// Copyright (c) 2015 INRIA Sophia-Antipolis (France). // All rights reserved. // // This file is part of CGAL (www.cgal.org). // // $URL: https://github.com/CGAL/cgal/blob/v5.1/Point_set_processing_3/include/CGAL/structure_point_set.h $ // $Id: structure_point_set.h c253679 2020-04-18T16:27:58+02:00 Sébastien Loriot // SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial // // // Author(s) : Florent Lafarge, Simon Giraudot // #ifndef CGAL_STRUCTURE_POINT_SET_3_H #define CGAL_STRUCTURE_POINT_SET_3_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace CGAL { /*! \ingroup PkgPointSetProcessing3Algorithms \brief A 3D point set with structure information based on a set of detected planes. Given a point set in 3D space along with a set of fitted planes, this class stores a simplified and structured version of the point set. Each output point is assigned to one, two or more primitives (depending whether it belongs to a planar section, an edge or a if it is a vertex). The implementation follow \cgalCite{cgal:la-srpss-13}. \tparam Kernel a model of `EfficientRANSACTraits` that must provide in addition a function `Intersect_3 intersection_3_object() const` and a functor `Intersect_3` with: - `boost::optional< boost::variant< Traits::Plane_3, Traits::Line_3 > > operator()(typename Traits::Plane_3, typename Traits::Plane_3)` - `boost::optional< boost::variant< Traits::Line_3, Traits::Point_3 > > operator()(typename Traits::Line_3, typename Traits::Plane_3)` */ template class Point_set_with_structure { typedef Point_set_with_structure Self; typedef typename Kernel::FT FT; typedef typename Kernel::Segment_3 Segment; typedef typename Kernel::Line_3 Line; typedef typename Kernel::Point_2 Point_2; enum Point_status { POINT, RESIDUS, PLANE, EDGE, CORNER, SKIPPED }; public: typedef typename Kernel::Point_3 Point; typedef typename Kernel::Vector_3 Vector; typedef typename Kernel::Plane_3 Plane; /// Tag classifying the coherence of a triplet of points with /// respect to an inferred surface enum Coherence_type { INCOHERENT = -1, ///< Incoherent (facet violates the underlying structure) FREEFORM = 0, ///< Free-form coherent (facet is between 3 free-form points) VERTEX = 1, ///< Structure coherent, facet adjacent to a vertex CREASE = 2, ///< Structure coherent, facet adjacent to an edge PLANAR = 3 ///< Structure coherent, facet inside a planar section }; private: class My_point_property_map{ const std::vector& points; public: typedef Point value_type; typedef const value_type& reference; typedef std::size_t key_type; typedef boost::lvalue_property_map_tag category; My_point_property_map (const std::vector& pts) : points (pts) {} reference operator[] (key_type k) const { return points[k]; } friend inline reference get (const My_point_property_map& ppmap, key_type i) { return ppmap[i]; } }; struct Edge { std::array planes; std::vector indices; // Points belonging to intersection Line support; bool active; Edge (std::size_t a, std::size_t b) : support (Point (FT(0.), FT(0.), FT(0.)), Vector (FT(0.), FT(0.), FT(0.))) , active(true) { planes[0] = a; planes[1] = b; } }; struct Corner { std::vector planes; std::vector edges; std::vector directions; Point support; bool active; Corner (std::size_t p1, std::size_t p2, std::size_t p3, std::size_t e1, std::size_t e2, std::size_t e3) { planes.resize (3); planes[0] = p1; planes[1] = p2; planes[2] = p3; edges.resize (3); edges[0] = e1; edges[1] = e2; edges[2] = e3; active = true; } }; std::vector m_points; std::vector m_normals; std::vector m_indices; std::vector m_status; std::vector m_planes; std::vector > m_indices_of_assigned_points; std::vector m_edges; std::vector m_corners; public: /*! Constructs a structured point set based on the input points and the associated shape detection object. \tparam PointRange is a model of `ConstRange`. The value type of its iterator is the key type of the named parameter `point_map`. \tparam PlaneRange is a model of `ConstRange`. The value type of its iterator is the key type of the named parameter `plane_map`. \param points input point range. \param planes input plane range. \param epsilon size parameter. \param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below \cgalNamedParamsBegin \cgalParamNBegin{point_map} \cgalParamDescription{a property map associating points to the elements of the point set `points`} \cgalParamType{a model of `ReadablePropertyMap` whose key type is the value type of the iterator of `PointRange` and whose value type is `geom_traits::Point_3`} \cgalParamDefault{`CGAL::Identity_property_map`} \cgalParamNEnd \cgalParamNBegin{normal_map} \cgalParamDescription{a property map associating normals to the elements of the point set `points`} \cgalParamType{a model of `ReadablePropertyMap` whose key type is the value type of the iterator of `PointRange` and whose value type is `geom_traits::Vector_3`} \cgalParamNEnd \cgalParamNBegin{plane_index_map} \cgalParamDescription{a property map associating the index of a point in the input range to the index of plane (`-1` if the point is not assigned to a plane)} \cgalParamType{a class model of `ReadablePropertyMap` with `std::size_t` as key type and `int` as value type} \cgalParamDefault{unused} \cgalParamNEnd \cgalParamNBegin{plane_map} \cgalParamDescription{a property map containing the planes associated to the elements of the plane range `planes`} \cgalParamType{a class model of `ReadablePropertyMap` with `PlaneRange::iterator::value_type` as key type and `geom_traits::Plane_3` as value type} \cgalParamDefault{`CGAL::Identity_property_map`} \cgalParamNEnd \cgalParamNBegin{attraction_factor} \cgalParamDescription{multiple of a tolerance `epsilon` used to connect simplices} \cgalParamType{floating scalar value} \cgalParamDefault{`3`} \cgalParamNEnd \cgalNamedParamsEnd */ template Point_set_with_structure (const PointRange& points, const PlaneRange& planes, double epsilon, const NamedParameters& np) { init (points, planes, epsilon, np); } /// \cond SKIP_IN_MANUAL template void init (const PointRange& points, const PlaneRange& planes, double epsilon, const NamedParameters& np) { using parameters::choose_parameter; using parameters::get_parameter; // basic geometric types typedef typename CGAL::GetPointMap::type PointMap; typedef typename Point_set_processing_3::GetNormalMap::type NormalMap; typedef typename Point_set_processing_3::GetPlaneMap::type PlaneMap; typedef typename Point_set_processing_3::GetPlaneIndexMap::type PlaneIndexMap; CGAL_static_assertion_msg(!(boost::is_same::NoMap>::value), "Error: no normal map"); CGAL_static_assertion_msg(!(boost::is_same::NoMap>::value), "Error: no plane index map"); PointMap point_map = choose_parameter(get_parameter(np, internal_np::point_map)); NormalMap normal_map = choose_parameter(get_parameter(np, internal_np::normal_map)); PlaneMap plane_map = choose_parameter(get_parameter(np, internal_np::plane_map)); PlaneIndexMap index_map = choose_parameter(get_parameter(np, internal_np::plane_index_map)); double attraction_factor = choose_parameter(get_parameter(np, internal_np::attraction_factor), 3.); m_points.reserve(points.size()); m_normals.reserve(points.size()); m_indices_of_assigned_points.resize (planes.size()); m_indices.resize (points.size (), (std::numeric_limits::max)()); m_status.resize (points.size (), POINT); std::size_t idx = 0; for (typename PointRange::const_iterator it = points.begin(); it != points.end(); ++ it) { m_points.push_back (get(point_map, *it)); m_normals.push_back (get(normal_map, *it)); int plane_index = get (index_map, idx); if (plane_index != -1) { m_indices_of_assigned_points[std::size_t(plane_index)].push_back(idx); m_indices[idx] = std::size_t(plane_index); m_status[idx] = PLANE; } ++ idx; } m_planes.reserve (planes.size()); for (typename PlaneRange::const_iterator it = planes.begin(); it != planes.end(); ++ it) m_planes.push_back (get (plane_map, *it)); run (epsilon, attraction_factor); clean (); } /// \endcond std::size_t size () const { return m_points.size (); } std::pair operator[] (std::size_t i) const { return std::make_pair (m_points[i], m_normals[i]); } const Point& point (std::size_t i) const { return m_points[i]; } const Vector& normal (std::size_t i) const { return m_normals[i]; } /*! Returns all `Plane_shape` objects that are adjacent to the point with index `i`. \note Points not adjacent to any plane are free-form points, points adjacent to 1 plane are planar points, points adjacent to 2 planes are edge points and points adjacent to 3 or more planes are vertices. */ template void adjacency (std::size_t i, OutputIterator output) const { if (m_status[i] == PLANE || m_status[i] == RESIDUS) *(output ++) = m_planes[m_indices[i]]; else if (m_status[i] == EDGE) { *(output ++) = m_planes[m_edges[m_indices[i]].planes[0]]; *(output ++) = m_planes[m_edges[m_indices[i]].planes[1]]; } else if (m_status[i] == CORNER) { for (std::size_t j = 0; j < m_corners[m_indices[i]].planes.size(); ++ j) *(output ++) = m_planes[m_corners[m_indices[i]].planes[j]]; } } /*! Computes the coherence of a facet between the 3 points indexed by `f` with respect to the underlying structure. */ Coherence_type facet_coherence (const std::array& f) const { // O- FREEFORM CASE if (m_status[f[0]] == POINT && m_status[f[1]] == POINT && m_status[f[2]] == POINT) return FREEFORM; // 1- PLANAR CASE if (m_status[f[0]] == PLANE && m_status[f[1]] == PLANE && m_status[f[2]] == PLANE) { if (m_indices[f[0]] == m_indices[f[1]] && m_indices[f[0]] == m_indices[f[2]]) return PLANAR; else return INCOHERENT; } for (std::size_t i = 0; i < 3; ++ i) { Point_status sa = m_status[f[(i+1)%3]]; Point_status sb = m_status[f[(i+2)%3]]; Point_status sc = m_status[f[(i+3)%3]]; std::size_t a = m_indices[f[(i+1)%3]]; std::size_t b = m_indices[f[(i+2)%3]]; std::size_t c = m_indices[f[(i+3)%3]]; // O- FREEFORM CASE if (sa == POINT && sb == POINT && sc == PLANE) return FREEFORM; if (sa == POINT && sb == PLANE && sc == PLANE) { if (b == c) return FREEFORM; else return INCOHERENT; } // 2- CREASE CASES if (sa == EDGE && sb == EDGE && sc == PLANE) { if ((c == m_edges[a].planes[0] || c == m_edges[a].planes[1]) && (c == m_edges[b].planes[0] || c == m_edges[b].planes[1])) return CREASE; else return INCOHERENT; } if (sa == EDGE && sb == PLANE && sc == PLANE) { if (b == c && (b == m_edges[a].planes[0] || b == m_edges[a].planes[1])) return CREASE; else return INCOHERENT; } // 3- CORNER CASES if (sc == CORNER) { if (sa == EDGE && sb == EDGE) { bool a0 = false, a1 = false, b0 = false, b1 = false; if ((m_edges[a].planes[0] != m_edges[b].planes[0] && m_edges[a].planes[0] != m_edges[b].planes[1] && m_edges[a].planes[1] != m_edges[b].planes[0] && m_edges[a].planes[1] != m_edges[b].planes[1])) return INCOHERENT; for (std::size_t j = 0; j < m_corners[c].planes.size (); ++ j) { if (m_corners[c].planes[j] == m_edges[a].planes[0]) a0 = true; else if (m_corners[c].planes[j] == m_edges[a].planes[1]) a1 = true; if (m_corners[c].planes[j] == m_edges[b].planes[0]) b0 = true; else if (m_corners[c].planes[j] == m_edges[b].planes[1]) b1 = true; } if (a0 && a1 && b0 && b1) return VERTEX; else return INCOHERENT; } else if (sa == PLANE && sb == PLANE) { if (a != b) return INCOHERENT; for (std::size_t j = 0; j < m_corners[c].planes.size (); ++ j) if (m_corners[c].planes[j] == a) return VERTEX; return INCOHERENT; } else if (sa == PLANE && sb == EDGE) { bool pa = false, b0 = false, b1 = false; if (a != m_edges[b].planes[0] && a != m_edges[b].planes[1]) return INCOHERENT; for (std::size_t j = 0; j < m_corners[c].planes.size (); ++ j) { if (m_corners[c].planes[j] == a) pa = true; if (m_corners[c].planes[j] == m_edges[b].planes[0]) b0 = true; else if (m_corners[c].planes[j] == m_edges[b].planes[1]) b1 = true; } if (pa && b0 && b1) return VERTEX; else return INCOHERENT; } else if (sa == EDGE && sb == PLANE) { bool a0 = false, a1 = false, pb = false; if (b != m_edges[a].planes[0] && b != m_edges[a].planes[1]) return INCOHERENT; for (std::size_t j = 0; j < m_corners[c].planes.size (); ++ j) { if (m_corners[c].planes[j] == b) pb = true; if (m_corners[c].planes[j] == m_edges[a].planes[0]) a0 = true; else if (m_corners[c].planes[j] == m_edges[a].planes[1]) a1 = true; } if (a0 && a1 && pb) return VERTEX; else return INCOHERENT; } else return INCOHERENT; } } return INCOHERENT; } /// \cond SKIP_IN_MANUAL private: void clean () { std::vector points; std::vector normals; std::vector indices; std::vector status; for (std::size_t i = 0; i < m_points.size (); ++ i) if (m_status[i] != SKIPPED) { points.push_back (m_points[i]); normals.push_back (m_normals[i]); status.push_back (m_status[i]); if (m_status[i] == RESIDUS) status.back () = PLANE; indices.push_back (m_indices[i]); } m_points.swap (points); m_normals.swap (normals); m_indices.swap (indices); m_status.swap (status); } void run (double epsilon, double attraction_factor = 3.) { if (m_planes.empty ()) return; double radius = epsilon * attraction_factor; #ifdef CGAL_PSP3_VERBOSE std::cerr << "Computing planar points... " << std::endl; #endif project_inliers (); resample_planes (epsilon); #ifdef CGAL_PSP3_VERBOSE std::cerr << " -> Done" << std::endl; std::cerr << "Finding adjacent primitives... " << std::endl; #endif find_pairs_of_adjacent_primitives (radius); #ifdef CGAL_PSP3_VERBOSE std::cerr << " -> Found " << m_edges.size () << " pair(s) of adjacent primitives." << std::endl; std::cerr << "Computing edges... " << std::endl; #endif compute_edges (epsilon); #ifdef CGAL_PSP3_VERBOSE std::cerr << " -> Done" << std::endl; std::cerr << "Creating edge-anchor points... " << std::endl; { std::size_t size_before = m_points.size (); #endif create_edge_anchor_points (radius, epsilon); #ifdef CGAL_PSP3_VERBOSE std::cerr << " -> " << m_points.size () - size_before << " anchor point(s) created." << std::endl; } std::cerr << "Computating first set of corners... " << std::endl; #endif compute_corners (radius); #ifdef CGAL_PSP3_VERBOSE std::cerr << " -> Found " << m_corners.size () << " triple(s) of adjacent primitives/edges." << std::endl; std::cerr << "Merging corners... " << std::endl; { std::size_t size_before = m_points.size (); #endif merge_corners (radius); #ifdef CGAL_PSP3_VERBOSE std::cerr << " -> " << m_points.size () - size_before << " corner point(s) created." << std::endl; } std::cerr << "Computing corner directions... " << std::endl; #endif compute_corner_directions (epsilon); #ifdef CGAL_PSP3_VERBOSE std::cerr << " -> Done" << std::endl; std::cerr << "Refining sampling... " << std::endl; #endif refine_sampling (epsilon); #ifdef CGAL_PSP3_VERBOSE std::cerr << " -> Done" << std::endl; std::cerr << "Cleaning data set... " << std::endl; #endif clean (); #ifdef CGAL_PSP3_VERBOSE std::cerr << " -> Done" << std::endl; #endif } void project_inliers () { for(std::size_t i = 0; i < m_indices_of_assigned_points.size (); ++ i) for (std::size_t j = 0; j < m_indices_of_assigned_points[i].size(); ++ j) { std::size_t ind = m_indices_of_assigned_points[i][j]; m_points[ind] = m_planes[i].projection (m_points[ind]); } } void resample_planes (double epsilon) { double grid_length = epsilon * (std::sqrt(2.) - 1e-3); for (std::size_t c = 0; c < m_planes.size (); ++ c) { //plane attributes and 2D projection vectors const Plane& plane = m_planes[c]; Vector vortho = plane.orthogonal_vector(); Vector b1 = plane.base1(); Vector b2 = plane.base2(); b1 = b1 / std::sqrt (b1 * b1); b2 = b2 / std::sqrt (b2 * b2); std::vector points_2d; //storage of the 2D points in "pt_2d" for (std::size_t j = 0; j < m_indices_of_assigned_points[c].size(); ++ j) { std::size_t ind = m_indices_of_assigned_points[c][j]; const Point& pt = m_points[ind]; points_2d.push_back (Point_2 (b1.x() * pt.x() + b1.y() * pt.y() + b1.z() * pt.z(), b2.x() * pt.x() + b2.y() * pt.y() + b2.z() * pt.z())); } //creation of a 2D-grid with cell width = grid_length, and image structures CGAL::Bbox_2 box_2d = CGAL::bbox_2 (points_2d.begin(), points_2d.end()); std::size_t Nx = static_cast((box_2d.xmax() - box_2d.xmin()) / grid_length) + 1; std::size_t Ny = static_cast((box_2d.ymax() - box_2d.ymin()) / grid_length) + 1; std::vector > Mask (Nx, std::vector (Ny, false)); std::vector > Mask_border (Nx, std::vector (Ny, false)); std::vector > > point_map (Nx, std::vector > (Ny, std::vector())); //storage of the points in the 2D-grid "point_map" for (std::size_t i = 0; i < points_2d.size(); ++ i) { std::size_t ind_x = static_cast((points_2d[i].x() - box_2d.xmin()) / grid_length); std::size_t ind_y = static_cast((points_2d[i].y() - box_2d.ymin()) / grid_length); Mask[ind_x][ind_y] = true; point_map[ind_x][ind_y].push_back (m_indices_of_assigned_points[c][i]); } //hole filing in Mask in 4-connexity for (std::size_t j = 1; j < Ny - 1; ++ j) for (std::size_t i = 1; i < Nx - 1; ++ i) if( !Mask[i][j] && Mask[i-1][j] && Mask[i][j-1] && Mask[i][j+1] && Mask[i+1][j] ) Mask[i][j]=true; //finding mask border in 8-connexity for (std::size_t j = 1; j < Ny - 1; ++ j) for (std::size_t i = 1; i < Nx - 1; ++ i) if( Mask[i][j] && ( !Mask[i-1][j-1] || !Mask[i-1][j] || !Mask[i-1][j+1] || !Mask[i][j-1] || !Mask[i][j+1] || !Mask[i+1][j-1] || !Mask[i+1][j]|| !Mask[i+1][j+1] ) ) Mask_border[i][j]=true; for (std::size_t j = 0; j < Ny; ++ j) { if (Mask[0][j]) Mask_border[0][j]=true; if (Mask[Nx-1][j]) Mask_border[Nx-1][j]=true; } for (std::size_t i = 0; i < Nx; ++ i) { if(Mask[i][0]) Mask_border[i][0]=true; if(Mask[i][Ny-1]) Mask_border[i][Ny-1]=true; } //saving of points to keep for (std::size_t j = 0; j < Ny; ++ j) for (std::size_t i = 0; i < Nx; ++ i) if( point_map[i][j].size()>0) { //inside: recenter (cell center) the first point of the cell and desactivate the others points if (!Mask_border[i][j] && Mask[i][j]) { double x2pt = (i+0.5) * grid_length + box_2d.xmin(); double y2pt = (j+0.4) * grid_length + box_2d.ymin(); if (i%2 == 1) { x2pt = (i+0.5) * grid_length + box_2d.xmin(); y2pt = (j+0.6) * grid_length + box_2d.ymin(); } FT X1 = x2pt * b1.x() + y2pt * b2.x() - plane.d() * vortho.x(); FT X2 = x2pt * b1.y() + y2pt * b2.y() - plane.d() * vortho.y(); FT X3 = x2pt * b1.z() + y2pt * b2.z() - plane.d() * vortho.z(); std::size_t index_pt = point_map[i][j][0]; m_points[index_pt] = Point (X1, X2, X3); m_normals[index_pt] = m_planes[c].orthogonal_vector(); m_status[index_pt] = PLANE; for (std::size_t np = 1; np < point_map[i][j].size(); ++ np) m_status[point_map[i][j][np]] = SKIPPED; } //border: recenter (barycenter) the first point of the cell and desactivate the others points else if (Mask_border[i][j] && Mask[i][j]) { std::vector pts; for (std::size_t np = 0; np < point_map[i][j].size(); ++ np) pts.push_back (m_points[point_map[i][j][np]]); m_points[point_map[i][j][0]] = CGAL::centroid (pts.begin (), pts.end ()); m_status[point_map[i][j][0]] = PLANE; for (std::size_t np = 1; np < point_map[i][j].size(); ++ np) m_status[point_map[i][j][np]] = SKIPPED; } } // point use to filling 4-connexity holes are store in HPS_residus else if (point_map[i][j].size()==0 && !Mask_border[i][j] && Mask[i][j]) { double x2pt = (i+0.5) * grid_length + box_2d.xmin(); double y2pt = (j+0.49) * grid_length + box_2d.ymin(); if(i%2==1) { x2pt = (i+0.5) * grid_length + box_2d.xmin(); y2pt = (j+0.51) * grid_length + box_2d.ymin(); } FT X1 = x2pt * b1.x() + y2pt * b2.x() - plane.d() * vortho.x(); FT X2 = x2pt * b1.y() + y2pt * b2.y() - plane.d() * vortho.y(); FT X3 = x2pt * b1.z() + y2pt * b2.z() - plane.d() * vortho.z(); m_points.push_back (Point (X1, X2, X3)); m_normals.push_back (m_planes[c].orthogonal_vector()); m_indices.push_back (c); m_status.push_back (RESIDUS); } } } void find_pairs_of_adjacent_primitives (double radius) { typedef typename CGAL::Search_traits_3 Search_traits_base; typedef Search_traits_adapter ::type, Search_traits_base> Search_traits; typedef CGAL::Kd_tree Tree; typedef CGAL::Fuzzy_sphere Fuzzy_sphere; typename Pointer_property_map::type pmap = make_property_map(m_points); Tree tree (boost::counting_iterator (0), boost::counting_iterator (m_points.size()), typename Tree::Splitter(), Search_traits (pmap)); std::vector > adjacency_table (m_planes.size (), std::vector (m_planes.size (), false)); //compute a basic adjacency relation (two primitives are neighbors //if at least one point of the primitive 1 is a k-nearest neighbor //of a point of the primitive 2 and vice versa) for (std::size_t i = 0; i < m_points.size (); ++ i) { std::size_t ind_i = m_indices[i]; if (ind_i == (std::numeric_limits::max)()) continue; Fuzzy_sphere query (i, radius, 0., tree.traits()); std::vector neighbors; tree.search (std::back_inserter (neighbors), query); for (std::size_t k = 0; k < neighbors.size(); ++ k) { std::size_t ind_k = m_indices[neighbors[k]]; if (ind_k != (std::numeric_limits::max)() && ind_k != ind_i) adjacency_table[ind_i][ind_k] = true; } } //verify the symmetry and store the pairs of primitives in //m_edges for (std::size_t i = 0; i < adjacency_table.size() - 1; ++ i) for (std::size_t j = i + 1; j < adjacency_table[i].size(); ++ j) if ((adjacency_table[i][j]) && (adjacency_table[j][i])) m_edges.push_back (Edge (i, j)); } void compute_edges (double epsilon) { for (std::size_t i = 0; i < m_edges.size(); ++ i) { const Plane& plane1 = m_planes[m_edges[i].planes[0]]; const Plane& plane2 = m_planes[m_edges[i].planes[1]]; double angle_A = std::acos (CGAL::abs (plane1.orthogonal_vector() * plane2.orthogonal_vector())); double angle_B = CGAL_PI - angle_A; typename cpp11::result_of::type result = CGAL::intersection(plane1, plane2); if (!result) { #ifdef CGAL_PSP3_VERBOSE std::cerr << "Warning: bad plane/plane intersection" << std::endl; #endif continue; } if (const Line* l = boost::get(&*result)) m_edges[i].support = *l; else { #ifdef CGAL_PSP3_VERBOSE std::cerr << "Warning: bad plane/plane intersection" << std::endl; #endif continue; } Vector direction_p1 (0., 0., 0.); for (std::size_t k = 0; k < m_indices_of_assigned_points[m_edges[i].planes[0]].size(); ++ k) { std::size_t index_point = m_indices_of_assigned_points[m_edges[i].planes[0]][k]; const Point& point = m_points[index_point]; Point projected = m_edges[i].support.projection (point); if (std::sqrt (CGAL::squared_distance (point, projected)) < 2 * (std::min) (4., 1 / std::sin (angle_A)) * epsilon && m_status[index_point] != SKIPPED) direction_p1 = direction_p1 + Vector (projected, point); } if (direction_p1.squared_length() > 0) direction_p1 = direction_p1 / std::sqrt (direction_p1 * direction_p1); Vector direction_p2 (0., 0., 0.); for (std::size_t k = 0; k < m_indices_of_assigned_points[m_edges[i].planes[1]].size(); ++ k) { std::size_t index_point = m_indices_of_assigned_points[m_edges[i].planes[1]][k]; const Point& point = m_points[index_point]; Point projected = m_edges[i].support.projection (point); if (std::sqrt (CGAL::squared_distance (point, projected)) < 2 * (std::min) (4., 1 / std::sin (angle_A)) * epsilon && m_status[index_point] != SKIPPED) direction_p2 = direction_p2 + Vector (projected, point); } if (direction_p2.squared_length() > 0) direction_p2 = direction_p2 / std::sqrt (direction_p2 * direction_p2); double angle = std::acos (direction_p1 * direction_p2); if (direction_p1.squared_length() == 0 || direction_p2.squared_length() == 0 || (CGAL::abs (angle - angle_A) > 1e-2 && CGAL::abs (angle - angle_B) > 1e-2 )) { m_edges[i].active = false; } } } void create_edge_anchor_points (double radius, double epsilon) { double d_DeltaEdge = std::sqrt (2.) * epsilon; double r_edge = d_DeltaEdge / 2.; for (std::size_t i = 0; i < m_edges.size(); ++ i) { const Plane& plane1 = m_planes[m_edges[i].planes[0]]; const Plane& plane2 = m_planes[m_edges[i].planes[1]]; const Line& line = m_edges[i].support; if (!(m_edges[i].active)) { continue; } Vector normal = 0.5 * plane1.orthogonal_vector () + 0.5 * plane2.orthogonal_vector(); //find set of points close ( intersection_points; for (std::size_t k = 0; k < m_indices_of_assigned_points[m_edges[i].planes[0]].size(); ++ k) { std::size_t index_point = m_indices_of_assigned_points[m_edges[i].planes[0]][k]; const Point& point = m_points[index_point]; Point projected = line.projection (point); if (CGAL::squared_distance (point, projected) < radius * radius) intersection_points.push_back (index_point); } for (std::size_t k = 0; k < m_indices_of_assigned_points[m_edges[i].planes[1]].size(); ++ k) { std::size_t index_point = m_indices_of_assigned_points[m_edges[i].planes[1]][k]; const Point& point = m_points[index_point]; Point projected = line.projection (point); if (CGAL::squared_distance (point, projected) < radius * radius) intersection_points.push_back (index_point); } if (intersection_points.empty ()) { continue; } const Point& t0 = m_points[intersection_points[0]]; Point t0p = line.projection (t0); double dmin = 0.; double dmax = 0.; Point Pmin = t0p; Point Pmax = t0p; Vector dir = line.to_vector (); //compute the segment of the edge for (std::size_t k = 0; k < intersection_points.size(); ++ k) { std::size_t ind = intersection_points[k]; const Point& point = m_points[ind]; Point projected = line.projection (point); double d = Vector (t0p, projected) * dir; if (d < dmin) { dmin = d; Pmin = projected; } else if (d > dmax) { dmax = d; Pmax = projected; } } // make a partition in a 1D image by voting if at the same // time at least one point of plane1 and one of point2 fall in // the same cell (same step as for planes) Segment seg (Pmin,Pmax); std::size_t number_of_division = static_cast(std::sqrt (seg.squared_length ()) / d_DeltaEdge) + 1; std::vector > division_tab (number_of_division); for (std::size_t k = 0; k < intersection_points.size(); ++ k) { std::size_t ind = intersection_points[k]; const Point& point = m_points[ind]; Point projected = line.projection (point); std::size_t tab_index = static_cast(std::sqrt (CGAL::squared_distance (seg[0], projected)) / d_DeltaEdge); division_tab[tab_index].push_back (ind); } //C1-CREATE the EDGE std::vector index_of_edge_points; for (std::size_t j = 0; j < division_tab.size(); ++ j) { bool p1found = false, p2found = false; for (std::size_t k = 0; k < division_tab[j].size () && !(p1found && p2found); ++ k) { if (m_indices[division_tab[j][k]] == m_edges[i].planes[0]) p1found = true; if (m_indices[division_tab[j][k]] == m_edges[i].planes[1]) p2found = true; } if (!(p1found && p2found)) { division_tab[j].clear(); continue; } Point perfect (seg[0].x() + (seg[1].x() - seg[0].x()) * (j + 0.5) / double(number_of_division), seg[0].y() + (seg[1].y() - seg[0].y()) * (j + 0.5) / double(number_of_division), seg[0].z() + (seg[1].z() - seg[0].z()) * (j + 0.5) / double(number_of_division)); // keep closest point, replace it by perfect one and skip the others double dist_min = (std::numeric_limits::max)(); std::size_t index_best = 0; for (std::size_t k = 0; k < division_tab[j].size(); ++ k) { std::size_t inde = division_tab[j][k]; if (CGAL::squared_distance (line, m_points[inde]) < d_DeltaEdge * d_DeltaEdge) m_status[inde] = SKIPPED; // Deactive points too close (except best, see below) double distance = CGAL::squared_distance (perfect, m_points[inde]); if (distance < dist_min) { dist_min = distance; index_best = inde; } } m_points[index_best] = perfect; m_normals[index_best] = normal; m_status[index_best] = EDGE; m_indices[index_best] = i; m_edges[i].indices.push_back (index_best); } //C2-CREATE the ANCHOR Vector direction_p1(0,0,0); Vector direction_p2(0,0,0); for (std::size_t j = 0; j < division_tab.size() - 1; ++ j) { if (division_tab[j].empty () || division_tab[j+1].empty ()) continue; Point anchor (seg[0].x() + (seg[1].x() - seg[0].x()) * (j + 1) / double(number_of_division), seg[0].y() + (seg[1].y() - seg[0].y()) * (j + 1) / double(number_of_division), seg[0].z() + (seg[1].z() - seg[0].z()) * (j + 1) / double(number_of_division)); Plane ortho = seg.supporting_line().perpendicular_plane(anchor); std::vector pts1, pts2; //Computation of the permanent angle and directions for (std::size_t k = 0; k < division_tab[j].size(); ++ k) { std::size_t inde = division_tab[j][k]; std::size_t plane = m_indices[inde]; if (plane == m_edges[i].planes[0]) pts1.push_back (m_points[inde]); else if (plane == m_edges[i].planes[1]) pts2.push_back (m_points[inde]); } typename cpp11::result_of::type result = CGAL::intersection (plane1, ortho); if (result) { if (const Line* l = boost::get(&*result)) { if (!(pts1.empty())) { Vector vecp1 = l->to_vector(); vecp1 = vecp1/ std::sqrt (vecp1 * vecp1); Vector vtest1 (anchor, CGAL::centroid (pts1.begin (), pts1.end ())); if (vtest1 * vecp1<0) vecp1 = -vecp1; direction_p1 = direction_p1+vecp1; Point anchor1 = anchor + vecp1 * r_edge; m_points.push_back (anchor1); m_normals.push_back (m_planes[m_edges[i].planes[0]].orthogonal_vector()); m_indices.push_back (m_edges[i].planes[0]); m_status.push_back (PLANE); } } else { #ifdef CGAL_PSP3_VERBOSE std::cerr<<"Warning: bad plane/plane intersection"<(&*result)) { if (!(pts2.empty())) { Vector vecp2 = l->to_vector(); vecp2 = vecp2 / std::sqrt (vecp2 * vecp2); Vector vtest2 (anchor, CGAL::centroid (pts2.begin (), pts2.end ())); if (vtest2 * vecp2 < 0) vecp2 =- vecp2; direction_p2 = direction_p2+vecp2; Point anchor2 = anchor + vecp2 * r_edge; m_points.push_back (anchor2); m_normals.push_back (m_planes[m_edges[i].planes[1]].orthogonal_vector()); m_indices.push_back (m_edges[i].planes[1]); m_status.push_back (PLANE); } } else { #ifdef CGAL_PSP3_VERBOSE std::cerr<<"Warning: bad plane/plane intersection"<0 || direction_p2.squared_length()>0) ) { m_edges[i].active = false; for (std::size_t j = 0; j < m_edges[i].indices.size (); ++ j) m_status[m_edges[i].indices[j]] = SKIPPED; } } } void compute_corners (double radius) { if (m_edges.size () < 3) return; std::vector > plane_edge_adj (m_planes.size()); for (std::size_t i = 0; i < m_edges.size (); ++ i) if (m_edges[i].active) { plane_edge_adj[m_edges[i].planes[0]].push_back (i); plane_edge_adj[m_edges[i].planes[1]].push_back (i); } std::vector > edge_adj (m_edges.size ()); for (std::size_t i = 0; i < plane_edge_adj.size (); ++ i) { if (plane_edge_adj[i].size () < 2) continue; for (std::size_t j = 0; j < plane_edge_adj[i].size ()- 1; ++ j) for (std::size_t k = j + 1; k < plane_edge_adj[i].size (); ++ k) { edge_adj[plane_edge_adj[i][j]].insert (plane_edge_adj[i][k]); edge_adj[plane_edge_adj[i][k]].insert (plane_edge_adj[i][j]); } } for (std::size_t i = 0; i < edge_adj.size (); ++ i) { if (edge_adj[i].size () < 2) continue; std::set::iterator end = edge_adj[i].end(); end --; for (std::set::iterator jit = edge_adj[i].begin (); jit != end; ++ jit) { std::size_t j = *jit; if (j < i) continue; std::set::iterator begin = jit; begin ++; for (std::set::iterator kit = begin; kit != edge_adj[i].end (); ++ kit) { std::size_t k = *kit; if (k < j) continue; std::set planes; planes.insert (m_edges[i].planes[0]); planes.insert (m_edges[i].planes[1]); planes.insert (m_edges[j].planes[0]); planes.insert (m_edges[j].planes[1]); planes.insert (m_edges[k].planes[0]); planes.insert (m_edges[k].planes[1]); if (planes.size () == 3) // Triple found { std::vector vecplanes (planes.begin (), planes.end ()); m_corners.push_back (Corner (vecplanes[0], vecplanes[1], vecplanes[2], i, j, k)); } } } } for (std::size_t i = 0; i < m_corners.size (); ++ i) { //calcul pt d'intersection des 3 plans const Plane& plane1 = m_planes[m_corners[i].planes[0]]; const Plane& plane2 = m_planes[m_corners[i].planes[1]]; const Plane& plane3 = m_planes[m_corners[i].planes[2]]; typename cpp11::result_of::type result = CGAL::intersection(plane1, plane2); if (result) { if (const Line* l = boost::get(&*result)) { typename cpp11::result_of::type result2 = CGAL::intersection(*l, plane3); if (result2) { if (const Point* p = boost::get(&*result2)) m_corners[i].support = *p; else { #ifdef CGAL_PSP3_VERBOSE std::cerr << "Warning: bad plane/line intersection" << std::endl; #endif m_corners[i].active = false; continue; } } else { #ifdef CGAL_PSP3_VERBOSE std::cerr << "Warning: bad plane/line intersection" << std::endl; #endif m_corners[i].active = false; continue; } } else { #ifdef CGAL_PSP3_VERBOSE std::cerr << "Warning: bad plane/plane intersection" << std::endl; #endif m_corners[i].active = false; continue; } } else { #ifdef CGAL_PSP3_VERBOSE std::cerr << "Warning: bad plane/plane intersection" << std::endl; #endif m_corners[i].active = false; continue; } // test if point is in bbox + delta CGAL::Bbox_3 bbox = CGAL::bbox_3 (m_points.begin (), m_points.end ()); double margin_x = 0.1 * (bbox.xmax() - bbox.xmin()); double X_min = bbox.xmin() - margin_x; double X_max = bbox.xmax() + margin_x; double margin_y = 0.1 * (bbox.ymax() - bbox.ymin()); double Y_min = bbox.ymin() - margin_y; double Y_max = bbox.ymax() + margin_y; double margin_z = 0.1* (bbox.zmax() - bbox.zmin()); double Z_min = bbox.zmin() - margin_z; double Z_max = bbox.zmax() + margin_z; if ((m_corners[i].support.x() < X_min) || (m_corners[i].support.x() > X_max) || (m_corners[i].support.y() < Y_min) || (m_corners[i].support.y() > Y_max) || (m_corners[i].support.z() < Z_min) || (m_corners[i].support.z() > Z_max)) { m_corners[i].active = false; continue; } // test if corner is in neighborhood of at least one point each of the 3 planes std::vector neighborhood (3, false); for (std::size_t k = 0; k < 3; ++ k) { for (std::size_t j = 0; j < m_edges[m_corners[i].edges[k]].indices.size(); ++ j) { const Point& p = m_points[m_edges[m_corners[i].edges[k]].indices[j]]; if (CGAL::squared_distance (m_corners[i].support, p) < radius * radius) { neighborhood[k] = true; break; } } } if ( !(neighborhood[0] && neighborhood[1] && neighborhood[2]) ) m_corners[i].active = false; } } void merge_corners (double radius) { for (std::size_t k = 0; k < m_corners.size(); ++ k) { if (!(m_corners[k].active)) continue; int count_plane_number=3; for (std::size_t kb = k + 1; kb < m_corners.size(); ++ kb) { if (!(m_corners[kb].active)) continue; int count_new_plane = 0; if (CGAL::squared_distance (m_corners[kb].support, m_corners[k].support) >= radius * radius) continue; for (std::size_t i = 0; i < m_corners[kb].planes.size (); ++ i) { bool testtt = true; for (std::size_t l = 0; l < m_corners[k].planes.size(); ++ l) if (m_corners[kb].planes[i] == m_corners[k].planes[l]) { testtt = false; break; } if (!testtt) continue; m_corners[k].planes.push_back (m_corners[kb].planes[i]); ++ count_new_plane; m_corners[kb].active = false; std::vector is_edge_in (3, false); for (std::size_t l = 0; l < m_corners[k].edges.size(); ++ l) { for (std::size_t j = 0; j < 3; ++ j) if (m_corners[k].edges[l] == m_corners[kb].edges[j]) is_edge_in[j] = true; } for (std::size_t j = 0; j < 3; ++ j) if (!(is_edge_in[j])) m_corners[k].edges.push_back (m_corners[kb].edges[j]); } //update barycenter m_corners[k].support = CGAL::barycenter (m_corners[k].support, count_plane_number, m_corners[kb].support, count_new_plane); count_plane_number += count_new_plane; } // Compute normal vector Vector normal (0., 0., 0.); for (std::size_t i = 0; i < m_corners[k].planes.size(); ++ i) normal = normal + (1. / (double)(m_corners[k].planes.size())) * m_planes[m_corners[k].planes[i]].orthogonal_vector(); m_points.push_back (m_corners[k].support); m_normals.push_back (normal); m_indices.push_back (k); m_status.push_back (CORNER); } } void compute_corner_directions (double epsilon) { for (std::size_t k = 0; k < m_corners.size(); ++ k) { for (std::size_t ed = 0; ed < m_corners[k].edges.size(); ++ ed) { if (m_corners[k].edges[ed] < m_edges.size()) { const Edge& edge = m_edges[m_corners[k].edges[ed]]; Vector direction (0., 0., 0.); for (std::size_t i = 0; i < edge.indices.size(); ++ i) { std::size_t index_pt = edge.indices[i]; if (std::sqrt (CGAL::squared_distance (m_corners[k].support, m_points[index_pt])) < 5 * epsilon) direction = direction + Vector (m_corners[k].support, m_points[index_pt]); } if (direction.squared_length() > 1e-5) m_corners[k].directions.push_back (direction / std::sqrt (direction * direction)); else m_corners[k].directions.push_back (Vector (0., 0., 0.)); } else m_corners[k].directions.push_back (Vector (0., 0., 0.)); } } } void refine_sampling (double epsilon) { double d_DeltaEdge = std::sqrt (2.) * epsilon; for (std::size_t k = 0; k < m_corners.size(); ++ k) { if (!(m_corners[k].active)) continue; for (std::size_t ed = 0; ed < m_corners[k].edges.size(); ++ ed) { const Edge& edge = m_edges[m_corners[k].edges[ed]]; for (std::size_t i = 0; i < edge.indices.size(); ++ i) { //if too close from a corner, ->remove if (CGAL::squared_distance (m_corners[k].support, m_points[edge.indices[i]]) < d_DeltaEdge * d_DeltaEdge) m_status[edge.indices[i]] = SKIPPED; //if too close from a corner (non dominant side), ->remove if (m_corners[k].directions[ed].squared_length() > 0 && (m_corners[k].directions[ed] * Vector (m_corners[k].support, m_points[edge.indices[i]]) < 0) && (CGAL::squared_distance (m_corners[k].support, m_points[edge.indices[i]]) < 4 * d_DeltaEdge * d_DeltaEdge)) m_status[edge.indices[i]] = SKIPPED; } } } for (std::size_t k = 0; k < m_corners.size(); ++ k) { if (!(m_corners[k].active)) continue; for (std::size_t ed = 0; ed < m_corners[k].edges.size(); ++ ed) { if (m_corners[k].directions[ed].squared_length() <= 0.) continue; Edge& edge = m_edges[m_corners[k].edges[ed]]; //rajouter un edge a epsilon du cote dominant si pas de point entre SS_edge/2 et 3/2*SS_edge bool is_in_interval = false; for (std::size_t i = 0; i < edge.indices.size(); ++ i) { std::size_t index_pt = edge.indices[i]; double dist = CGAL::squared_distance (m_corners[k].support, m_points[index_pt]); if (m_status[index_pt] != SKIPPED && dist < 1.5 * d_DeltaEdge && dist > d_DeltaEdge / 2) { Vector move (m_corners[k].support, m_points[index_pt]); if (move * m_corners[k].directions[ed] > 0.) { is_in_interval = true; break; } } } //rajouter un edge a 1 epsilon du cote dominant si pas de point entre SS_edge/2 et 3/2*SS_edge if (!is_in_interval) { Point new_edge = m_corners[k].support + m_corners[k].directions[ed] * d_DeltaEdge; m_points.push_back (new_edge); m_normals.push_back (0.5 * m_planes[m_edges[m_corners[k].edges[ed]].planes[0]].orthogonal_vector() + 0.5 * m_planes[m_edges[m_corners[k].edges[ed]].planes[1]].orthogonal_vector()); m_status.push_back (EDGE); m_indices.push_back (m_corners[k].edges[ed]); edge.indices.push_back (m_points.size() - 1); } //rajouter un edge a 1/3 epsilon du cote dominant Point new_edge = m_corners[k].support + m_corners[k].directions[ed] * d_DeltaEdge / 3; m_points.push_back (new_edge); m_normals.push_back (0.5 * m_planes[m_edges[m_corners[k].edges[ed]].planes[0]].orthogonal_vector() + 0.5 * m_planes[m_edges[m_corners[k].edges[ed]].planes[1]].orthogonal_vector()); m_status.push_back (EDGE); m_indices.push_back (m_corners[k].edges[ed]); edge.indices.push_back (m_points.size() - 1); } } } /// \endcond }; // ---------------------------------------------------------------------------- // Public section // ---------------------------------------------------------------------------- /** \ingroup PkgPointSetProcessing3Algorithms This is an implementation of the Point Set Structuring algorithm. This algorithm takes advantage of a set of detected planes: it detects adjacency relationships between planes and resamples the detected planes, edges and corners to produce a structured point set. The size parameter `epsilon` is used both for detecting adjacencies and for setting the sampling density of the structured point set. For more details, please refer to \cgalCite{cgal:la-srpss-13}. \tparam PointRange is a model of `ConstRange`. The value type of its iterator is the key type of the named parameter `point_map`. \tparam PlaneRange is a model of `ConstRange`. The value type of its iterator is the key type of the named parameter `plane_map`. \tparam OutputIterator Type of the output iterator. The type of the objects put in it is `std::pair`. Note that the user may use a function_output_iterator to match specific needs. \param points input point range. \param planes input plane range. \param output output iterator where output points are written \param epsilon size parameter. \param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below \cgalNamedParamsBegin \cgalParamNBegin{point_map} \cgalParamDescription{a property map associating points to the elements of the point set `points`} \cgalParamType{a model of `ReadablePropertyMap` whose key type is the value type of the iterator of `PointRange` and whose value type is `geom_traits::Point_3`} \cgalParamDefault{`CGAL::Identity_property_map`} \cgalParamNEnd \cgalParamNBegin{normal_map} \cgalParamDescription{a property map associating normals to the elements of the point set `points`} \cgalParamType{a model of `ReadablePropertyMap` whose key type is the value type of the iterator of `PointRange` and whose value type is `geom_traits::Vector_3`} \cgalParamNEnd \cgalParamNBegin{plane_index_map} \cgalParamDescription{a property map associating the index of a point in the input range to the index of plane (`-1` if the point is not assigned to a plane)} \cgalParamType{a class model of `ReadablePropertyMap` with `std::size_t` as key type and `int` as value type} \cgalParamDefault{unused} \cgalParamNEnd \cgalParamNBegin{plane_map} \cgalParamDescription{a property map containing the planes associated to the elements of the plane range `planes`} \cgalParamType{a class model of `ReadablePropertyMap` with `PlaneRange::iterator::value_type` as key type and `geom_traits::Plane_3` as value type} \cgalParamDefault{`CGAL::Identity_property_map`} \cgalParamNEnd \cgalParamNBegin{attraction_factor} \cgalParamDescription{multiple of a tolerance `epsilon` used to connect simplices} \cgalParamType{floating scalar value} \cgalParamDefault{`3`} \cgalParamNEnd \cgalParamNBegin{geom_traits} \cgalParamDescription{an instance of a geometric traits class} \cgalParamType{a model of `Kernel`} \cgalParamDefault{a \cgal Kernel deduced from the point type, using `CGAL::Kernel_traits`} \cgalParamNEnd \cgalNamedParamsEnd */ template OutputIterator structure_point_set (const PointRange& points, const PlaneRange& planes, OutputIterator output, double epsilon, const NamedParameters& np) { using parameters::choose_parameter; using parameters::get_parameter; typedef typename Point_set_processing_3::GetK::Kernel Kernel; Point_set_with_structure pss (points, planes, epsilon, np); for (std::size_t i = 0; i < pss.size(); ++ i) *(output ++) = pss[i]; return output; } /// \cond SKIP_IN_MANUAL // variant with default NP template OutputIterator structure_point_set (const PointRange& points, ///< range of points. const PlaneRange& planes, ///< range of planes. OutputIterator output, ///< output iterator where output points are written. double epsilon) ///< size parameter. { return structure_point_set (points, planes, output, epsilon, CGAL::Point_set_processing_3::parameters::all_default(points)); } /// \endcond } //namespace CGAL #include #endif // CGAL_STRUCTURE_POINT_SET_3_H