// Copyright (c) 2012 INRIA Sophia-Antipolis (France). // Copyright (c) 2017 GeometryFactory Sarl (France). // All rights reserved. // // This file is part of CGAL (www.cgal.org). // // $URL: https://github.com/CGAL/cgal/blob/v5.1/Classification/include/CGAL/Classification/Planimetric_grid.h $ // $Id: Planimetric_grid.h 0779373 2020-03-26T13:31:46+01:00 Sébastien Loriot // SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial // // Author(s) : Simon Giraudot, Florent Lafarge #ifndef CGAL_CLASSIFICATION_PLANIMETRIC_GRID_H #define CGAL_CLASSIFICATION_PLANIMETRIC_GRID_H #include #include #include #include #include #include namespace CGAL { namespace Classification { /*! \ingroup PkgClassificationDataStructures \brief Class that precomputes a 2D planimetric grid. The grid is composed of squared cells with a user-defined size, each cell containing the list of indices of the points whose projection along the Z-axis lies within this cell. The mapping from each point to the cell it lies in is also stored. \tparam GeomTraits model of \cgal Kernel. \tparam PointRange model of `ConstRange`. Its iterator type is `RandomAccessIterator` and its value type is the key type of `PointMap`. \tparam PointMap model of `ReadablePropertyMap` whose key type is the value type of the iterator of `PointRange` and value type is `GeomTraits::Point_3`. */ template class Planimetric_grid { public: typedef typename GeomTraits::Point_3 Point_3; typedef typename GeomTraits::Iso_cuboid_3 Iso_cuboid_3; private: typedef Image > Image_indices; typedef Image Image_bool; const PointRange* m_points; PointMap m_point_map; Iso_cuboid_3 m_bbox; float m_resolution; Image_indices m_grid; Planimetric_grid* m_lower_scale; std::size_t m_current_scale; std::size_t m_width; std::size_t m_height; std::vector m_has_points; public: #ifdef DOXYGEN_RUNNING typedef unspecified_type iterator; ///< A forward iterator with value type `std::size_t`. #else class iterator : public boost::iterator_facade // Return value instead of reference { public: friend class boost::iterator_core_access; iterator(const Planimetric_grid* lowest_scale, std::size_t scale, std::size_t large_x, std::size_t large_y, bool end = false) : m_lowest_scale (lowest_scale) , m_idx(0) { std::size_t size = 1; while (scale != 0) { size *= 2; -- scale; } std::size_t xmin = large_x * size; m_xmax = (large_x + 1) * size; m_ymin = large_y * size; m_ymax = (large_y + 1) * size; m_pos_x = xmin; m_pos_y = m_ymin; bool found_one = false; for (std::size_t x = xmin; x < m_xmax; ++ x) { for (std::size_t y = m_ymin; y < m_ymax; ++ y) if (lowest_scale_has_points(x,y)) { m_pos_x = x; m_pos_y = y; found_one = true; break; } if(found_one) break; } if (end && found_one) { m_pos_x = m_xmax; m_pos_y = m_ymax; } } void increment() { ++ m_idx; if (m_idx == m_lowest_scale->m_grid(m_pos_x, m_pos_y).size()) { m_idx = 0; do { ++ m_pos_y; if (m_pos_y == m_ymax) { m_pos_y = m_ymin; ++ m_pos_x; if (m_pos_x == m_xmax) // end() reached { m_pos_y = m_ymax; // put y to max so that this == end() break; } } } while (!(lowest_scale_has_points(m_pos_x, m_pos_y))); } } bool equal (const iterator& other) const { return (m_pos_x == other.m_pos_x && m_pos_y == other.m_pos_y && m_idx == other.m_idx); } std::size_t dereference() const { return static_cast(m_lowest_scale->m_grid(m_pos_x, m_pos_y)[m_idx]); } private: const Planimetric_grid* m_lowest_scale; std::size_t m_xmin, m_xmax, m_ymin, m_ymax; std::size_t m_size; std::size_t m_idx; std::size_t m_pos_x; std::size_t m_pos_y; bool lowest_scale_has_points (std::size_t x, std::size_t y) const { if (x >= m_lowest_scale->width() || y >= m_lowest_scale->height()) return false; return m_lowest_scale->has_points (x, y); } }; #endif /// \cond SKIP_IN_MANUAL Planimetric_grid () { } /// \endcond /*! \brief Constructs a planimetric grid based on the input range. \param input point range. \param point_map property map to access the input points. \param bbox bounding box of the input range. \param grid_resolution resolution of the planimetric grid. */ Planimetric_grid (const PointRange& input, PointMap point_map, const Iso_cuboid_3& bbox, float grid_resolution) : m_points (&input), m_point_map (point_map) , m_bbox (bbox), m_resolution (grid_resolution), m_lower_scale(nullptr), m_current_scale(0) { m_width = (std::size_t)((bbox.xmax() - bbox.xmin()) / grid_resolution) + 1; m_height = (std::size_t)((bbox.ymax() - bbox.ymin()) / grid_resolution) + 1; m_grid = Image_indices (m_width, m_height); for (std::size_t i = 0; i < input.size(); ++ i) { const Point_3& p = get(point_map, *(input.begin()+i)); std::size_t x = (boost::uint32_t)((p.x() - bbox.xmin()) / grid_resolution); std::size_t y = (boost::uint32_t)((p.y() - bbox.ymin()) / grid_resolution); m_grid(x,y).push_back (boost::uint32_t(i)); } } /// \cond SKIP_IN_MANUAL Planimetric_grid (Planimetric_grid* lower_scale) : m_resolution (lower_scale->resolution() * 2), m_lower_scale (lower_scale) { m_current_scale = lower_scale->m_current_scale + 1; m_width = (m_lower_scale->width() + 1) / 2; m_height = (m_lower_scale->height() + 1) / 2; m_has_points.reserve(m_width * m_height); for (std::size_t x = 0; x < m_width; ++ x) for (std::size_t y = 0; y < m_height; ++ y) { bool has_points = false; for (std::size_t i = 0; i <= 1; ++ i) { std::size_t xi = x*2 + i; if (xi >= m_lower_scale->width()) continue; for (std::size_t j = 0; j <= 1; ++ j) { std::size_t yi = y*2 + j; if (yi >= m_lower_scale->height()) continue; if (m_lower_scale->has_points(xi,yi)) { has_points = true; break; } } if (has_points) break; } m_has_points.push_back (has_points); } } /// \endcond /*! \brief Returns the resolution of the grid. */ float resolution() const { return m_resolution; } /*! \brief Returns the number of cells along the X-axis. */ std::size_t width() const { return m_width; } /*! \brief Returns the number of cells along the Y-axis. */ std::size_t height() const { return m_height; } /// \cond SKIP_IN_MANUAL const Planimetric_grid* lowest_scale() const { if (m_current_scale == 0) return this; // else return m_lower_scale->lowest_scale(); } /// \endcond /*! \brief Returns the begin iterator on the indices of the points lying in the cell at position `(x,y)`. */ iterator indices_begin(std::size_t x, std::size_t y) const { CGAL_assertion (x < m_width && y < m_height); return iterator (lowest_scale(), m_current_scale, x, y); } /*! \brief Returns the past-the-end iterator on the indices of the points lying in the cell at position `(x,y)`. */ iterator indices_end(std::size_t x, std::size_t y) const { CGAL_assertion (x < m_width && y < m_height); return iterator (lowest_scale(), m_current_scale, x, y, true); } /*! \brief Returns `false` if the cell at position `(x,y)` is empty, `true` otherwise. */ bool has_points(std::size_t x, std::size_t y) const { CGAL_assertion (x < m_width && y < m_height); if (m_current_scale == 0) return (!(m_grid(x,y).empty())); // else return m_has_points[x * m_height + y]; } /*! \brief Returns the `x` grid coordinate of the point at position `index`. */ std::size_t x(std::size_t index) const { if (m_lower_scale == nullptr) { const Point_3& p = get(m_point_map, *(m_points->begin()+index)); return (std::size_t)((p.x() - m_bbox.xmin()) / m_resolution); } // else return m_lower_scale->x(index) / 2; } /*! \brief Returns the `y` grid coordinate of the point at position `index`. */ std::size_t y(std::size_t index) const { if (m_lower_scale == nullptr) { const Point_3& p = get(m_point_map, *(m_points->begin()+index)); return (std::size_t)((p.y() - m_bbox.ymin()) / m_resolution); } // else return m_lower_scale->y(index) / 2; } }; } } #endif // CGAL_CLASSIFICATION_PLANIMETRIC_GRID_H