
i C
ar

v
e D

o
c

u
m

en
tatio

n

© 2008 - 2010 Tobias Sargeant All Rights Reserved

Software Documentation

December 2010

Contents

Contents iii

List of Figures v

List of Tables vii

Listings ix

1 Representation of polyhedra 1
1.1 Construction of Polyhedra . 1

2 CSG Operations 7
2.1 CSG Operations on Closed Manifolds . 7
2.2 CSG Operations on Open Manifolds . 8

3 Attribute Interpolation 11

iii

List of Figures

1.1 A polyhedron consisting of two surfaces sharing a vertex 2
1.2 A polyhedron consisting of two surfaces sharing an edge 2

v

List of Tables

2.1 Input polyhedra. 8
2.2 The result of predefined CSG operations. 9

vii

Listings

1.1 carve::poly::Polyhedron constructor 1 1
1.2 carve::poly::Polyhedron constructor 2 2
1.3 carve::poly::Polyhedron constructor 3 2
1.4 carve::poly::Polyhedron constructor 4 3
1.5 Constructing a cube directly . 4
1.6 Constructing a cube using carve::input::PolyhedronData 5
3.1 Associating texture coordinates with a cube . 12
3.2 Interpolating texture coordinates during a CSG operation 13

ix

1. Representation of polyhedra

Carve polyhedra are defined by collections of vertices (instances of carve::poly::Vertex) that
define points in 3-dimensional space, and collections of faces (instances of carve::poly::Face)
that define the connectivity of vertices. Because faces refer to vertices by pointer, vertex identity is
determined by address rather than by location in 3-dimensional space.

Faces are oriented anticlockwise in a right handed coordinate system. Although a face may
consist of more than three vertices, all vertices of any given face must lie on a single plane.

A polyhedron defined by a set of faces and vertices consists of one or more connected surfaces.
The decomposition of a set of faces into surfaces is computed automatically, and shared vertices
(Figure 1.1) and edges (Figure 1.2) are handled correctly. A polyhedron may not, however, be self
intersecting.

Each surface is either “closed” or “open”. A closed surface obeys the property that for every
edge (determined by a pair of consecutive vertices forming part of a face) there exists an edge of
the opposite orientation that is part of some other face.

A closed surface bounds a non-zero (possibly infinite) volume of space. The space defined by a
surface depends upon the orientation of its defining faces. By inverting the vertex order of all faces
of a closed surface, the complementary volume is created. For example, a cube with faces ordered
clockwise in a right-handed coordinate system describes the infinite volume consisting of all space
except that delimited by the cube.

Used carefully, more than one closed surface may be combined to create a shell. A surface
representing an infinite volume enclosed within a surface representing a finite volume represents a
hollow solid, and such solids are handled correctly during CSG operations.

1.1 Construction of Polyhedra

A polyhedron may be constructed in a number of ways.
In the first case (Listing 1.1) a vector of faces and a vector of vertices is provided. The vertices

pointed to by the faces in _faces must be members of the vector of vertices, _vertices. Own-
ership is taken of the face and vertex vectors, so as to avoid unnecessary copies. On return, both
vectors will be empty.

carve::poly::Polyhedron(

std::vector<carve::poly::Face *> &_faces,

std::vector<carve::poly::Vertex> &_vertices,

bool _recalc = false);

Listing 1.1: carve::poly::Polyhedron constructor 1

1

2 CHAPTER 1. REPRESENTATION OF POLYHEDRA

Figure 1.1: A polyhedron consisting of two surfaces sharing a vertex

Figure 1.2: A polyhedron consisting of two surfaces sharing an edge

carve::poly::Polyhedron(

std::vector<carve::poly::Face *> &_faces,

bool _recalc = false);

Listing 1.2: carve::poly::Polyhedron constructor 2

carve::poly::Polyhedron(

std::list<carve::poly::Face *> &_faces,

bool _recalc = false);

Listing 1.3: carve::poly::Polyhedron constructor 3

1.1. CONSTRUCTION OF POLYHEDRA 3

carve::poly::Polyhedron(

const std::vector<carve::geom3d::Vector> &vertices,

int n_faces,

const std::vector<int> &face_indices);

Listing 1.4: carve::poly::Polyhedron constructor 4

4 CHAPTER 1. REPRESENTATION OF POLYHEDRA

#include <carve/polyhedron.hpp>

carve::poly::Polyhedron *makeCube(

const carve::math::Matrix &t = carve::math::Matrix()) {

std::vector<carve::poly::Vertex> verts;

std::vector<carve::poly::Face *> faces;

verts.reserve(8);

faces.reserve(6);

verts.push_back(

carve::poly::Vertex(t * carve::geom::VECTOR(+1.0, +1.0, +1.0)));

verts.push_back(

carve::poly::Vertex(t * carve::geom::VECTOR(−1.0, +1.0, +1.0)));

verts.push_back(

carve::poly::Vertex(t * carve::geom::VECTOR(−1.0, −1.0, +1.0)));

verts.push_back(

carve::poly::Vertex(t * carve::geom::VECTOR(+1.0, −1.0, +1.0)));

verts.push_back(

carve::poly::Vertex(t * carve::geom::VECTOR(+1.0, +1.0, −1.0)));

verts.push_back(

carve::poly::Vertex(t * carve::geom::VECTOR(−1.0, +1.0, −1.0)));

verts.push_back(

carve::poly::Vertex(t * carve::geom::VECTOR(−1.0, −1.0, −1.0)));

verts.push_back(

carve::poly::Vertex(t * carve::geom::VECTOR(+1.0, −1.0, −1.0)));

faces.push_back(

new Face(&verts[0], &verts[1], &verts[2], &verts[3]));

faces.push_back(

new Face(&verts[7], &verts[6], &verts[5], &verts[4]));

faces.push_back(

new Face(&verts[0], &verts[4], &verts[5], &verts[1]));

faces.push_back(

new Face(&verts[1], &verts[5], &verts[6], &verts[2]));

faces.push_back(

new Face(&verts[2], &verts[6], &verts[7], &verts[3]));

faces.push_back(

new Face(&verts[3], &verts[7], &verts[4], &verts[0]));

// note that carve::poly::Polyhedron takes ownership of face

// pointers and the contents of the vertex array.

return new carve::poly::Polyhedron(faces, vertices);

}

Listing 1.5: Constructing a cube directly

1.1. CONSTRUCTION OF POLYHEDRA 5

#include <carve/input.hpp>

#include <carve/polyhedron.hpp>

carve::poly::Polyhedron *makeCube(

const carve::math::Matrix &t = carve::math::Matrix()) {

carve::input::PolyhedronData data;

data.addVertex(t * carve::geom::VECTOR(+1.0, +1.0, +1.0));

data.addVertex(t * carve::geom::VECTOR(−1.0, +1.0, +1.0));

data.addVertex(t * carve::geom::VECTOR(−1.0, −1.0, +1.0));

data.addVertex(t * carve::geom::VECTOR(+1.0, −1.0, +1.0));

data.addVertex(t * carve::geom::VECTOR(+1.0, +1.0, −1.0));

data.addVertex(t * carve::geom::VECTOR(−1.0, +1.0, −1.0));

data.addVertex(t * carve::geom::VECTOR(−1.0, −1.0, −1.0));

data.addVertex(t * carve::geom::VECTOR(+1.0, −1.0, −1.0));

data.addFace(0, 1, 2, 3);

data.addFace(7, 6, 5, 4);

data.addFace(0, 4, 5, 1);

data.addFace(1, 5, 6, 2);

data.addFace(2, 6, 7, 3);

data.addFace(3, 7, 4, 0);

return data.create();

}

Listing 1.6: Constructing a cube using carve::input::PolyhedronData

2. CSG Operations

The carve::csg::CSG class is responsible for managing CSG calculations. It provides methods for
CSG binary computations between both closed and open polyhedra, as well as divison of polyhedra
by their common line of intersection. The operation computed bymethods of the carve::csg::CSG
class may be chosen from the standard primitive binary operations or may be defined by the caller.

The CSG computation may be influenced by the registration of hook objects that can be used to
perform such tasks as triangulation of result faces and transfer and interpolation of attributes from
source polyhedra to the result.

2.1 CSG Operations on Closed Manifolds

The compute method of carve::csg::CSG has two prototypes:

carve::poly::Polyhedron *compute(

const carve::poly::Polyhedron *a,

const carve::poly::Polyhedron *b,

carve::csg::CSG::OP op,

carve::csg::V2Set *shared_edges = NULL,

carve::csg::CSG::CLASSIFY_TYPE classify_type = CLASSIFY_NORMAL);

carve::poly::Polyhedron *compute(

const carve::poly::Polyhedron *a,

const carve::poly::Polyhedron *b,

carve::csg::CSG::Collector &collector,

carve::csg::V2Set *shared_edges = NULL,

carve::csg::CSG::CLASSIFY_TYPE classify_type = CLASSIFY_NORMAL);

These methods compute a boolean operation between polyhedra a and b. In the first case, the
operation is determined by the enumeration carve::csg::CSG::OP, which can take the values:

• UNION

• INTERSECTION

• A_MINUS_B

• B_MINUS_A

• SYMMETRIC_DIFFERENCE

7

8 CHAPTER 2. CSG OPERATIONS

Manifold A

Manifold B

Table 2.1: Input polyhedra.

Results for these boolean operations are shown in Table 2.1 and Table 2.2.
In the second case, the result is determined by a custom collector. Custom collectors allow

the caller to programatically define which regions of the intersected input polyhedra appear in the
output.

The shared_edges parameter provides a way to access the computed set of edges that defines
the point of intersection of the two polyhedra.

The algorithm used to classify connected components of the intersected polyhedra is determined
by the parameter classify_type. The type of classify_type is an enumeration taking values
from the set {CLASSIFY_NORMAL, CLASSIFY_EDGE}.

The classifier is responsible for classifying portions of each polyhedron bounded by the line of
intersection as either:

• carve::csg::FACE_OUT

The group is outside the space defined by the opposing polyhedron.

• carve::csg::FACE_IN

The group is inside the space defined by the opposing polyhedron.

• carve::csg::FACE_ON_ORIENT_IN

The group is lying on the surface of the opposing polyhedron, oriented towards its interior.

• carve::csg::FACE_ON_ORIENT_OUT

The group is lying on the surface of the opposing polyhedron, oriented towards its exterior.

with respect to (each surface of) the opposing polyhedron.

2.2 CSG Operations on Open Manifolds

2.2. CSG OPERATIONS ON OPEN MANIFOLDS 9

Operation: Union (A | B)
Enumeration: carve::CSG::UNION

Operation: Intersection (A & B)
Enumeration: carve::CSG::INTERSECTION

Operation: Difference (A - B)
Enumeration: carve::CSG::A_MINUS_B

Operation: Difference (B - A)
Enumeration: carve::CSG::B_MINUS_A

Operation: Symmetric Difference (A B)
Enumeration: carve::CSG::SYMMETRIC_DIFFERENCE

Table 2.2: The result of predefined CSG operations.

3. Attribute Interpolation

11

12 CHAPTER 3. ATTRIBUTE INTERPOLATION

#include <carve/interpolator.hpp>

struct tex_t {

float u, v;

tex_t() : u(0.0f), v(0.0f) { }

tex_t(float _u, float _v) : u(_u), v(_v) { }

};

// interpolated attributes must support scalar multiplication.

tex_t operator*(double s, const tex_t &t) {

return tex_t(t.u * s, t.v * s);

}

// interpolated attributes must support operator+=.

tex_t &operator+=(tex_t &t1, const tex_t &t2) {

t1.u += t2.u; t1.v += t2.v;

return t1;

}

void associateTextureVertices(

carve::poly::Polyhedron *cube,

carve::interpolate::FaceVertexAttr<tex_t> &fv_tex) {

fv_tex.setAttribute(cube−>faces[0], 0, tex_t(1.0f, 1.0f));

fv_tex.setAttribute(cube−>faces[0], 1, tex_t(0.0f, 1.0f));

fv_tex.setAttribute(cube−>faces[0], 2, tex_t(0.0f, 0.0f));

fv_tex.setAttribute(cube−>faces[0], 3, tex_t(1.0f, 0.0f));

// ... continue to record other texture coordinates by

// face pointer and vertex number.

}

Listing 3.1: Associating texture coordinates with a cube

13

#include <carve/csg.hpp>

carve::poly::Polyhedron *doCSG() {

carve::poly::Polyhedron *result;

carve::poly::Polyhedron *cube_1 = makeCube();

carve::poly::Polyhedron *cube_2 = makeCube(

carve::math::Matrix::ROT(.4, .2, .3, .4));

carve::interpolate::FaceVertexAttr<tex_t> fv_tex;

associateTextureVertices(cube_1, fv_tex);

carve::csg::CSG csg;

fv_tex.installHooks(csg);

result = csg.compute(cube_1, cube_2, carve::csg::CSG::A_MINUS_B);

}

Listing 3.2: Interpolating texture coordinates during a CSG operation

