// Copyright (c) 2008 Max-Planck-Institute Saarbruecken (Germany) // // This file is part of CGAL (www.cgal.org) // // $URL: https://github.com/CGAL/cgal/blob/v5.1/Polynomial/include/CGAL/Polynomial/fwd.h $ // $Id: fwd.h 0779373 2020-03-26T13:31:46+01:00 Sébastien Loriot // SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial // // // Author(s) : Michael Hemmer // ============================================================================ #ifndef CGAL_POLYNOMIAL_FWD_H #define CGAL_POLYNOMIAL_FWD_H #include namespace CGAL{ template class Polynomial; namespace internal{ template inline Polynomial gcd_(const Polynomial&, const Polynomial&); template inline Polynomial gcd_(const Polynomial&, const Polynomial&, Field_tag); template inline Polynomial gcd_(const Polynomial&, const Polynomial&, Unique_factorization_domain_tag); template inline NT gcd_utcf_(const NT& /*a*/, const NT& /*b*/){return NT(1);} template inline Polynomial gcd_utcf_(const Polynomial&, const Polynomial&); template inline Polynomial gcd_utcf_UFD( Polynomial , Polynomial) ; template inline Polynomial gcd_utcf_Integral_domain(Polynomial, Polynomial); template inline Polynomial gcd_Euclidean_ring(Polynomial, Polynomial); template inline Polynomial modular_gcd_utcf(const Polynomial&, const Polynomial&, Integral_domain_tag); template inline Polynomial modular_gcd_utcf(const Polynomial&, const Polynomial&, Unique_factorization_domain_tag); // is fraction ? template inline Polynomial gcd_utcf_is_fraction_( const Polynomial&, const Polynomial&, ::CGAL::Tag_true); template inline Polynomial gcd_utcf_is_fraction_( const Polynomial&, const Polynomial&, ::CGAL::Tag_false); // is type modularizable template inline Polynomial gcd_utcf_modularizable_algebra_( const Polynomial&, const Polynomial&, ::CGAL::Tag_false, Integral_domain_tag); template inline Polynomial gcd_utcf_modularizable_algebra_( const Polynomial&, const Polynomial&, ::CGAL::Tag_false, Unique_factorization_domain_tag); template inline Polynomial gcd_utcf_modularizable_algebra_( const Polynomial&, const Polynomial&, ::CGAL::Tag_false, Euclidean_ring_tag); template inline Polynomial gcd_utcf_modularizable_algebra_( const Polynomial&, const Polynomial&, ::CGAL::Tag_true, Integral_domain_tag); template inline Polynomial gcd_utcf_modularizable_algebra_( const Polynomial&, const Polynomial&, ::CGAL::Tag_true, Unique_factorization_domain_tag); template inline Polynomial gcd_utcf_modularizable_algebra_( const Polynomial&, const Polynomial&, ::CGAL::Tag_true, Euclidean_ring_tag); // template inline NT content_utcf(const Polynomial&); template inline NT content_utcf_(const Polynomial&); template inline int filtered_square_free_factorize( Polynomial, OutputIterator1, OutputIterator2); template inline int filtered_square_free_factorize_utcf( const Polynomial&, OutputIterator1, OutputIterator2); template inline int square_free_factorize_utcf(const Polynomial&, OutputIterator1, OutputIterator2); template inline int square_free_factorize_utcf_for_regular_polynomial(const Polynomial&, OutputIterator1, OutputIterator2); template inline int square_free_factorize(const Polynomial&, OutputIterator1, OutputIterator2); template inline int square_free_factorize_for_regular_polynomial(const Polynomial&, OutputIterator1, OutputIterator2); template inline bool may_have_multiple_factor( const Polynomial&); template inline bool may_have_common_factor(const Polynomial&,const Polynomial&); // eliminates outermost variable template inline Coeff resultant( const CGAL::Polynomial&, const CGAL::Polynomial&); // eliminates innermost variable template inline Coeff resultant_( const CGAL::Polynomial&, const CGAL::Polynomial&); template< class Coeff > struct Simple_matrix; template internal::Simple_matrix polynomial_subresultant_matrix( CGAL::Polynomial f, CGAL::Polynomial g, int d=0); template inline OutputIterator polynomial_subresultants (typename Polynomial_traits_d::Polynomial_d A, typename Polynomial_traits_d::Polynomial_d B, OutputIterator out); template inline OutputIterator principal_subresultants (typename Polynomial_traits_d::Polynomial_d A, typename Polynomial_traits_d::Polynomial_d B, OutputIterator out); template OutputIterator1 polynomial_subresultants_with_cofactors (typename Polynomial_traits_d::Polynomial_d P, typename Polynomial_traits_d::Polynomial_d Q, OutputIterator1 sres_out, OutputIterator2 coP_out, OutputIterator3 coQ_out); template inline OutputIterator principal_sturm_habicht_sequence (typename Polynomial_traits_d::Polynomial_d A, OutputIterator out); template OutputIterator sturm_habicht_sequence(typename Polynomial_traits_d::Polynomial_d P, OutputIterator out); template OutputIterator1 sturm_habicht_sequence_with_cofactors (typename Polynomial_traits_d::Polynomial_d P, OutputIterator1 out_stha, OutputIterator2 out_f, OutputIterator3 out_fx); } // namespace internal } // namespace CGAL #include #endif