// Copy and modified from Joey's code // https://github.com/JoeyDeVries/LearnOpenGL/blob/master/src/6.pbr/1.1.lighting/1.1.pbr.fs const float PI = 3.14159265359; // ---------------------------------------------------------------------------- float DistributionGGX(vec3 N, vec3 H, float roughness) { float a = roughness*roughness; float a2 = a*a; float NdotH = max(dot(N, H), 0.0); float NdotH2 = NdotH*NdotH; float nom = a2; float denom = (NdotH2 * (a2 - 1.0) + 1.0); denom = PI * denom * denom; return nom / max(denom, 0.001); // prevent divide by zero for roughness=0.0 and NdotH=1.0 } // ---------------------------------------------------------------------------- float GeometrySchlickGGX(float NdotV, float roughness) { float r = (roughness + 1.0); float k = (r*r) / 8.0; float nom = NdotV; float denom = NdotV * (1.0 - k) + k; return nom / denom; } // ---------------------------------------------------------------------------- float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness) { float NdotV = max(dot(N, V), 0.0); float NdotL = max(dot(N, L), 0.0); float ggx2 = GeometrySchlickGGX(NdotV, roughness); float ggx1 = GeometrySchlickGGX(NdotL, roughness); return ggx1 * ggx2; } // ---------------------------------------------------------------------------- vec3 fresnelSchlick(float cosTheta, vec3 F0) { return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0); } varying highp vec3 vert; varying highp vec3 vertNormal; varying highp vec3 vertColor; varying highp vec2 vertTexCoord; varying highp float vertMetalness; varying highp float vertRoughness; varying highp vec3 cameraPos; uniform highp vec3 lightPos; uniform highp sampler2D textureId; uniform highp int textureEnabled; const int MAX_LIGHTS = 8; struct Light { vec3 position; vec3 color; float intensity; }; int lightCount; Light lights[MAX_LIGHTS]; void main() { const highp float vertAmbientOcclusion = 1.0; vec3 albedo = vertColor; if (textureEnabled == 1) { albedo = texture2D(textureId, vertTexCoord).rgb; } albedo = pow(albedo, vec3(2.2)); lightCount = 3; float roughness = vertRoughness; float metalness = vertMetalness; // Key light lights[0].position = vec3(5.0, 5.0, 5.0); lights[0].color = vec3(150.0, 150.0, 150.0); lights[0].intensity = 0.8; // Fill light lights[1].position = vec3(-5.0, 5.0, 5.0); lights[1].color = vec3(150.0, 150.0, 150.0); lights[1].intensity = 0.4; // Rim light lights[2].position = vec3(0.0, -2.5, -5.0); lights[2].color = vec3(150.0, 150.0, 150.0); lights[2].intensity = 0.2; vec3 N = normalize(vertNormal); vec3 V = normalize(cameraPos - vert); // calculate reflectance at normal incidence; if dia-electric (like plastic) use F0 // of 0.04 and if it's a metal, use the albedo color as F0 (metallic workflow) vec3 F0 = vec3(0.04); F0 = mix(F0, albedo, metalness); // reflectance equation vec3 Lo = vec3(0.0); for (int i = 0; i < lightCount; ++i) { // calculate per-light radiance vec3 L = normalize(lights[i].position - vert); vec3 H = normalize(V + L); float distance = length(lights[i].position - vert); float attenuation = 1.0 / (distance * distance); vec3 radiance = lights[i].color * attenuation; // Cook-Torrance BRDF float NDF = DistributionGGX(N, H, roughness); float G = GeometrySmith(N, V, L, roughness); vec3 F = fresnelSchlick(clamp(dot(H, V), 0.0, 1.0), F0); vec3 nominator = NDF * G * F; float denominator = 4.0 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0); vec3 specular = nominator / max(denominator, 0.001); // prevent divide by zero for NdotV=0.0 or NdotL=0.0 // kS is equal to Fresnel vec3 kS = F; // for energy conservation, the diffuse and specular light can't // be above 1.0 (unless the surface emits light); to preserve this // relationship the diffuse component (kD) should equal 1.0 - kS. vec3 kD = vec3(1.0) - kS; // multiply kD by the inverse metalness such that only non-metals // have diffuse lighting, or a linear blend if partly metal (pure metals // have no diffuse light). kD *= 1.0 - metalness; // scale light by NdotL float NdotL = max(dot(N, L), 0.0); // add to outgoing radiance Lo Lo += lights[i].intensity * (kD * albedo / PI + specular) * radiance * NdotL; // note that we already multiplied the BRDF by the Fresnel (kS) so we won't multiply by kS again } // ambient lighting (note that the next IBL tutorial will replace // this ambient lighting with environment lighting). vec3 ambient = vec3(0.03) * albedo * vertAmbientOcclusion; vec3 color = ambient + Lo; // HDR tonemapping color = color / (color + vec3(1.0)); // gamma correct color = pow(color, vec3(1.0/2.2)); gl_FragColor = vec4(color, 1.0); }