// Copyright (c) 2000 // Utrecht University (The Netherlands), // ETH Zurich (Switzerland), // INRIA Sophia-Antipolis (France), // Max-Planck-Institute Saarbruecken (Germany), // and Tel-Aviv University (Israel). All rights reserved. // // This file is part of CGAL (www.cgal.org); you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation; either version 3 of the License, // or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: LGPL-3.0+ // // // Author(s) : Andreas Fabri, Herve Bronnimann #ifndef CGAL_CARTESIAN_ROTATION_REP_2_H #define CGAL_CARTESIAN_ROTATION_REP_2_H #include namespace CGAL { template < class R > class Rotation_repC2: public Aff_transformation_rep_baseC2 { friend class Aff_transformation_repC2; friend class Translation_repC2; friend class Scaling_repC2; public: typedef Aff_transformation_rep_baseC2 Aff_t_base; typedef typename Aff_t_base::FT FT; typedef typename Aff_t_base::Point_2 Point_2; typedef typename Aff_t_base::Vector_2 Vector_2; typedef typename Aff_t_base::Direction_2 Direction_2; typedef typename Aff_t_base::Aff_transformation_2 Aff_transformation_2; typedef Aff_transformation_repC2 Transformation; typedef Translation_repC2 Translation; typedef Rotation_repC2 Rotation; typedef Scaling_repC2 Scaling; Rotation_repC2() {} Rotation_repC2(const FT &sinus, const FT &cosinus) : sinus_(sinus), cosinus_(cosinus) {} Rotation_repC2(const Direction_2 &d, const FT &eps_num, const FT &eps_den = FT(1)) { FT sin_num; FT cos_num; FT denom; rational_rotation_approximation(d.dx(), d.dy(), sin_num, cos_num, denom, eps_num, eps_den); sinus_ = sin_num/denom; cosinus_ = cos_num/denom; } Point_2 transform(const Point_2 &p) const { return Point_2(cosinus_ * p.x() - sinus_ * p.y(), sinus_ * p.x() + cosinus_ * p.y()); } Vector_2 transform(const Vector_2 &v) const { return Vector_2(cosinus_ * v.x() - sinus_ * v.y(), sinus_ * v.x() + cosinus_ * v.y()); } Direction_2 transform(const Direction_2 &d) const { return Direction_2(cosinus_ * d.dx() - sinus_ * d.dy(), sinus_ * d.dx() + cosinus_ * d.dy()); } Aff_transformation_2 inverse() const { return Aff_transformation_2(ROTATION, - sinus_, cosinus_, FT(1)); } Aff_transformation_2 operator*(const Aff_t_base &t) const { return t.compose(*this); } Aff_transformation_2 compose(const Translation &t) const { return Aff_transformation_2(cosinus_, -sinus_, t.translationvector_.x(), sinus_, cosinus_, t.translationvector_.y()); } Aff_transformation_2 compose(const Rotation &t) const { return Aff_transformation_2(ROTATION, t.sinus_*cosinus_ + t.cosinus_*sinus_, t.cosinus_*cosinus_-t.sinus_*sinus_ ); } Aff_transformation_2 compose(const Scaling &t) const { return Aff_transformation_2(t.scalefactor_*cosinus_, t.scalefactor_*-sinus_, t.scalefactor_*sinus_, t.scalefactor_*cosinus_); } Aff_transformation_2 compose(const Transformation &t) const { return Aff_transformation_2(cosinus_*t.t11 + sinus_*t.t12, -sinus_*t.t11 + cosinus_*t.t12, t.t13, cosinus_*t.t21 + sinus_*t.t22, -sinus_*t.t21 + cosinus_*t.t22, t.t23); } bool is_even() const { return true; } FT cartesian(int i, int j) const { switch (i) { case 0: switch (j) { case 0: return cosinus_; case 1: return -sinus_; default: return FT(0); } case 1: switch (j) { case 0: return sinus_; case 1: return cosinus_; default: return FT(0); } case 2: switch (j) { case 0: return FT(0); case 1: return FT(0); default: return FT(1); } } return FT(0); } std::ostream &print(std::ostream &os) const { os << "Aff_transformationC2(" << sinus_ << ", " << cosinus_ << ")"; return os; } private: FT sinus_, cosinus_; }; } //namespace CGAL #endif // CGAL_CARTESIAN_ROTATION_REP_2_H