// Copyright (c) 2008 Max-Planck-Institute Saarbruecken (Germany). // All rights reserved. // // This file is part of CGAL (www.cgal.org) // // $URL: https://github.com/CGAL/cgal/blob/v5.1/Algebraic_foundations/include/CGAL/ipower.h $ // $Id: ipower.h 0779373 2020-03-26T13:31:46+01:00 Sébastien Loriot // SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial // // // Author(s) : Michael Hemmer // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL: https://github.com/CGAL/cgal/blob/v5.1/Algebraic_foundations/include/CGAL/ipower.h $ #ifndef CGAL_IPOWER_H #define CGAL_IPOWER_H #include namespace CGAL { template inline NT ipower(const NT& base, int expn) { // compute base^expn using square-and-multiply CGAL_precondition(expn >= 0); // handle trivial cases efficiently if (expn == 0) return NT(1); if (expn == 1) return base; // find the most significant non-zero bit of expn int e = expn, msb = 0; while (e >>= 1) msb++; // computing base^expn by square-and-multiply NT res = base; int b = 1<>= 1) { // is there another bit right of what we saw so far? res *= res; if (expn & b) res *= base; } return res; } template inline NT ipower(const NT& base, long expn) { // compute base^expn using square-and-multiply CGAL_precondition(expn >= 0); // handle trivial cases efficiently if (expn == 0) return NT(1); if (expn == 1) return base; // find the most significant non-zero bit of expn long e = expn, msb = 0; while (e >>= 1) msb++; // computing base^expn by square-and-multiply NT res = base; long b = 1L<>= 1) { // is there another bit right of what we saw so far? res *= res; if (expn & b) res *= base; } return res; } } //namespace CGAL #endif // CGAL_IPOWER_H