// Copyright (c) 2006 GeometryFactory (France). All rights reserved. // // This file is part of CGAL (www.cgal.org). // You can redistribute it and/or modify it under the terms of the GNU // General Public License as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: GPL-3.0+ // // Author(s) : Fernando Cacciola // #ifndef CGAL_CARTESIAN_MATRIXC33_H #define CGAL_CARTESIAN_MATRIXC33_H #include #include #include #include #include #include namespace CGAL { template class MatrixC33 { public: typedef R_ R ; typedef typename R::FT RT ; typedef typename R::Vector_3 Vector_3; MatrixC33 ( Null_matrix ) : mR0(NULL_VECTOR) ,mR1(NULL_VECTOR) ,mR2(NULL_VECTOR) {} MatrixC33 ( RT const& r0x, RT const& r0y, RT const& r0z , RT const& r1x, RT const& r1y, RT const& r1z , RT const& r2x, RT const& r2y, RT const& r2z ) : mR0(r0x,r0y,r0z) ,mR1(r1x,r1y,r1z) ,mR2(r2x,r2y,r2z) {} MatrixC33 ( Vector_3 const& r0, Vector_3 const& r1, Vector_3 const& r2 ) : mR0(r0) ,mR1(r1) ,mR2(r2) {} Vector_3 const& r0() const { return mR0; } Vector_3 const& r1() const { return mR1; } Vector_3 const& r2() const { return mR2; } Vector_3& r0() { return mR0; } Vector_3& r1() { return mR1; } Vector_3& r2() { return mR2; } Vector_3 const& operator[] ( int row ) const { return row == 0 ? mR0 : ( row == 1 ? mR1 : mR2 ) ; } Vector_3& operator[] ( int row ) { return row == 0 ? mR0 : ( row == 1 ? mR1 : mR2 ) ; } MatrixC33& operator+= ( MatrixC33 const& m ) { mR0 = mR0 + m.r0() ; mR1 = mR1 + m.r1() ; mR2 = mR2 + m.r2() ; return *this ; } MatrixC33& operator-= ( MatrixC33 const& m ) { mR0 = mR0 - m.r0() ; mR1 = mR1 - m.r1() ; mR2 = mR2 - m.r2() ; return *this ; } MatrixC33& operator*= ( RT const& c ) { mR0 = mR0 * c ; mR1 = mR1 * c ; mR2 = mR2 * c ; return *this ; } MatrixC33& operator/= ( RT const& c ) { mR0 = mR0 / c ; mR1 = mR1 / c ; mR2 = mR2 / c ; return *this ; } friend MatrixC33 operator+ ( MatrixC33 const& a, MatrixC33 const& b ) { return MatrixC33(a.r0()+b.r0() ,a.r1()+b.r1() ,a.r2()+b.r2() ); } friend MatrixC33 operator- ( MatrixC33 const& a, MatrixC33 const& b ) { return MatrixC33(a.r0()-b.r0() ,a.r1()-b.r1() ,a.r2()-b.r2() ); } friend MatrixC33 operator* ( MatrixC33 const& m, RT const& c ) { return MatrixC33(m.r0()*c,m.r1()*c,m.r2()*c); } friend MatrixC33 operator* ( RT const& c, MatrixC33 const& m ) { return MatrixC33(m.r0()*c,m.r1()*c,m.r2()*c); } friend MatrixC33 operator/ ( MatrixC33 const& m, RT const& c ) { return MatrixC33(m.r0()/c,m.r1()/c,m.r2()/c); } friend Vector_3 operator* ( MatrixC33 const& m, Vector_3 const& v ) { return Vector_3(m.r0()*v,m.r1()*v,m.r2()*v); } friend Vector_3 operator* ( Vector_3 const& v, MatrixC33 const& m ) { return Vector_3(v*m.r0(),v*m.r1(),v*m.r2()); } RT determinant() const { return CGAL::determinant(r0().x(),r0().y(),r0().z() ,r1().x(),r1().y(),r1().z() ,r2().x(),r2().y(),r2().z() ); } MatrixC33& transpose() { mR0 = Vector_3(r0().x(),r1().x(),r2().x()); mR1 = Vector_3(r0().y(),r1().y(),r2().y()); mR2 = Vector_3(r0().z(),r1().z(),r2().z()); return *this ; } private: Vector_3 mR0 ; Vector_3 mR1 ; Vector_3 mR2 ; } ; template inline MatrixC33 direct_product ( Vector_3 const& u, Vector_3 const& v ) { return MatrixC33( v * u.x() , v * u.y() , v * u.z() ) ; } template MatrixC33 transposed_matrix ( MatrixC33 const& m ) { MatrixC33 copy = m ; copy.Transpose(); return copy ; } template MatrixC33 cofactors_matrix ( MatrixC33 const& m ) { typedef typename R::RT RT ; RT c00 = determinant(m.r1().y(),m.r1().z(),m.r2().y(),m.r2().z()); RT c01 = -determinant(m.r1().x(),m.r1().z(),m.r2().x(),m.r2().z()); RT c02 = determinant(m.r1().x(),m.r1().y(),m.r2().x(),m.r2().y()); RT c10 = -determinant(m.r0().y(),m.r0().z(),m.r2().y(),m.r2().z()); RT c11 = determinant(m.r0().x(),m.r0().z(),m.r2().x(),m.r2().z()); RT c12 = -determinant(m.r0().x(),m.r0().y(),m.r2().x(),m.r2().y()); RT c20 = determinant(m.r0().y(),m.r0().z(),m.r1().y(),m.r1().z()); RT c21 = -determinant(m.r0().x(),m.r0().z(),m.r1().x(),m.r1().z()); RT c22 = determinant(m.r0().x(),m.r0().y(),m.r1().x(),m.r1().y()); return MatrixC33(c00,c01,c02 ,c10,c11,c12 ,c20,c21,c22 ); } template MatrixC33 adjoint_matrix ( MatrixC33 const& m ) { return cofactors_matrix(m).transpose() ; } template boost::optional< MatrixC33 > inverse_matrix ( MatrixC33 const& m ) { typedef typename R::RT RT ; typedef MatrixC33 Matrix ; typedef boost::optional result_type ; result_type rInverse ; RT det = m.determinant(); if ( ! CGAL_NTS is_zero(det) ) { RT c00 = (m.r1().y()*m.r2().z() - m.r1().z()*m.r2().y()) / det; RT c01 = (m.r2().y()*m.r0().z() - m.r0().y()*m.r2().z()) / det; RT c02 = (m.r0().y()*m.r1().z() - m.r1().y()*m.r0().z()) / det; RT c10 = (m.r1().z()*m.r2().x() - m.r1().x()*m.r2().z()) / det; RT c11 = (m.r0().x()*m.r2().z() - m.r2().x()*m.r0().z()) / det; RT c12 = (m.r1().x()*m.r0().z() - m.r0().x()*m.r1().z()) / det; RT c20 = (m.r1().x()*m.r2().y() - m.r2().x()*m.r1().y()) / det; RT c21 = (m.r2().x()*m.r0().y() - m.r0().x()*m.r2().y()) / det; RT c22 = (m.r0().x()*m.r1().y() - m.r0().y()*m.r1().x()) / det; rInverse = result_type( Matrix(c00,c01,c02 ,c10,c11,c12 ,c20,c21,c22 ) ) ; } return rInverse ; } } //namespace CGAL #endif // CGAL_CARTESIAN_MATRIXC33_H // // EOF //