)->point(); ok = (_tmc.geom_traits().orientation_3_object() (*pts[0],*pts[1],*pts[2],*pts[3]) == CGAL::POSITIVE); } } if (ok) { vh_collapse_to = *it; return true; } } } return false; } template void Mixed_complex_triangulator_3:: do_collapse(Tmc_Vertex_handle vh, Tmc_Vertex_handle vh_collapse_to) { std::vector incident_cells; incident_cells.reserve(32); _tmc.incident_cells(vh, std::back_inserter(incident_cells)); int i, i2; for (typename std::vector::iterator it = incident_cells.begin(); it != incident_cells.end(); it++) { i = (*it)->index(vh); if ((*it)->has_vertex(vh_collapse_to,i2)) { // This cell is collapsed, set neighbor information of the new facet // and set the cell-pointer of the incident vertices. Tmc_Cell_handle ch1 = (*it)->neighbor(i); Tmc_Cell_handle ch2 = (*it)->neighbor(i2); ch1->set_neighbor(ch1->index((*it)), ch2); ch2->set_neighbor(ch2->index((*it)), ch1); for (int i=0; i<4; i++) { // Try to point to a cell with the same surface: if ((*it)->vertex(i)->cell() == (*it)) { if ((*it)->surf == ch1->surf) { (*it)->vertex(i)->set_cell(ch1); } else { (*it)->vertex(i)->set_cell(ch2); } } } _tmc.tds().delete_cell((*it)); } else { // This cell is changed, set pointer to the new vertex (*it)->set_vertex(i,vh_collapse_to); } } _tmc.tds().delete_vertex(vh); } template Sign Mixed_complex_triangulator_3:: orientation(Tmc_Cell_handle ch) { Orientation o; // Protection is outside the try block as VC8 has the CGAL_CFG_FPU_ROUNDING_MODE_UNWINDING_VC_BUG Protect_FPU_rounding P; try { Tmc_Point pts[4]; for (int i=0; i<4; i++) pts[i] = ch->vertex(i)->point(); // filtered kernel o = _tmc.geom_traits().orientation_3_object()(pts[0], pts[1], pts[2], pts[3]); } catch (Uncertain_conversion_exception&) { Protect_FPU_rounding P(CGAL_FE_TONEAREST); typedef Exact_predicates_exact_constructions_kernel EK; typedef Cartesian_converter Exact_converter; typedef Skin_surface_traits_3 Exact_traits; typedef Skin_surface_base_3 Exact_skin_surface; Exact_converter converter; Exact_traits exact_traits(shrink); typename Exact_skin_surface::Bare_point e_pts[4]; for (int k=0; k<4; k++) { e_pts[k] = Triangulated_mixed_complex_observer::Skin_surface:: get_anchor_point(ch->vertex(k)->info(), exact_traits); // Store the more precise point ch->vertex(k)->point() = converter(e_pts[k]); } o = exact_traits.orientation_3_object()(e_pts[0], e_pts[1], e_pts[2], e_pts[3]); } return o; } template void triangulate_mixed_complex_3(RegularTriangulation_3 &rt, const typename RegularTriangulation_3::Geom_traits::FT &shrink_factor, TriangulatedMixedComplex_3 &tmc, TriangulatedMixedComplexObserver_3 &observer, bool verbose) { typedef Mixed_complex_triangulator_3< RegularTriangulation_3, TriangulatedMixedComplex_3, TriangulatedMixedComplexObserver_3> Mixed_complex_triangulator; Mixed_complex_triangulator(rt, shrink_factor, tmc, observer, verbose); } template void triangulate_mixed_complex_3(RegularTriangulation_3 const ®ular, typename RegularTriangulation_3::Geom_traits::FT const &shrink_factor, TriangulatedMixedComplex_3 &tmc, bool verbose) { Triangulated_mixed_complex_observer_3< TriangulatedMixedComplex_3, const RegularTriangulation_3> observer(shrink_factor); triangulate_mixed_complex_3(regular, shrink_factor, tmc, observer, verbose); } } //namespace CGAL #endif // CGAL_TRIANGULATE_MIXED_COMPLEX_H