// Copyright (c) 2007-09 INRIA Sophia-Antipolis (France). // All rights reserved. // // This file is part of CGAL (www.cgal.org). // You can redistribute it and/or modify it under the terms of the GNU // General Public License as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: GPL-3.0+ // // Author(s) : Pierre Alliez and Laurent Saboret #ifndef CGAL_PCA_ESTIMATE_NORMALS_H #define CGAL_PCA_ESTIMATE_NORMALS_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CGAL_LINKED_WITH_TBB #include #include #include #include #endif // CGAL_LINKED_WITH_TBB namespace CGAL { // ---------------------------------------------------------------------------- // Private section // ---------------------------------------------------------------------------- /// \cond SKIP_IN_MANUAL namespace internal { /// Estimates normal direction using linear least /// squares fitting of a plane on the K nearest neighbors. /// /// \pre `k >= 2` /// /// @tparam Kernel Geometric traits class. /// @tparam Tree KD-tree. /// /// @return Computed normal. Orientation is random. template < typename Kernel, typename Tree > typename Kernel::Vector_3 pca_estimate_normal(const typename Kernel::Point_3& query, ///< point to compute the normal at const Tree& tree, ///< KD-tree unsigned int k) ///< number of neighbors { // basic geometric types typedef typename Kernel::Point_3 Point; typedef typename Kernel::Plane_3 Plane; // types for K nearest neighbors search typedef typename CGAL::Search_traits_3 Tree_traits; typedef typename CGAL::Orthogonal_k_neighbor_search Neighbor_search; typedef typename Neighbor_search::iterator Search_iterator; // Gather set of (k+1) neighboring points. // Perform k+1 queries (as in point set, the query point is // output first). Search may be aborted if k is greater // than number of input points. std::vector points; points.reserve(k+1); Neighbor_search search(tree,query,k+1); Search_iterator search_iterator = search.begin(); unsigned int i; for(i=0;i<(k+1);i++) { if(search_iterator == search.end()) break; // premature ending points.push_back(search_iterator->first); search_iterator++; } CGAL_point_set_processing_precondition(points.size() >= 1); // performs plane fitting by point-based PCA Plane plane; linear_least_squares_fitting_3(points.begin(),points.end(),plane,Dimension_tag<0>()); // output normal vector (already normalized by PCA) return plane.orthogonal_vector(); } #ifdef CGAL_LINKED_WITH_TBB template class PCA_estimate_normals { typedef typename Kernel::Point_3 Point; typedef typename Kernel::Vector_3 Vector; const Tree& tree; const unsigned int k; const std::vector& input; std::vector& output; cpp11::atomic& advancement; cpp11::atomic& interrupted; public: PCA_estimate_normals(Tree& tree, unsigned int k, std::vector& points, std::vector& output, cpp11::atomic& advancement, cpp11::atomic& interrupted) : tree(tree), k (k), input (points), output (output) , advancement (advancement) , interrupted (interrupted) { } void operator()(const tbb::blocked_range& r) const { for( std::size_t i = r.begin(); i != r.end(); ++i) { if (interrupted) break; output[i] = CGAL::internal::pca_estimate_normal(input[i], tree, k); ++ advancement; } } }; #endif // CGAL_LINKED_WITH_TBB } /* namespace internal */ /// \endcond // ---------------------------------------------------------------------------- // Public section // ---------------------------------------------------------------------------- /** \ingroup PkgPointSetProcessingAlgorithms Estimates normal directions of the range of `points` by linear least squares fitting of a plane over the k nearest neighbors. The output normals are randomly oriented. \pre `k >= 2` \tparam ConcurrencyTag enables sequential versus parallel algorithm. Possible values are `Sequential_tag` and `Parallel_tag`. \tparam PointRange is a model of `Range`. The value type of its iterator is the key type of the named parameter `point_map`. \param points input point range. \param k number of neighbors \param np optional sequence of \ref psp_namedparameters "Named Parameters" among the ones listed below. \cgalNamedParamsBegin \cgalParamBegin{point_map} a model of `ReadablePropertyMap` with value type `geom_traits::Point_3`. If this parameter is omitted, `CGAL::Identity_property_map` is used.\cgalParamEnd \cgalParamBegin{normal_map} a model of `WritablePropertyMap` with value type `geom_traits::Vector_3`.\cgalParamEnd \cgalParamBegin{callback} an instance of `cpp11::function`. It is called regularly when the algorithm is running: the current advancement (between 0. and 1.) is passed as parameter. If it returns `true`, then the algorithm continues its execution normally; if it returns `false`, the algorithm is stopped and the remaining normals are left unchanged.\cgalParamEnd \cgalParamBegin{geom_traits} an instance of a geometric traits class, model of `Kernel`\cgalParamEnd \cgalNamedParamsEnd */ template void pca_estimate_normals( PointRange& points, unsigned int k, const NamedParameters& np) { using boost::choose_param; CGAL_TRACE("Calls pca_estimate_normals()\n"); // basic geometric types typedef typename Point_set_processing_3::GetPointMap::type PointMap; typedef typename Point_set_processing_3::GetNormalMap::type NormalMap; typedef typename Point_set_processing_3::GetK::Kernel Kernel; CGAL_static_assertion_msg(!(boost::is_same::NoMap>::value), "Error: no normal map"); PointMap point_map = choose_param(get_param(np, internal_np::point_map), PointMap()); NormalMap normal_map = choose_param(get_param(np, internal_np::normal_map), NormalMap()); const cpp11::function& callback = choose_param(get_param(np, internal_np::callback), cpp11::function()); typedef typename Kernel::Point_3 Point; // Input points types typedef typename boost::property_traits::value_type Vector; // types for K nearest neighbors search structure typedef typename CGAL::Search_traits_3 Tree_traits; typedef typename CGAL::Orthogonal_k_neighbor_search Neighbor_search; typedef typename Neighbor_search::Tree Tree; // precondition: at least one element in the container. // to fix: should have at least three distinct points // but this is costly to check CGAL_point_set_processing_precondition(points.begin() != points.end()); // precondition: at least 2 nearest neighbors CGAL_point_set_processing_precondition(k >= 2); std::size_t memory = CGAL::Memory_sizer().virtual_size(); CGAL_TRACE(" %ld Mb allocated\n", memory>>20); CGAL_TRACE(" Creates KD-tree\n"); typename PointRange::iterator it; // Instanciate a KD-tree search. // Note: We have to convert each input iterator to Point_3. std::vector kd_tree_points; for(it = points.begin(); it != points.end(); it++) kd_tree_points.push_back(get(point_map, *it)); Tree tree(kd_tree_points.begin(), kd_tree_points.end()); memory = CGAL::Memory_sizer().virtual_size(); CGAL_TRACE(" %ld Mb allocated\n", memory>>20); CGAL_TRACE(" Computes normals\n"); // iterate over input points, compute and output normal // vectors (already normalized) #ifndef CGAL_LINKED_WITH_TBB CGAL_static_assertion_msg (!(boost::is_convertible::value), "Parallel_tag is enabled but TBB is unavailable."); #else if (boost::is_convertible::value) { internal::Point_set_processing_3::Parallel_callback parallel_callback (callback, kd_tree_points.size()); std::vector normals (kd_tree_points.size (), CGAL::NULL_VECTOR); CGAL::internal::PCA_estimate_normals f (tree, k, kd_tree_points, normals, parallel_callback.advancement(), parallel_callback.interrupted()); tbb::parallel_for(tbb::blocked_range(0, kd_tree_points.size ()), f); unsigned int i = 0; for(it = points.begin(); it != points.end(); ++ it, ++ i) if (normals[i] != CGAL::NULL_VECTOR) put (normal_map, *it, normals[i]); parallel_callback.join(); } else #endif { std::size_t nb = 0; for(it = points.begin(); it != points.end(); it++, ++ nb) { Vector normal = internal::pca_estimate_normal( get(point_map,*it), tree, k); put(normal_map, *it, normal); // normal_map[it] = normal if (callback && !callback ((nb+1) / double(kd_tree_points.size()))) break; } } memory = CGAL::Memory_sizer().virtual_size(); CGAL_TRACE(" %ld Mb allocated\n", memory>>20); CGAL_TRACE("End of pca_estimate_normals()\n"); } /// \cond SKIP_IN_MANUAL // variant with default NP template void pca_estimate_normals( PointRange& points, unsigned int k) ///< number of neighbors. { return pca_estimate_normals (points, k, CGAL::Point_set_processing_3::parameters::all_default(points)); } #ifndef CGAL_NO_DEPRECATED_CODE // deprecated API template CGAL_DEPRECATED_MSG("you are using the deprecated V1 API of CGAL::pca_estimate_normals(), please update your code") void pca_estimate_normals( ForwardIterator first, ///< iterator over the first input point. ForwardIterator beyond, ///< past-the-end iterator over the input points. PointMap point_map, ///< property map: value_type of ForwardIterator -> Point_3. NormalMap normal_map, ///< property map: value_type of ForwardIterator -> Vector_3. unsigned int k, ///< number of neighbors. const Kernel& /*kernel*/) ///< geometric traits. { CGAL::Iterator_range points (first, beyond); return pca_estimate_normals (points, k, CGAL::parameters::point_map (point_map). normal_map (normal_map). geom_traits(Kernel())); } // deprecated API template CGAL_DEPRECATED_MSG("you are using the deprecated V1 API of CGAL::pca_estimate_normals(), please update your code") void pca_estimate_normals( ForwardIterator first, ///< iterator over the first input point. ForwardIterator beyond, ///< past-the-end iterator over the input points. PointMap point_map, ///< property map: value_type of ForwardIterator -> Point_3. NormalMap normal_map, ///< property map: value_type of ForwardIterator -> Vector_3. unsigned int k) ///< number of neighbors. { CGAL::Iterator_range points (first, beyond); return pca_estimate_normals (points, k, CGAL::parameters::point_map (point_map). normal_map (normal_map)); } // deprecated API template CGAL_DEPRECATED_MSG("you are using the deprecated V1 API of CGAL::pca_estimate_normals(), please update your code") void pca_estimate_normals( ForwardIterator first, ///< iterator over the first input point. ForwardIterator beyond, ///< past-the-end iterator over the input points. NormalMap normal_map, ///< property map: value_type of ForwardIterator -> Vector_3. unsigned int k) ///< number of neighbors. { CGAL::Iterator_range points (first, beyond); return pca_estimate_normals (points, k, CGAL::parameters::normal_map (normal_map)); } #endif // CGAL_NO_DEPRECATED_CODE /// \endcond } //namespace CGAL #include #endif // CGAL_PCA_ESTIMATE_NORMALS_H