// Copyright (c) 2008 Max-Planck-Institute Saarbruecken (Germany) // // This file is part of CGAL (www.cgal.org) // // $URL: https://github.com/CGAL/cgal/blob/v5.1/Polynomial/include/CGAL/Polynomial/Chinese_remainder_traits.h $ // $Id: Chinese_remainder_traits.h 0779373 2020-03-26T13:31:46+01:00 Sébastien Loriot // SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial // // // Author(s) : Michael Hemmer #ifndef CGAL_POLYNOMIAL_CHINESE_REMAINDER_TRAITS #define CGAL_POLYNOMIAL_CHINESE_REMAINDER_TRAITS #include #include #include namespace CGAL { template class Chinese_remainder_traits >{ public: typedef Polynomial Type; typedef Chinese_remainder_traits CRT_NT; typedef typename CRT_NT::Scalar_type Scalar_type; struct Chinese_remainder{ void operator()( const Scalar_type& m1, const Scalar_type& m2, const Scalar_type& m, const Scalar_type& s, const Scalar_type& t, const Type& u1, const Type& u2, Type& u) const { typename CRT_NT::Chinese_remainder chinese_remainder_nt; CGAL_precondition(u1.degree() == u2.degree()); std::vector coeffs(u1.degree()+1); for(int i = 0; i <= u1.degree(); i++){ NT c; chinese_remainder_nt(m1,m2,m,s,t,u1[i],u2[i],c); coeffs[i] = c; } u = Polynomial(coeffs.begin(),coeffs.end()); } void operator()( const Scalar_type& m1, const Type& u1, const Scalar_type& m2, const Type& u2, Scalar_type& m, Type& u) const { Scalar_type s,t; CGAL::extended_euclidean_algorithm(m1,m2,s,t); m = m1 * m2; this->operator()(m1,m2,m,s,t,u1,u2,u); } }; }; } // namespace CGAL #endif // CGAL_POLYNOMIAL_CHINESE_REMAINDER_TRAITS