// Copyright (c) 2017 GeometryFactory (France) // All rights reserved. // // This file is part of CGAL (www.cgal.org). // You can redistribute it and/or modify it under the terms of the GNU // General Public License as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: GPL-3.0+ // // Author(s) : Simon Giraudot #ifndef CGAL_POISSON_SURFACE_RECONSTRUCTION_H #define CGAL_POISSON_SURFACE_RECONSTRUCTION_H #include #include #include #include #include #include #include namespace CGAL { /*! \ingroup PkgPoissonSurfaceReconstruction Performs surface reconstruction as follows: - compute the Poisson implicit function, through a conjugate gradient solver, represented as a piecewise linear function stored on a 3D Delaunay mesh generated via Delaunay refinement - meshes the function with a user-defined precision using another round of Delaunay refinement: it contours the isosurface corresponding to the isovalue of the median of the function values at the input points - outputs the result in a polygon mesh This function relies mainly on the size parameter `spacing`. A reasonable solution is to use the average spacing of the input point set (using `compute_average_spacing()` for example). Higher values increase the precision of the output mesh at the cost of higher computation time. Parameters `sm_angle`, `sm_radius` and `sm_distance` work similarly to the parameters of `SurfaceMeshFacetsCriteria_3`. The latest two are defined with respect to `spacing`. \tparam PointInputIterator is a model of `InputIterator`. \tparam PointMap is a model of `ReadablePropertyMap` with value type `Point_3`. \tparam NormalMap is a model of `ReadablePropertyMap` with value type `Vector_3`. \tparam PolygonMesh a model of `MutableFaceGraph` with an internal point property map. \tparam Tag is a tag whose type affects the behavior of the meshing algorithm (see `make_surface_mesh()`). \param begin iterator on the first point of the sequence. \param end past the end iterator of the point sequence. \param point_map property map: value_type of `InputIterator` -> Point_3. \param normal_map property map: value_type of `InputIterator` -> Vector_3. \param output_mesh where the reconstruction is stored. \param spacing size parameter. \param sm_angle bound for the minimum facet angle in degrees. \param sm_radius bound for the radius of the surface Delaunay balls (relatively to the `average_spacing`). \param sm_distance bound for the center-center distances (relatively to the `average_spacing`). \param tag surface mesher tag. \return `true` if reconstruction succeeded, `false` otherwise. */ #if defined(DOXYGEN_RUNNING) || !defined(CGAL_CFG_NO_CPP0X_DEFAULT_TEMPLATE_ARGUMENTS_FOR_FUNCTION_TEMPLATES) template bool poisson_surface_reconstruction_delaunay (PointInputIterator begin, PointInputIterator end, PointMap point_map, NormalMap normal_map, PolygonMesh& output_mesh, double spacing, double sm_angle = 20.0, double sm_radius = 30.0, double sm_distance = 0.375, Tag tag = Tag()) #else template bool poisson_surface_reconstruction_delaunay (PointInputIterator begin, PointInputIterator end, PointMap point_map, NormalMap normal_map, PolygonMesh& output_mesh, double spacing, double sm_angle = 20.0, double sm_radius = 30.0, double sm_distance = 0.375) { return poisson_surface_reconstruction_delaunay (begin, end, point_map, normal_map, output_mesh, spacing, sm_angle, sm_radius, sm_distance, CGAL::Manifold_with_boundary_tag()); } template bool poisson_surface_reconstruction_delaunay (PointInputIterator begin, PointInputIterator end, PointMap point_map, NormalMap normal_map, PolygonMesh& output_mesh, double spacing, double sm_angle = 20.0, double sm_radius = 30.0, double sm_distance = 0.375) { return poisson_surface_reconstruction_delaunay (begin, end, point_map, normal_map, output_mesh, spacing, sm_angle, sm_radius, sm_distance, Tag()); } template bool poisson_surface_reconstruction_delaunay (PointInputIterator begin, PointInputIterator end, PointMap point_map, NormalMap normal_map, PolygonMesh& output_mesh, double spacing, double sm_angle, double sm_radius, double sm_distance, Tag tag) #endif { typedef typename boost::property_traits::value_type Point; typedef typename Kernel_traits::Kernel Kernel; typedef typename Kernel::Sphere_3 Sphere; typedef CGAL::Poisson_reconstruction_function Poisson_reconstruction_function; typedef CGAL::Surface_mesh_default_triangulation_3 STr; typedef CGAL::Surface_mesh_complex_2_in_triangulation_3 C2t3; typedef CGAL::Implicit_surface_3 Surface_3; Poisson_reconstruction_function function(begin, end, point_map, normal_map); if ( ! function.compute_implicit_function() ) return false; Point inner_point = function.get_inner_point(); Sphere bsphere = function.bounding_sphere(); double radius = std::sqrt(bsphere.squared_radius()); double sm_sphere_radius = 5.0 * radius; double sm_dichotomy_error = sm_distance * spacing / 1000.0; Surface_3 surface(function, Sphere (inner_point, sm_sphere_radius * sm_sphere_radius), sm_dichotomy_error / sm_sphere_radius); CGAL::Surface_mesh_default_criteria_3 criteria (sm_angle, sm_radius * spacing, sm_distance * spacing); STr tr; C2t3 c2t3(tr); CGAL::make_surface_mesh(c2t3, surface, criteria, tag); if(tr.number_of_vertices() == 0) return false; CGAL::facets_in_complex_2_to_triangle_mesh(c2t3, output_mesh); return true; } } #endif // CGAL_POISSON_SURFACE_RECONSTRUCTION_H