// Copyright (c) 2000,2001 // Utrecht University (The Netherlands), // ETH Zurich (Switzerland), // INRIA Sophia-Antipolis (France), // Max-Planck-Institute Saarbruecken (Germany), // and Tel-Aviv University (Israel). All rights reserved. // // This file is part of CGAL (www.cgal.org); you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation; either version 3 of the License, // or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: LGPL-3.0+ // // Author(s) : Michael Seel #ifndef CGAL_VECTORCD_H #define CGAL_VECTORCD_H #include #include namespace CGAL { #define PointCd PointCd2 template class VectorCd; template std::istream& operator>>(std::istream&, VectorCd&); template std::ostream& operator<<(std::ostream&, const VectorCd&); template class VectorCd : public Handle_for< Tuple_d<_FT,_LA> > { typedef Tuple_d<_FT,_LA> Tuple; typedef Handle_for Base; typedef VectorCd<_FT,_LA> Self; using Base::ptr; using Base::copy_on_write; typename _LA::Vector& vector_rep() { return ptr()->v; } const typename _LA::Vector& vector_rep() const { return ptr()->v; } _FT& entry(int i) { return ptr()->v[i]; } const _FT& entry(int i) const { return ptr()->v[i]; } void invert_rep() { ptr()->invert(); } VectorCd(const Base& b) : Base(b) {} public: typedef _FT RT; typedef _FT FT; typedef _LA LA; typedef typename Tuple::const_iterator Cartesian_const_iterator; typedef typename Tuple::Homogeneous_const_iterator Homogeneous_const_iterator; class Base_vector {}; friend class PointCd; friend class DirectionCd; friend class HyperplaneCd; VectorCd(int d = 0) : Base( Tuple(d) ) {} VectorCd(int d, Null_vector) : Base( Tuple(d) ) {} template VectorCd(int d, InputIterator first, InputIterator last) : Base( Tuple(d,first,last) ) { if ( first == last ) return; // else first specifies common denominator: CGAL_assertion_msg(*first!=FT(0), "VectorCd::constructor: denominator must be nonzero."); for (int i=0; i VectorCd(int d, InputIterator first, InputIterator last, const FT& D) : Base( Tuple(d,first,last) ) { CGAL_assertion_msg(D!=FT(0), "VectorCd::constructor: D must be nonzero."); for (int i=0; i& p) : Base(p) {} ~VectorCd() {} int dimension() const { return ptr()->size(); } FT cartesian(int i) const { CGAL_assertion_msg((0<=i && i<(dimension())), "VectorCd::cartesian(): index out of range."); return entry(i); } FT operator[](int i) const { return cartesian(i); } FT homogeneous(int i) const { CGAL_assertion_msg((0<=i && i<=(dimension())), "VectorCd::homogeneous(): index out of range."); if (i!=dimension()) return entry(i); else return FT(1); } FT squared_length() const { return vector_rep()*vector_rep(); } Cartesian_const_iterator cartesian_begin() const { return ptr()->begin(); } Cartesian_const_iterator cartesian_end() const { return ptr()->end(); } Homogeneous_const_iterator homogeneous_begin() const { return Homogeneous_const_iterator(ptr()->begin(),ptr()->end()); } Homogeneous_const_iterator homogeneous_end() const { return Homogeneous_const_iterator(ptr()->beyondend()); } inline PointCd to_point() const; inline DirectionCd direction() const; /*{\Mop returns the direction of |\Mvar|. }*/ VectorCd transform(const Aff_transformationCd& t) const; VectorCd scale(const FT& m) const { VectorCd result(*this); result.copy_on_write(); result.vector_rep() *= m; return result; } void self_scale(const FT& m) { copy_on_write(); vector_rep() *= m; } VectorCd& operator*=(const FT& n) { self_scale(n); return *this; } VectorCd& operator*=(int n) { self_scale(n); return *this; } VectorCd operator/(int n) const { return scale(FT(1)/FT(n)); } VectorCd operator/(const FT& n) const { return scale(FT(1)/n); } VectorCd& operator/=(const FT& n) { self_scale(FT(1)/n); return *this; } VectorCd& operator/=(int n) { self_scale(FT(1)/FT(n)); return *this; } FT operator* (const VectorCd& w) const { return vector_rep()*w.vector_rep(); } VectorCd operator+(const VectorCd& w) const { VectorCd result(w.dimension()); result.ptr()->cartesian_add(ptr(),w.ptr()); return result; } VectorCd operator-(const VectorCd& w) const { VectorCd result(w.dimension()); result.ptr()->cartesian_sub(ptr(),w.ptr()); return result; } VectorCd operator-() const { VectorCd result(*this); result.copy_on_write(); // creates a copied object! result.ptr()->invert(); return result; } VectorCd& operator+=(const VectorCd& w) { copy_on_write(); vector_rep() += w.vector_rep(); return *this; } VectorCd& operator-=(const VectorCd& w) { copy_on_write(); vector_rep() -= w.vector_rep(); return *this; } static Comparison_result cmp( const VectorCd& x, const VectorCd& y) { Compare_componentwise cmpobj; return cmpobj(x.vector_rep(),y.vector_rep()); } bool operator==(const VectorCd& w) const { if ( this->identical(w) ) return true; if ( dimension() != w.dimension() ) return false; return vector_rep()==w.vector_rep(); } bool operator!=(const VectorCd& w) const { return !operator==(w); } bool is_zero() const { return vector_rep().is_zero(); } FT hx() const { return cartesian(0); } FT hy() const { return cartesian(1); } FT hz() const { return cartesian(2); } FT hw() const { return FT(1); } FT x() const { return cartesian(0); } FT y() const { return cartesian(1); } FT z() const { return cartesian(2); } friend std::istream& operator>> <> (std::istream& I, VectorCd& v); friend std::ostream& operator<< <> (std::ostream& O, const VectorCd& v); }; // end of class VectorCd #undef PointCd } //namespace CGAL #endif // CGAL_VECTORCD_H //----------------------- end of file ----------------------------------