// Copyright (c) 2006 GeometryFactory (France). All rights reserved. // // This file is part of CGAL (www.cgal.org). // // $URL: https://github.com/CGAL/cgal/blob/v5.1/Surface_mesh_simplification/include/CGAL/Cartesian/MatrixC33.h $ // $Id: MatrixC33.h ff09c5d 2019-10-25T16:35:53+02:00 Mael Rouxel-Labbé // SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial // // Author(s) : Fernando Cacciola // #ifndef CGAL_CARTESIAN_MATRIXC33_H #define CGAL_CARTESIAN_MATRIXC33_H #include #include #include #include #include #include namespace CGAL { template class MatrixC33 { public: typedef R_ R; typedef typename R::FT RT; typedef typename R::Vector_3 Vector_3; MatrixC33(Null_matrix) : mR0(NULL_VECTOR), mR1(NULL_VECTOR), mR2(NULL_VECTOR) {} MatrixC33(const RT& r0x, const RT& r0y, const RT& r0z, const RT& r1x, const RT& r1y, const RT& r1z, const RT& r2x, const RT& r2y, const RT& r2z) : mR0(r0x,r0y,r0z), mR1(r1x,r1y,r1z), mR2(r2x,r2y,r2z) {} MatrixC33(const Vector_3& r0, const Vector_3& r1, const Vector_3& r2) : mR0(r0), mR1(r1), mR2(r2) {} const Vector_3& r0() const { return mR0; } const Vector_3& r1() const { return mR1; } const Vector_3& r2() const { return mR2; } Vector_3& r0() { return mR0; } Vector_3& r1() { return mR1; } Vector_3& r2() { return mR2; } const Vector_3& operator[](int row) const { return row == 0 ? mR0 : (row == 1 ? mR1 : mR2); } Vector_3& operator[](int row) { return row == 0 ? mR0 : (row == 1 ? mR1 : mR2); } MatrixC33& operator+=(const MatrixC33& m) { mR0 = mR0 + m.r0(); mR1 = mR1 + m.r1(); mR2 = mR2 + m.r2(); return *this; } MatrixC33& operator-=(const MatrixC33& m) { mR0 = mR0 - m.r0(); mR1 = mR1 - m.r1(); mR2 = mR2 - m.r2(); return *this; } MatrixC33& operator*=(const RT& c) { mR0 = mR0 * c; mR1 = mR1 * c; mR2 = mR2 * c; return *this; } MatrixC33& operator/=(const RT& c) { mR0 = mR0 / c; mR1 = mR1 / c; mR2 = mR2 / c; return *this; } friend MatrixC33 operator+(const MatrixC33& a, const MatrixC33& b) { return MatrixC33(a.r0() + b.r0(), a.r1() + b.r1(), a.r2() + b.r2()); } friend MatrixC33 operator-(const MatrixC33& a, const MatrixC33& b) { return MatrixC33(a.r0() - b.r0(), a.r1() - b.r1(), a.r2() - b.r2()); } friend MatrixC33 operator*(const MatrixC33& m, const RT& c) { return MatrixC33(m.r0()*c, m.r1()*c, m.r2()*c); } friend MatrixC33 operator*(const RT& c, const MatrixC33& m) { return MatrixC33(m.r0()*c, m.r1()*c, m.r2()*c); } friend MatrixC33 operator/(const MatrixC33& m, const RT& c) { return MatrixC33(m.r0()/c, m.r1()/c, m.r2()/c); } friend Vector_3 operator*(const MatrixC33& m, const Vector_3& v) { return Vector_3(m.r0()*v, m.r1()*v, m.r2()*v); } friend Vector_3 operator*(const Vector_3& v, const MatrixC33& m) { return Vector_3(v*m.r0(), v*m.r1(), v*m.r2()); } RT determinant() const { return CGAL::determinant(r0().x(), r0().y(), r0().z(), r1().x(), r1().y(), r1().z(), r2().x(), r2().y(), r2().z()); } MatrixC33& transpose() { mR0 = Vector_3(r0().x(),r1().x(),r2().x()); mR1 = Vector_3(r0().y(),r1().y(),r2().y()); mR2 = Vector_3(r0().z(),r1().z(),r2().z()); return *this; } private: Vector_3 mR0; Vector_3 mR1; Vector_3 mR2; }; template inline MatrixC33 direct_product(const Vector_3& u, const Vector_3& v) { return MatrixC33(v * u.x(), v * u.y(), v * u.z()); } template MatrixC33 transposed_matrix(const MatrixC33& m) { MatrixC33 copy = m; copy.Transpose(); return copy; } template MatrixC33 cofactors_matrix(const MatrixC33& m) { typedef typename R::RT RT; RT c00 = determinant(m.r1().y(),m.r1().z(),m.r2().y(),m.r2().z()); RT c01 = -determinant(m.r1().x(),m.r1().z(),m.r2().x(),m.r2().z()); RT c02 = determinant(m.r1().x(),m.r1().y(),m.r2().x(),m.r2().y()); RT c10 = -determinant(m.r0().y(),m.r0().z(),m.r2().y(),m.r2().z()); RT c11 = determinant(m.r0().x(),m.r0().z(),m.r2().x(),m.r2().z()); RT c12 = -determinant(m.r0().x(),m.r0().y(),m.r2().x(),m.r2().y()); RT c20 = determinant(m.r0().y(),m.r0().z(),m.r1().y(),m.r1().z()); RT c21 = -determinant(m.r0().x(),m.r0().z(),m.r1().x(),m.r1().z()); RT c22 = determinant(m.r0().x(),m.r0().y(),m.r1().x(),m.r1().y()); return MatrixC33(c00,c01,c02, c10,c11,c12, c20,c21,c22); } template MatrixC33 adjoint_matrix(const MatrixC33& m) { return cofactors_matrix(m).transpose(); } template boost::optional< MatrixC33 > inverse_matrix(const MatrixC33& m) { typedef typename R::RT RT; typedef MatrixC33 Matrix; typedef boost::optional result_type; result_type rInverse; RT det = m.determinant(); if(! CGAL_NTS is_zero(det)) { RT c00 = (m.r1().y()*m.r2().z() - m.r1().z()*m.r2().y()) / det; RT c01 = (m.r2().y()*m.r0().z() - m.r0().y()*m.r2().z()) / det; RT c02 = (m.r0().y()*m.r1().z() - m.r1().y()*m.r0().z()) / det; RT c10 = (m.r1().z()*m.r2().x() - m.r1().x()*m.r2().z()) / det; RT c11 = (m.r0().x()*m.r2().z() - m.r2().x()*m.r0().z()) / det; RT c12 = (m.r1().x()*m.r0().z() - m.r0().x()*m.r1().z()) / det; RT c20 = (m.r1().x()*m.r2().y() - m.r2().x()*m.r1().y()) / det; RT c21 = (m.r2().x()*m.r0().y() - m.r0().x()*m.r2().y()) / det; RT c22 = (m.r0().x()*m.r1().y() - m.r0().y()*m.r1().x()) / det; rInverse = result_type(Matrix(c00,c01,c02, c10,c11,c12, c20,c21,c22)); } return rInverse; } } // namespace CGAL #endif // CGAL_CARTESIAN_MATRIXC33_H // // EOF //