// Copyright (c) 2002 // Utrecht University (The Netherlands), // ETH Zurich (Switzerland), // INRIA Sophia-Antipolis (France), // Max-Planck-Institute Saarbruecken (Germany), // and Tel-Aviv University (Israel). All rights reserved. // // This file is part of CGAL (www.cgal.org) // // $URL: https://github.com/CGAL/cgal/blob/v5.1/Kernel_d/include/CGAL/Kernel_d/intersection_objectsCd.h $ // $Id: intersection_objectsCd.h 0779373 2020-03-26T13:31:46+01:00 Sébastien Loriot // SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial // // // Author(s) : ? #ifndef CGAL_INTERSECTION_OBJECTSCD_H #define CGAL_INTERSECTION_OBJECTSCD_H #include #include namespace CGAL { /*{\Manpage{Line_line_intersectionCd}{R}{intersecting two lines}}*/ template class Line_line_intersectionCd { typedef typename R::FT FT; typedef typename R::LA LA; typedef typename R::Point_d Point_d; typedef typename R::Line_d Line_d; public: enum Intersection_result { NO_INTERSECTION, POINT, LINE }; Intersection_result operator()( const Point_d& s1, const Point_d& t1, const Point_d& s2, const Point_d& t2, Point_d& p, FT& l1, FT& l2) /*{\Mfunop returns |NO_INTERSECTION| if the lines which are represented by |s1t1| and |s2t2| don't intersect, returns |POINT| if they intersect in a unique point, and returns LINE if they are identical. In the |POINT| case the point of intersection is assigned to |p|. Then |p = s1 + l1 * t1-s1| and |p = s2 + l2 * t2-s2|. \precond none of the point pairs is degenerate.}*/ { int d = s1.dimension(),i; CGAL_assertion_msg(d==s2.dimension(), "intersection: dimensions disagree!"); typename LA::Matrix M(d,2),S; typename LA::Vector b(d), lambda(2), c; FT D; /* init $d \times 2$ - matrix |M| and $d$ - vector |b| */ for (i = 0; i < d; i++) { M(i,0) = t1.cartesian(i) - s1.cartesian(i); M(i,1) = s2.cartesian(i) - t2.cartesian(i); b[i] = s2.cartesian(i) - s1.cartesian(i); } if (LA::linear_solver(M,b,lambda,D,S,c)) { if ( S.column_dimension()>0 ) return LINE; l1 = lambda[0]; l2 = lambda[1]; p = s1 + l1 * (t1 - s1); #ifdef CGAL_CHECK_EXACTNESS Line_d L1(s1,t1), L2(s2,t2); CGAL_assertion(L1.has_on(p)&&L2.has_on(p)); #endif return POINT; } return NO_INTERSECTION; } }; /*{\Manpage {Line_hyperplane_intersectionCd}{R} {intersecting a line and a hyperplane}}*/ template class Line_hyperplane_intersectionCd { typedef typename R::FT FT; typedef typename R::LA LA; typedef typename R::Point_d Point_d; typedef typename R::Hyperplane_d Hyperplane_d; public: enum Intersection_result { NO_INTERSECTION, POINT, LINE }; Intersection_result operator()(const Point_d& s, const Point_d& t, const Hyperplane_d& h, Point_d& p, FT& lambda) /*{\Mfunop returns |NO_INTERSECTION| if the line represented by |s1t1| and the hyperplane |h| don't intersect, returns |POINT| if they intersect in a unique point, and returns LINE if the line is part of the hyperplane. In the |POINT| case the point of intersection is assigned to |p|. Then |p = s1 + lambda * t1-s1|. \precond the point pair is not degenerate.}*/ { CGAL_assertion_msg((h.dimension()==s.dimension() && h.dimension()==t.dimension()), "Line_hyperplane_intersection_d: dimensions do not agree."); int d = h.dimension(),i; FT S = h.value_at(s), T = h.value_at(t); bool s_contained = CGAL_NTS is_zero(S), t_contained = CGAL_NTS is_zero(T); if (s_contained && t_contained) { p = s; return LINE; } if (s_contained) { p = s; return POINT; } if (t_contained) { p = t; return POINT; } // now the simple cases are done FT D = S - T; if ( CGAL_NTS is_zero(D) ) return NO_INTERSECTION; typename LA::Vector v(d); for (i = 0; i < d; ++i) v[i] = (S * t.cartesian(i) - T * s.cartesian(i))/D; p = Point_d(d,v.begin(),v.end()); lambda = S/D; #ifdef CGAL_CHECK_EXACTNESS Line_d l(s,t); CGAL_assertion(h.has_on(p)&&l.has_on(p)); #endif return POINT; } }; } //namespace CGAL #include #endif //CGAL_INTERSECTION_OBJECTSCD_H