// Copyright (c) 1999-2004 INRIA Sophia-Antipolis (France). // All rights reserved. // // This file is part of CGAL (www.cgal.org). // You can redistribute it and/or modify it under the terms of the GNU // General Public License as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: GPL-3.0+ // // // Author(s) : Monique Teillaud // Sylvain Pion // Andreas Fabri // Clement Jamin #ifndef CGAL_DELAUNAY_TRIANGULATION_3_H #define CGAL_DELAUNAY_TRIANGULATION_3_H #include #include #include #include #include #include #include #ifdef CGAL_CONCURRENT_TRIANGULATION_3_PROFILING # define CGAL_PROFILE # include #endif #ifdef CGAL_TRIANGULATION_3_PROFILING # include #endif #ifndef CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO #include #include #include #include #include #endif //CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO #ifdef CGAL_LINKED_WITH_TBB # include # include # include # include #endif #ifdef CGAL_DELAUNAY_3_OLD_REMOVE # error "The old remove() code has been removed. Please report any issue you may have with the current one." #endif #ifdef CGAL_CONCURRENT_TRIANGULATION_3_ADD_TEMPORARY_POINTS_ON_FAR_SPHERE #include #endif #include #include namespace CGAL { // Here is the declaration of a class template with three arguments, one // having a default value. There is no definition of that class template. template < class Gt, class Tds_ = Default, class Location_policy = Default, class Lock_data_structure_ = Default > class Delaunay_triangulation_3; // There is a specialization Delaunay_triangulation_3 // defined in . // Here is the specialization Delaunay_triangulation_3, with three // arguments, that is if Location_policy being the default value 'Default'. template < class Gt, class Tds_, class Lock_data_structure_ > class Delaunay_triangulation_3 : public Triangulation_3, Delaunay_triangulation_cell_base_3 > >::type, Lock_data_structure_> { typedef typename Default::Get, Delaunay_triangulation_cell_base_3 > >::type Tds; typedef Delaunay_triangulation_3 Self; public: typedef Triangulation_3 Tr_Base; typedef Tds Triangulation_data_structure; typedef Gt Geom_traits; typedef Compact_location Location_policy; typedef typename Tr_Base::Lock_data_structure Lock_data_structure; typedef typename Gt::Point_3 Point; typedef typename Gt::Segment_3 Segment; typedef typename Gt::Triangle_3 Triangle; typedef typename Gt::Tetrahedron_3 Tetrahedron; // types for dual: typedef typename Gt::Line_3 Line; typedef typename Gt::Ray_3 Ray; //typedef typename Gt::Plane_3 Plane; typedef typename Gt::Object_3 Object; typedef typename Tr_Base::Cell_handle Cell_handle; typedef typename Tr_Base::Vertex_handle Vertex_handle; typedef typename Tr_Base::Cell Cell; typedef typename Tr_Base::Vertex Vertex; typedef typename Tr_Base::Facet Facet; typedef typename Tr_Base::Edge Edge; typedef typename Tr_Base::Cell_circulator Cell_circulator; typedef typename Tr_Base::Facet_circulator Facet_circulator; typedef typename Tr_Base::Cell_iterator Cell_iterator; typedef typename Tr_Base::Facet_iterator Facet_iterator; typedef typename Tr_Base::Edge_iterator Edge_iterator; typedef typename Tr_Base::Vertex_iterator Vertex_iterator; typedef typename Tr_Base::Finite_vertices_iterator Finite_vertices_iterator; typedef typename Tr_Base::Finite_cells_iterator Finite_cells_iterator; typedef typename Tr_Base::Finite_facets_iterator Finite_facets_iterator; typedef typename Tr_Base::Finite_edges_iterator Finite_edges_iterator; typedef typename Tr_Base::All_cells_iterator All_cells_iterator; typedef typename Tr_Base::size_type size_type; typedef typename Tr_Base::Locate_type Locate_type; //Tag to distinguish Delaunay from regular triangulations typedef Tag_false Weighted_tag; // Tag to distinguish periodic triangulations from others typedef Tag_false Periodic_tag; #ifndef CGAL_CFG_USING_BASE_MEMBER_BUG_2 using Tr_Base::cw; using Tr_Base::ccw; using Tr_Base::geom_traits; using Tr_Base::number_of_vertices; using Tr_Base::dimension; using Tr_Base::finite_facets_begin; using Tr_Base::finite_facets_end; using Tr_Base::finite_vertices_begin; using Tr_Base::finite_vertices_end; using Tr_Base::finite_cells_begin; using Tr_Base::finite_cells_end; using Tr_Base::finite_edges_begin; using Tr_Base::finite_edges_end; using Tr_Base::tds; using Tr_Base::infinite_vertex; using Tr_Base::next_around_edge; using Tr_Base::vertex_triple_index; using Tr_Base::mirror_vertex; using Tr_Base::coplanar; using Tr_Base::coplanar_orientation; using Tr_Base::orientation; using Tr_Base::adjacent_vertices; using Tr_Base::construct_segment; using Tr_Base::incident_facets; using Tr_Base::insert_in_conflict; using Tr_Base::is_infinite; using Tr_Base::is_valid_finite; using Tr_Base::locate; using Tr_Base::side_of_edge; using Tr_Base::side_of_segment; using Tr_Base::find_conflicts; #endif protected: Oriented_side side_of_oriented_sphere(const Point& p0, const Point& p1, const Point& p2, const Point& p3, const Point& t, bool perturb = false) const; Bounded_side coplanar_side_of_bounded_circle(const Point& p, const Point& q, const Point& r, const Point& s, bool perturb = false) const; // for dual: Point construct_circumcenter(const Point& p, const Point& q, const Point& r) const { return geom_traits().construct_circumcenter_3_object()(p, q, r); } Line construct_equidistant_line(const Point& p1, const Point& p2, const Point& p3) const { return geom_traits().construct_equidistant_line_3_object()(p1, p2, p3); } Ray construct_ray(const Point& p, const Line& l) const { return geom_traits().construct_ray_3_object()(p, l); } Object construct_object(const Point& p) const { return geom_traits().construct_object_3_object()(p); } Object construct_object(const Segment& s) const { return geom_traits().construct_object_3_object()(s); } Object construct_object(const Ray& r) const { return geom_traits().construct_object_3_object()(r); } bool less_distance(const Point& p, const Point& q, const Point& r) const { return geom_traits().compare_distance_3_object()(p, q, r) == SMALLER; } public: Delaunay_triangulation_3(const Gt& gt = Gt(), Lock_data_structure *lock_ds = NULL) : Tr_Base(gt, lock_ds) {} Delaunay_triangulation_3(Lock_data_structure *lock_ds, const Gt& gt = Gt()) : Tr_Base(lock_ds, gt) {} // Create a 3D triangulation from 4 points which must be well-oriented // AND non-coplanar Delaunay_triangulation_3(const Point& p0, const Point& p1, const Point& p2, const Point& p3, const Gt& gt = Gt(), Lock_data_structure *lock_ds = NULL) : Tr_Base(p0, p1, p2, p3, gt, lock_ds) {} // copy constructor duplicates vertices and cells Delaunay_triangulation_3(const Delaunay_triangulation_3& tr) : Tr_Base(tr) { CGAL_triangulation_postcondition(is_valid()); } template < typename InputIterator > Delaunay_triangulation_3(InputIterator first, InputIterator last, const Gt& gt = Gt(), Lock_data_structure *lock_ds = NULL) : Tr_Base(gt, lock_ds) { insert(first, last); } template < typename InputIterator > Delaunay_triangulation_3(InputIterator first, InputIterator last, Lock_data_structure *lock_ds, const Gt& gt = Gt()) : Tr_Base(gt, lock_ds) { insert(first, last); } private: #ifdef CGAL_CONCURRENT_TRIANGULATION_3_ADD_TEMPORARY_POINTS_ON_FAR_SPHERE std::vector add_temporary_points_on_far_sphere(const size_t num_points) { std::vector far_sphere_vertices; const size_t MIN_NUM_POINTS_FOR_FAR_SPHERE_POINTS = 1000000; if(num_points >= MIN_NUM_POINTS_FOR_FAR_SPHERE_POINTS) { // Add temporary vertices on a "far sphere" to reduce contention on // the infinite vertex // Get bbox const Bbox_3& bbox = *this->get_bbox(); // Compute radius for far sphere const double& xdelta = bbox.xmax() - bbox.xmin(); const double& ydelta = bbox.ymax() - bbox.ymin(); const double& zdelta = bbox.zmax() - bbox.zmin(); const double radius = 1.3 * 0.5 * std::sqrt(xdelta*xdelta + ydelta*ydelta + zdelta*zdelta); // WARNING - TODO: this code has to be fixed because Vector_3 is not // required by the traits concept const typename Gt::Vector_3 center(bbox.xmin() + 0.5*xdelta, bbox.ymin() + 0.5*ydelta, bbox.zmin() + 0.5*zdelta); Random_points_on_sphere_3 random_point(radius); const int NUM_PSEUDO_INFINITE_VERTICES = static_cast( tbb::task_scheduler_init::default_num_threads() * 3.5); std::vector points_on_far_sphere; points_on_far_sphere.reserve(NUM_PSEUDO_INFINITE_VERTICES); far_sphere_vertices.reserve(NUM_PSEUDO_INFINITE_VERTICES); for(int i = 0 ; i < NUM_PSEUDO_INFINITE_VERTICES ; ++i, ++random_point) points_on_far_sphere.push_back(*random_point + center); spatial_sort(points_on_far_sphere.begin(), points_on_far_sphere.end(), geom_traits()); typename std::vector::const_iterator it_p = points_on_far_sphere.begin(); typename std::vector::const_iterator it_p_end = points_on_far_sphere.end(); Vertex_handle hint; for(; it_p != it_p_end ; ++it_p) { hint = insert(*it_p, hint); far_sphere_vertices.push_back(hint); } } return far_sphere_vertices; } void remove_temporary_points_on_far_sphere( const std::vector& far_sphere_vertices) { if(!far_sphere_vertices.empty()) { // Remove the temporary vertices on far sphere remove(far_sphere_vertices.begin(), far_sphere_vertices.end()); } } #endif public: #ifndef CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO template < class InputIterator > std::ptrdiff_t insert(InputIterator first, InputIterator last, typename boost::enable_if< boost::is_convertible< typename std::iterator_traits::value_type, Point > >::type* = NULL) #else template < class InputIterator > std::ptrdiff_t insert(InputIterator first, InputIterator last) #endif //CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO { #ifdef CGAL_TRIANGULATION_3_PROFILING WallClockTimer t; #endif size_type n = number_of_vertices(); std::vector points(first, last); spatial_sort(points.begin(), points.end(), geom_traits()); // Parallel #ifdef CGAL_LINKED_WITH_TBB if(this->is_parallel()) { size_t num_points = points.size(); Vertex_handle hint; #ifdef CGAL_CONCURRENT_TRIANGULATION_3_ADD_TEMPORARY_POINTS_ON_FAR_SPHERE std::vector far_sphere_vertices = add_temporary_points_on_far_sphere(num_points); #endif // CGAL_CONCURRENT_TRIANGULATION_3_ADD_TEMPORARY_POINTS_ON_FAR_SPHERE size_t i = 0; // Insert "num_points_seq" points sequentially // (or more if dim < 3 after that) size_t num_points_seq = (std::min)(num_points, (size_t) 100); while (i < num_points_seq || (dimension() < 3 && i < num_points)) { hint = insert(points[i], hint); ++i; } tbb::enumerable_thread_specific tls_hint(hint); tbb::parallel_for(tbb::blocked_range(i, num_points), Insert_point(*this, points, tls_hint)); #ifdef CGAL_CONCURRENT_TRIANGULATION_3_ADD_TEMPORARY_POINTS_ON_FAR_SPHERE remove_temporary_points_on_far_sphere(far_sphere_vertices); #endif // CGAL_CONCURRENT_TRIANGULATION_3_ADD_TEMPORARY_POINTS_ON_FAR_SPHERE } // Sequential else #endif // CGAL_LINKED_WITH_TBB { Vertex_handle hint; for(typename std::vector::const_iterator p = points.begin(), end = points.end(); p != end; ++p) { hint = insert(*p, hint); } } #ifdef CGAL_TRIANGULATION_3_PROFILING std::cerr << "Triangulation computed in " << t.elapsed() << " seconds." << std::endl; #endif return number_of_vertices() - n; } #ifndef CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO private: //top stands for tuple-or-pair template const Point& top_get_first(const std::pair& pair) const { return pair.first; } template const Info& top_get_second(const std::pair& pair) const { return pair.second; } template const Point& top_get_first(const boost::tuple& tuple) const { return boost::get<0>(tuple); } template const Info& top_get_second(const boost::tuple& tuple) const { return boost::get<1>(tuple); } template std::ptrdiff_t insert_with_info(InputIterator first, InputIterator last) { size_type n = number_of_vertices(); std::vector indices; std::vector points; std::vector infos; std::size_t index=0; for(InputIterator it=first;it!=last;++it) { Tuple_or_pair value=*it; points.push_back(top_get_first(value)); infos.push_back(top_get_second(value)); indices.push_back(index++); } typedef typename Pointer_property_map::type Pmap; typedef Spatial_sort_traits_adapter_3 Search_traits; spatial_sort(indices.begin(), indices.end(), Search_traits(make_property_map(points),geom_traits())); #ifdef CGAL_LINKED_WITH_TBB if(this->is_parallel()) { size_t num_points = points.size(); Vertex_handle hint; #ifdef CGAL_CONCURRENT_TRIANGULATION_3_ADD_TEMPORARY_POINTS_ON_FAR_SPHERE std::vector far_sphere_vertices = add_temporary_points_on_far_sphere(num_points); #endif // CGAL_CONCURRENT_TRIANGULATION_3_ADD_TEMPORARY_POINTS_ON_FAR_SPHERE size_t i = 0; // Insert "num_points_seq" points sequentially // (or more if dim < 3 after that) size_t num_points_seq = (std::min)(num_points, (size_t)100); while (i < num_points_seq || (dimension() < 3 && i < num_points)) { hint = insert(points[indices[i]], hint); if(hint != Vertex_handle()) hint->info() = infos[indices[i]]; ++i; } tbb::enumerable_thread_specific tls_hint(hint); tbb::parallel_for(tbb::blocked_range(i, num_points), Insert_point_with_info(*this, points, infos, indices, tls_hint)); #ifdef CGAL_CONCURRENT_TRIANGULATION_3_ADD_TEMPORARY_POINTS_ON_FAR_SPHERE remove_temporary_points_on_far_sphere(far_sphere_vertices); #endif // CGAL_CONCURRENT_TRIANGULATION_3_ADD_TEMPORARY_POINTS_ON_FAR_SPHERE } // Sequential else #endif { Vertex_handle hint; for(typename std::vector::const_iterator it = indices.begin(), end = indices.end(); it != end; ++it) { hint = insert(points[*it], hint); if(hint != Vertex_handle()) hint->info() = infos[*it]; } } return number_of_vertices() - n; } public: template < class InputIterator > std::ptrdiff_t insert(InputIterator first, InputIterator last, typename boost::enable_if< boost::is_convertible< typename std::iterator_traits::value_type, std::pair::type> > >::type* =NULL) { return insert_with_info< std::pair::type> >(first,last); } template std::ptrdiff_t insert(boost::zip_iterator< boost::tuple > first, boost::zip_iterator< boost::tuple > last, typename boost::enable_if< boost::mpl::and_< boost::is_convertible< typename std::iterator_traits::value_type, Point >, boost::is_convertible< typename std::iterator_traits::value_type, typename internal::Info_check::type > > >::type* =NULL) { return insert_with_info< boost::tuple::type> >(first,last); } #endif //CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO Vertex_handle insert(const Point& p, Vertex_handle hint, bool *could_lock_zone = NULL) { return insert(p, hint == Vertex_handle() ? this->infinite_cell() : hint->cell(), could_lock_zone); } Vertex_handle insert(const Point& p, Cell_handle start = Cell_handle(), bool *could_lock_zone = NULL); Vertex_handle insert(const Point& p, Locate_type lt, Cell_handle c, int li, int, bool *could_lock_zone = NULL); public: // internal methods template Vertex_handle insert_and_give_new_cells(const Point& p, OutputItCells fit, Cell_handle start = Cell_handle()); template Vertex_handle insert_and_give_new_cells(const Point& p, OutputItCells fit, Vertex_handle hint); template Vertex_handle insert_and_give_new_cells(const Point& p, Locate_type lt, Cell_handle c, int li, int lj, OutputItCells fit); public: template Triple find_conflicts(const Point& p, Cell_handle c, OutputIteratorBoundaryFacets bfit, OutputIteratorCells cit, OutputIteratorInternalFacets ifit, bool *could_lock_zone = NULL) const { CGAL_triangulation_precondition(dimension() >= 2); std::vector cells; cells.reserve(32); std::vector facets; facets.reserve(64); if(dimension() == 2) { Conflict_tester_2 tester(p, this); ifit = Tr_Base::find_conflicts(c, tester, make_triple(std::back_inserter(facets), std::back_inserter(cells), ifit), could_lock_zone).third; } else { Conflict_tester_3 tester(p, this); ifit = Tr_Base::find_conflicts(c, tester, make_triple(std::back_inserter(facets), std::back_inserter(cells), ifit), could_lock_zone).third; } // Reset the conflict flag on the boundary. for(typename std::vector::iterator fit=facets.begin(); fit != facets.end(); ++fit) { fit->first->neighbor(fit->second)->tds_data().clear(); *bfit++ = *fit; } // Reset the conflict flag in the conflict cells. for(typename std::vector::iterator ccit=cells.begin(); ccit != cells.end(); ++ccit) { (*ccit)->tds_data().clear(); *cit++ = *ccit; } return make_triple(bfit, cit, ifit); } template std::pair find_conflicts(const Point& p, Cell_handle c, OutputIteratorBoundaryFacets bfit, OutputIteratorCells cit, bool *could_lock_zone = NULL) const { Triple t = find_conflicts(p, c, bfit, cit, Emptyset_iterator(), could_lock_zone); return std::make_pair(t.first, t.second); } #ifndef CGAL_NO_DEPRECATED_CODE // Returns the vertices on the boundary of the conflict hole. template OutputIterator vertices_in_conflict(const Point&p, Cell_handle c, OutputIterator res) const { return vertices_on_conflict_zone_boundary(p, c, res); } #endif // CGAL_NO_DEPRECATED_CODE // Returns the vertices on the boundary of the conflict hole. template OutputIterator vertices_on_conflict_zone_boundary(const Point&p, Cell_handle c, OutputIterator res) const { CGAL_triangulation_precondition(dimension() >= 2); // Get the facets on the boundary of the hole. std::vector facets; find_conflicts(p, c, std::back_inserter(facets), Emptyset_iterator(), Emptyset_iterator()); // Then extract uniquely the vertices. std::set vertices; if(dimension() == 3) { for(typename std::vector::const_iterator i = facets.begin(); i != facets.end(); ++i) { vertices.insert(i->first->vertex((i->second+1)&3)); vertices.insert(i->first->vertex((i->second+2)&3)); vertices.insert(i->first->vertex((i->second+3)&3)); } } else { for(typename std::vector::const_iterator i = facets.begin(); i != facets.end(); ++i) { vertices.insert(i->first->vertex(cw(i->second))); vertices.insert(i->first->vertex(ccw(i->second))); } } return std::copy(vertices.begin(), vertices.end(), res); } // REMOVE void remove(Vertex_handle v); // Concurrency-safe // See Triangulation_3::remove for more information bool remove(Vertex_handle v, bool *could_lock_zone); // return new cells (internal) template void remove_and_give_new_cells(Vertex_handle v, OutputItCells fit); template < typename InputIterator > size_type remove(InputIterator first, InputIterator beyond) { CGAL_triangulation_precondition(!this->does_repeat_in_range(first, beyond)); size_type n = number_of_vertices(); #ifdef CGAL_TRIANGULATION_3_PROFILING WallClockTimer t; #endif // Parallel #ifdef CGAL_LINKED_WITH_TBB if(this->is_parallel()) { // TODO: avoid that by asking for random-access iterators? std::vector vertices(first, beyond); tbb::concurrent_vector vertices_to_remove_sequentially; tbb::parallel_for(tbb::blocked_range(0, vertices.size()), Remove_point(*this, vertices, vertices_to_remove_sequentially)); // Do the rest sequentially for(typename tbb::concurrent_vector::const_iterator it = vertices_to_remove_sequentially.begin(), it_end = vertices_to_remove_sequentially.end() ; it != it_end ; ++it) { remove(*it); } } // Sequential else #endif // CGAL_LINKED_WITH_TBB { while(first != beyond) { remove(*first); ++first; } } #ifdef CGAL_TRIANGULATION_3_PROFILING double elapsed = t.elapsed(); std::cerr << "Points removed in " << elapsed << " seconds." << std::endl; #endif return n - number_of_vertices(); } template < typename InputIterator > size_type remove_cluster(InputIterator first, InputIterator beyond) { Self tmp; Vertex_remover remover(tmp); return Tr_Base::remove(first, beyond, remover); } // MOVE Vertex_handle move_if_no_collision(Vertex_handle v, const Point& p); Vertex_handle move(Vertex_handle v, const Point& p); // return new cells(internal) template Vertex_handle move_if_no_collision_and_give_new_cells(Vertex_handle v, const Point& p, OutputItCells fit); private: Bounded_side side_of_sphere(Vertex_handle v0, Vertex_handle v1, Vertex_handle v2, Vertex_handle v3, const Point& p, bool perturb) const; public: // Queries Bounded_side side_of_sphere(Cell_handle c, const Point& p, bool perturb = false) const { return side_of_sphere(c->vertex(0), c->vertex(1), c->vertex(2), c->vertex(3), p, perturb); } Bounded_side side_of_circle(const Facet& f, const Point& p, bool perturb = false) const { return side_of_circle(f.first, f.second, p, perturb); } Bounded_side side_of_circle(Cell_handle c, int i, const Point& p, bool perturb = false) const; Vertex_handle nearest_vertex_in_cell(const Point& p, Cell_handle c) const; Vertex_handle nearest_vertex(const Point& p, Cell_handle c = Cell_handle()) const; bool is_Gabriel(Cell_handle c, int i) const; bool is_Gabriel(Cell_handle c, int i, int j) const; bool is_Gabriel(const Facet& f)const ; bool is_Gabriel(const Edge& e) const; bool is_delaunay_after_displacement(Vertex_handle v, const Point& p) const; // Dual functions Point dual(Cell_handle c) const; Object dual(const Facet& f) const { return dual(f.first, f.second); } Object dual(Cell_handle c, int i) const; Line dual_support(Cell_handle c, int i) const; bool is_valid(bool verbose = false, int level = 0) const; bool is_valid(Cell_handle c, bool verbose = false, int level = 0) const; template < class Stream> Stream& draw_dual(Stream& os) { for(Finite_facets_iterator fit = finite_facets_begin(), end = finite_facets_end(); fit != end; ++fit) { Object o = dual(*fit); if(const Segment* s = object_cast(&o)) os << *s; else if(const Ray* r = object_cast(&o)) os << *r; else if(const Point* p = object_cast(&o)) os << *p; } return os; } protected: Vertex_handle nearest_vertex(const Point& p, Vertex_handle v, Vertex_handle w) const { // In case of equality, v is returned. CGAL_triangulation_precondition(v != w); if(is_infinite(v)) return w; if(is_infinite(w)) return v; return less_distance(p, w->point(), v->point()) ? w : v; } class Conflict_tester_3 { const Point& p; const Self *t; public: Conflict_tester_3(const Point& pt, const Self *tr) : p(pt), t(tr) {} bool operator()(const Cell_handle c) const { return t->side_of_sphere(c, p, true) == ON_BOUNDED_SIDE; } Oriented_side compare_weight(const Point& , const Point& ) const { return ZERO; } bool test_initial_cell(Cell_handle) const { return true; } }; class Conflict_tester_2 { const Point& p; const Self *t; public: Conflict_tester_2(const Point& pt, const Self *tr) : p(pt), t(tr) {} bool operator()(const Cell_handle c) const { return t->side_of_circle(c, 3, p, true) == ON_BOUNDED_SIDE; } Oriented_side compare_weight(const Point& , const Point& ) const { return ZERO; } bool test_initial_cell(Cell_handle) const { return true; } }; class Hidden_point_visitor { public: Hidden_point_visitor() {} template void process_cells_in_conflict(InputIterator, InputIterator) const {} void reinsert_vertices(Vertex_handle) {} Vertex_handle replace_vertex(Cell_handle c, int index, const Point& ) { return c->vertex(index); } void hide_point(Cell_handle, const Point& ) {} }; #ifdef CGAL_LINKED_WITH_TBB // Functor for parallel insert(begin, end) function template class Insert_point { typedef typename DT::Point Point; typedef typename DT::Vertex_handle Vertex_handle; DT& m_dt; const std::vector& m_points; tbb::enumerable_thread_specific& m_tls_hint; public: // Constructor Insert_point(DT& dt, const std::vector& points, tbb::enumerable_thread_specific& tls_hint) : m_dt(dt), m_points(points), m_tls_hint(tls_hint) {} // Constructor Insert_point(const Insert_point& ip) : m_dt(ip.m_dt), m_points(ip.m_points), m_tls_hint(ip.m_tls_hint) {} // operator() void operator()(const tbb::blocked_range& r) const { #ifdef CGAL_CONCURRENT_TRIANGULATION_3_PROFILING static Profile_branch_counter_3 bcounter( "early withdrawals / late withdrawals / successes [Delaunay_tri_3::insert]"); #endif Vertex_handle& hint = m_tls_hint.local(); for(std::size_t i_point = r.begin() ; i_point != r.end() ; ++i_point) { bool success = false; while(!success) { if(m_dt.try_lock_vertex(hint) && m_dt.try_lock_point(m_points[i_point])) { bool could_lock_zone; Vertex_handle new_hint = m_dt.insert(m_points[i_point], hint, &could_lock_zone); m_dt.unlock_all_elements(); if(could_lock_zone) { hint = new_hint; success = true; #ifdef CGAL_CONCURRENT_TRIANGULATION_3_PROFILING ++bcounter; #endif } #ifdef CGAL_CONCURRENT_TRIANGULATION_3_PROFILING else { bcounter.increment_branch_1(); // THIS is a late withdrawal! } #endif } else { m_dt.unlock_all_elements(); #ifdef CGAL_CONCURRENT_TRIANGULATION_3_PROFILING bcounter.increment_branch_2(); // THIS is an early withdrawal! #endif } } } } }; // Functor for parallel insert_with_info(begin, end) function template class Insert_point_with_info { typedef typename DT::Point Point; typedef typename DT::Vertex_handle Vertex_handle; typedef typename DT::Triangulation_data_structure::Vertex::Info Info; DT& m_dt; const std::vector& m_points; const std::vector& m_infos; const std::vector& m_indices; tbb::enumerable_thread_specific& m_tls_hint; public: // Constructor Insert_point_with_info(DT& dt, const std::vector& points, const std::vector& infos, const std::vector& indices, tbb::enumerable_thread_specific& tls_hint) : m_dt(dt), m_points(points), m_infos(infos), m_indices(indices), m_tls_hint(tls_hint) {} // Constructor Insert_point_with_info(const Insert_point_with_info& ip) : m_dt(ip.m_dt), m_points(ip.m_points), m_infos(ip.m_infos), m_indices(ip.m_indices), m_tls_hint(ip.m_tls_hint) {} // operator() void operator()(const tbb::blocked_range& r) const { #ifdef CGAL_CONCURRENT_TRIANGULATION_3_PROFILING static Profile_branch_counter_3 bcounter( "early withdrawals / late withdrawals / successes [Delaunay_tri_3::insert_with_info]"); #endif Vertex_handle& hint = m_tls_hint.local(); for(std::size_t i_idx = r.begin() ; i_idx != r.end() ; ++i_idx) { bool success = false; std::ptrdiff_t i_point = m_indices[i_idx]; const Point& p = m_points[i_point]; while(!success) { if(m_dt.try_lock_vertex(hint) && m_dt.try_lock_point(p)) { bool could_lock_zone; Vertex_handle new_hint = m_dt.insert(p, hint, &could_lock_zone); m_dt.unlock_all_elements(); if(could_lock_zone) { hint = new_hint; if(hint!=Vertex_handle()) hint->info()=m_infos[i_point]; success = true; #ifdef CGAL_CONCURRENT_TRIANGULATION_3_PROFILING ++bcounter; #endif } #ifdef CGAL_CONCURRENT_TRIANGULATION_3_PROFILING else { bcounter.increment_branch_1(); // THIS is a late withdrawal! } #endif } else { m_dt.unlock_all_elements(); #ifdef CGAL_CONCURRENT_TRIANGULATION_3_PROFILING bcounter.increment_branch_2(); // THIS is an early withdrawal! #endif } } } } }; // Functor for parallel remove(begin, end) function template class Remove_point { typedef typename DT::Point Point; typedef typename DT::Vertex_handle Vertex_handle; DT& m_dt; const std::vector& m_vertices; tbb::concurrent_vector& m_vertices_to_remove_sequentially; public: // Constructor Remove_point(DT& dt, const std::vector& vertices, tbb::concurrent_vector& vertices_to_remove_sequentially) : m_dt(dt), m_vertices(vertices), m_vertices_to_remove_sequentially(vertices_to_remove_sequentially) {} // Constructor Remove_point(const Remove_point& rp) : m_dt(rp.m_dt), m_vertices(rp.m_vertices), m_vertices_to_remove_sequentially(rp.m_vertices_to_remove_sequentially) {} // operator() void operator()(const tbb::blocked_range& r) const { for(size_t i_vertex = r.begin() ; i_vertex != r.end() ; ++i_vertex) { Vertex_handle v = m_vertices[i_vertex]; bool could_lock_zone, needs_to_be_done_sequentially; do { needs_to_be_done_sequentially = !m_dt.remove(v, &could_lock_zone); m_dt.unlock_all_elements(); } while(!could_lock_zone); if(needs_to_be_done_sequentially) m_vertices_to_remove_sequentially.push_back(v); } } }; #endif // CGAL_LINKED_WITH_TBB template < class DelaunayTriangulation_3 > class Vertex_remover; template < class DelaunayTriangulation_3 > class Vertex_inserter; friend class Conflict_tester_3; friend class Conflict_tester_2; Hidden_point_visitor hidden_point_visitor; }; template < class Gt, class Tds, class Lds > typename Delaunay_triangulation_3::Vertex_handle Delaunay_triangulation_3:: insert(const Point& p, Cell_handle start, bool *could_lock_zone) { Locate_type lt; int li, lj; // Parallel if(could_lock_zone) { Cell_handle c = locate(p, lt, li, lj, start, could_lock_zone); if(*could_lock_zone) return insert(p, lt, c, li, lj, could_lock_zone); else return Vertex_handle(); } // Sequential else { Cell_handle c = locate(p, lt, li, lj, start); return insert(p, lt, c, li, lj); } } template < class Gt, class Tds, class Lds > typename Delaunay_triangulation_3::Vertex_handle Delaunay_triangulation_3:: insert(const Point& p, Locate_type lt, Cell_handle c, int li, int lj, bool *could_lock_zone) { switch(dimension()) { case 3: { Conflict_tester_3 tester(p, this); Vertex_handle v = insert_in_conflict(p, lt, c, li, lj, tester, hidden_point_visitor, could_lock_zone); return v; }// dim 3 case 2: { Conflict_tester_2 tester(p, this); return insert_in_conflict(p, lt, c, li, lj, tester, hidden_point_visitor, could_lock_zone); }//dim 2 default : // dimension <= 1 // Do not use the generic insert. return Tr_Base::insert(p, c); } } template < class Gt, class Tds, class Lds > template typename Delaunay_triangulation_3::Vertex_handle Delaunay_triangulation_3:: insert_and_give_new_cells(const Point &p, OutputItCells fit, Cell_handle start) { Vertex_handle v = insert(p, start); int dimension = this->dimension(); if(dimension == 3) { this->incident_cells(v, fit); } else if(dimension == 2) { Cell_handle c = v->cell(), end = c; do { *fit++ = c; int i = c->index(v); c = c->neighbor((i+1)%3); } while(c != end); } else if(dimension == 1) { Cell_handle c = v->cell(); *fit++ = c; *fit++ = c->neighbor((~(c->index(v)))&1); } else // dimension = 0 { *fit++ = v->cell(); } return v; } template < class Gt, class Tds, class Lds > template typename Delaunay_triangulation_3::Vertex_handle Delaunay_triangulation_3:: insert_and_give_new_cells(const Point& p, OutputItCells fit, Vertex_handle hint) { Vertex_handle v = insert(p, hint); int dimension = this->dimension(); if(dimension == 3) { this->incident_cells(v, fit); } else if(dimension == 2) { Cell_handle c = v->cell(), end = c; do { *fit++ = c; int i = c->index(v); c = c->neighbor((i+1)%3); } while(c != end); } else if(dimension == 1) { Cell_handle c = v->cell(); *fit++ = c; *fit++ = c->neighbor((~(c->index(v)))&1); } else // dimension = 0 { *fit++ = v->cell(); } return v; } template < class Gt, class Tds, class Lds > template typename Delaunay_triangulation_3::Vertex_handle Delaunay_triangulation_3:: insert_and_give_new_cells(const Point& p, Locate_type lt, Cell_handle c, int li, int lj, OutputItCells fit) { Vertex_handle v = insert(p, lt, c, li, lj); int dimension = this->dimension(); if(dimension == 3) { this->incident_cells(v, fit); } else if(dimension == 2) { Cell_handle c = v->cell(), end = c; do { *fit++ = c; int i = c->index(v); c = c->neighbor((i+1)%3); } while(c != end); } else if(dimension == 1) { Cell_handle c = v->cell(); *fit++ = c; *fit++ = c->neighbor((~(c->index(v)))&1); } else // dimension = 0 { *fit++ = v->cell(); } return v; } template template class Delaunay_triangulation_3::Vertex_remover { typedef DelaunayTriangulation_3 Delaunay; public: typedef Nullptr_t Hidden_points_iterator; Vertex_remover(Delaunay &tmp_) : tmp(tmp_) {} Delaunay &tmp; void add_hidden_points(Cell_handle) {} Hidden_points_iterator hidden_points_begin() { return NULL; } Hidden_points_iterator hidden_points_end() { return NULL; } Bounded_side side_of_bounded_circle(const Point& p, const Point& q, const Point& r, const Point& s, bool perturb = false) const { return tmp.coplanar_side_of_bounded_circle(p,q,r,s,perturb); } }; template template class Delaunay_triangulation_3::Vertex_inserter { typedef DelaunayTriangulation_3 Delaunay; public: typedef Nullptr_t Hidden_points_iterator; Vertex_inserter(Delaunay &tmp_) : tmp(tmp_) {} Delaunay &tmp; void add_hidden_points(Cell_handle) {} Hidden_points_iterator hidden_points_begin() { return NULL; } Hidden_points_iterator hidden_points_end() { return NULL; } Vertex_handle insert(const Point& p, Locate_type lt, Cell_handle c, int li, int lj) { return tmp.insert(p, lt, c, li, lj); } Vertex_handle insert(const Point& p, Cell_handle c) { return tmp.insert(p, c); } Vertex_handle insert(const Point& p) { return tmp.insert(p); } }; template < class Gt, class Tds, class Lds > void Delaunay_triangulation_3:: remove(Vertex_handle v) { Self tmp; Vertex_remover remover(tmp); Tr_Base::remove(v, remover); CGAL_triangulation_expensive_postcondition(is_valid()); } template < class Gt, class Tds, class Lds > bool Delaunay_triangulation_3:: remove(Vertex_handle v, bool *could_lock_zone) { Self tmp; Vertex_remover remover(tmp); bool ret = Tr_Base::remove(v, remover, could_lock_zone); CGAL_triangulation_expensive_postcondition(is_valid()); return ret; } template < class Gt, class Tds, class Lds > typename Delaunay_triangulation_3::Vertex_handle Delaunay_triangulation_3:: move_if_no_collision(Vertex_handle v, const Point& p) { Self tmp; Vertex_remover remover(tmp); Vertex_inserter inserter(*this); Vertex_handle res = Tr_Base::move_if_no_collision(v,p,remover,inserter); CGAL_triangulation_expensive_postcondition(is_valid()); return res; } template typename Delaunay_triangulation_3::Vertex_handle Delaunay_triangulation_3:: move(Vertex_handle v, const Point& p) { CGAL_triangulation_precondition(!is_infinite(v)); if(v->point() == p) return v; Self tmp; Vertex_remover remover(tmp); Vertex_inserter inserter(*this); return Tr_Base::move(v,p,remover,inserter); } template < class Gt, class Tds, class Lds > template void Delaunay_triangulation_3:: remove_and_give_new_cells(Vertex_handle v, OutputItCells fit) { Self tmp; Vertex_remover remover(tmp); Tr_Base::remove_and_give_new_cells(v,remover,fit); CGAL_triangulation_expensive_postcondition(is_valid()); } template < class Gt, class Tds, class Lds > template typename Delaunay_triangulation_3::Vertex_handle Delaunay_triangulation_3:: move_if_no_collision_and_give_new_cells(Vertex_handle v, const Point& p, OutputItCells fit) { Self tmp; Vertex_remover remover(tmp); Vertex_inserter inserter(*this); Vertex_handle res = Tr_Base::move_if_no_collision_and_give_new_cells(v,p, remover,inserter,fit); CGAL_triangulation_expensive_postcondition(is_valid()); return res; } template < class Gt, class Tds, class Lds > Oriented_side Delaunay_triangulation_3:: side_of_oriented_sphere(const Point& p0, const Point& p1, const Point& p2, const Point& p3, const Point& p, bool perturb) const { CGAL_triangulation_precondition(orientation(p0, p1, p2, p3) == POSITIVE); Oriented_side os = geom_traits().side_of_oriented_sphere_3_object()(p0, p1, p2, p3, p); if(os != ON_ORIENTED_BOUNDARY || !perturb) return os; // We are now in a degenerate case => we do a symbolic perturbation. // We sort the points lexicographically. const Point * points[5] = {&p0, &p1, &p2, &p3, &p}; std::sort(points, points + 5, typename Tr_Base::Perturbation_order(this)); // We successively look whether the leading monomial, then 2nd monomial // of the determinant has non null coefficient. // 2 iterations are enough (cf paper) for(int i=4; i>2; --i) { if(points[i] == &p) return ON_NEGATIVE_SIDE; // since p0 p1 p2 p3 are non coplanar // and positively oriented Orientation o; if(points[i] == &p3 && (o = orientation(p0,p1,p2,p)) != COPLANAR) return o; if(points[i] == &p2 && (o = orientation(p0,p1,p,p3)) != COPLANAR) return o; if(points[i] == &p1 && (o = orientation(p0,p,p2,p3)) != COPLANAR) return o; if(points[i] == &p0 && (o = orientation(p,p1,p2,p3)) != COPLANAR) return o; } CGAL_triangulation_assertion(false); return ON_NEGATIVE_SIDE; } template < class Gt, class Tds, class Lds > Bounded_side Delaunay_triangulation_3:: coplanar_side_of_bounded_circle(const Point& p0, const Point& p1, const Point& p2, const Point& p, bool perturb) const { // In dim==2, we should even be able to assert orient == POSITIVE. CGAL_triangulation_precondition(coplanar_orientation(p0, p1, p2) != COLLINEAR); Bounded_side bs = geom_traits().coplanar_side_of_bounded_circle_3_object()(p0, p1, p2, p); if(bs != ON_BOUNDARY || !perturb) return bs; // We are now in a degenerate case => we do a symbolic perturbation. // We sort the points lexicographically. const Point * points[4] = {&p0, &p1, &p2, &p}; std::sort(points, points + 4, typename Tr_Base::Perturbation_order(this)); Orientation local = coplanar_orientation(p0, p1, p2); // we successively look whether the leading monomial, then 2nd monimial, // then 3rd monomial, of the determinant which has non null coefficient // [syl] : TODO : Probably it can be stopped earlier like the 3D version for(int i=3; i>0; --i) { if(points[i] == &p) return Bounded_side(NEGATIVE); // since p0 p1 p2 are non collinear // but not necessarily positively oriented Orientation o; if(points[i] == &p2 && (o = coplanar_orientation(p0,p1,p)) != COLLINEAR) // [syl] : TODO : I'm not sure of the signs here (nor the rest :) return Bounded_side(o*local); if(points[i] == &p1 && (o = coplanar_orientation(p0,p,p2)) != COLLINEAR) return Bounded_side(o*local); if(points[i] == &p0 && (o = coplanar_orientation(p,p1,p2)) != COLLINEAR) return Bounded_side(o*local); } // case when the first non null coefficient is the coefficient of // the 4th monomial // moreover, the tests (points[] == &p) were false up to here, so the // monomial corresponding to p is the only monomial with non-zero // coefficient, it is equal to coplanar_orient(p0,p1,p2) == positive // so, no further test is required return Bounded_side(-local); //ON_UNBOUNDED_SIDE; } template < class Gt, class Tds, class Lds > Bounded_side Delaunay_triangulation_3:: side_of_sphere(Vertex_handle v0, Vertex_handle v1, Vertex_handle v2, Vertex_handle v3, const Point& p, bool perturb) const { CGAL_triangulation_precondition(dimension() == 3); if(is_infinite(v0)) { Orientation o = orientation(v2->point(), v1->point(), v3->point(), p); if(o != COPLANAR) return Bounded_side(o); return coplanar_side_of_bounded_circle(v2->point(), v1->point(), v3->point(), p, perturb); } if(is_infinite(v1)) { Orientation o = orientation(v2->point(), v3->point(), v0->point(), p); if(o != COPLANAR) return Bounded_side(o); return coplanar_side_of_bounded_circle(v2->point(), v3->point(), v0->point(), p, perturb); } if(is_infinite(v2)) { Orientation o = orientation(v1->point(), v0->point(), v3->point(), p); if(o != COPLANAR) return Bounded_side(o); return coplanar_side_of_bounded_circle(v1->point(), v0->point(), v3->point(), p, perturb); } if(is_infinite(v3)) { Orientation o = orientation(v0->point(), v1->point(), v2->point(), p); if(o != COPLANAR) return Bounded_side(o); return coplanar_side_of_bounded_circle(v0->point(), v1->point(), v2->point(), p, perturb); } return (Bounded_side) side_of_oriented_sphere(v0->point(), v1->point(), v2->point(), v3->point(), p, perturb); } template < class Gt, class Tds, class Lds > Bounded_side Delaunay_triangulation_3:: side_of_circle(Cell_handle c, int i, const Point& p, bool perturb) const { // precondition : dimension >=2 // in dimension 3, - for a finite facet // returns ON_BOUNDARY if the point lies on the circle, // ON_UNBOUNDED_SIDE when exterior, ON_BOUNDED_SIDE // interior // for an infinite facet, considers the plane defined by the // adjacent finite facet of the same cell, and does the same as in // dimension 2 in this plane // in dimension 2, for an infinite facet // in this case, returns ON_BOUNDARY if the point lies on the // finite edge (endpoints included) // ON_BOUNDED_SIDE for a point in the open half-plane // ON_UNBOUNDED_SIDE elsewhere CGAL_triangulation_precondition(dimension() >= 2); int i3 = 5; if(dimension() == 2) { CGAL_triangulation_precondition(i == 3); // the triangulation is supposed to be valid, ie the facet // with vertices 0 1 2 in this order is positively oriented if(! c->has_vertex(infinite_vertex(), i3)) return coplanar_side_of_bounded_circle(c->vertex(0)->point(), c->vertex(1)->point(), c->vertex(2)->point(), p, perturb); // else infinite facet // v1, v2 finite vertices of the facet such that v1,v2,infinite // is positively oriented Vertex_handle v1 = c->vertex(ccw(i3)), v2 = c->vertex(cw(i3)); CGAL_triangulation_assertion(coplanar_orientation(v1->point(), v2->point(), mirror_vertex(c, i3)->point()) == NEGATIVE); Orientation o = coplanar_orientation(v1->point(), v2->point(), p); if(o != COLLINEAR) return Bounded_side(o); // because p is in f iff // it does not lie on the same side of v1v2 as vn int i_e; Locate_type lt; // case when p collinear with v1v2 return side_of_segment(p, v1->point(), v2->point(), lt, i_e); } // else dimension == 3 CGAL_triangulation_precondition(i >= 0 && i < 4); if((! c->has_vertex(infinite_vertex(),i3)) || (i3 != i)) { // finite facet // initialization of i0 i1 i2, vertices of the facet positively // oriented (if the triangulation is valid) int i0 = (i>0) ? 0 : 1; int i1 = (i>1) ? 1 : 2; int i2 = (i>2) ? 2 : 3; CGAL_triangulation_precondition(coplanar(c->vertex(i0)->point(), c->vertex(i1)->point(), c->vertex(i2)->point(), p)); return coplanar_side_of_bounded_circle(c->vertex(i0)->point(), c->vertex(i1)->point(), c->vertex(i2)->point(), p, perturb); } //else infinite facet // v1, v2 finite vertices of the facet such that v1,v2,infinite // is positively oriented Vertex_handle v1 = c->vertex(next_around_edge(i3,i)), v2 = c->vertex(next_around_edge(i,i3)); Orientation o = (Orientation) (coplanar_orientation(v1->point(), v2->point(), c->vertex(i)->point()) * coplanar_orientation(v1->point(), v2->point(), p)); // then the code is duplicated from 2d case if(o != COLLINEAR) return Bounded_side(-o); // because p is in f iff // it is not on the same side of v1v2 as c->vertex(i) int i_e; Locate_type lt; // case when p collinear with v1v2 return side_of_segment(p, v1->point(), v2->point(), lt, i_e); } template < class Gt, class Tds, class Lds > typename Delaunay_triangulation_3::Vertex_handle Delaunay_triangulation_3:: nearest_vertex_in_cell(const Point& p, Cell_handle c) const { // Returns the finite vertex of the cell c which is the closest to p. CGAL_triangulation_precondition(dimension() >= 0); Vertex_handle nearest = nearest_vertex(p, c->vertex(0), c->vertex(1)); if(dimension() >= 2) { nearest = nearest_vertex(p, nearest, c->vertex(2)); if(dimension() == 3) nearest = nearest_vertex(p, nearest, c->vertex(3)); } return nearest; } template < class Gt, class Tds, class Lds > typename Delaunay_triangulation_3::Vertex_handle Delaunay_triangulation_3:: nearest_vertex(const Point& p, Cell_handle start) const { if(number_of_vertices() == 0) return Vertex_handle(); // Use a brute-force algorithm if dimension < 3. if(dimension() < 3) { Finite_vertices_iterator vit = finite_vertices_begin(); Vertex_handle res = vit; ++vit; for(Finite_vertices_iterator end = finite_vertices_end(); vit != end; ++vit) res = nearest_vertex(p, res, vit); return res; } Locate_type lt; int li, lj; Cell_handle c = locate(p, lt, li, lj, start); if(lt == Tr_Base::VERTEX) return c->vertex(li); // - start with the closest vertex from the located cell. // - repeatedly take the nearest of its incident vertices if any // - if not, we're done. Vertex_handle nearest = nearest_vertex_in_cell(p, c); std::vector vs; vs.reserve(32); while(true) { Vertex_handle tmp = nearest; adjacent_vertices(nearest, std::back_inserter(vs)); for(typename std::vector::const_iterator vsit = vs.begin(); vsit != vs.end(); ++vsit) { tmp = nearest_vertex(p, tmp, *vsit); } if(tmp == nearest) break; vs.clear(); nearest = tmp; } return nearest; } // This is not a fast version. // The optimized version needs an int for book-keeping in // tds() so as to avoiding the need to clear // the tds marker in each cell (which is an unsigned char) // Also the visitor in TDS could be more clever. // The Delaunay triangulation which filters displacements // will do these optimizations. template bool Delaunay_triangulation_3:: is_delaunay_after_displacement(Vertex_handle v, const Point& p) const { CGAL_triangulation_precondition(!this->is_infinite(v)); CGAL_triangulation_precondition(this->dimension() == 2); CGAL_triangulation_precondition(!this->test_dim_down(v)); if(v->point() == p) return true; Point ant = v->point(); v->set_point(p); std::size_t size; // are incident cells well-oriented std::vector cells; cells.reserve(64); this->incident_cells(v, std::back_inserter(cells)); size = cells.size(); for(std::size_t i=0; iis_infinite(c)) continue; if(this->orientation(c->vertex(0)->point(), c->vertex(1)->point(), c->vertex(2)->point(), c->vertex(3)->point()) != POSITIVE) { v->set_point(ant); return false; } } // are incident bi-cells Delaunay? std::vector facets; facets.reserve(128); this->incident_facets(v, std::back_inserter(facets)); size = facets.size(); for(std::size_t i=0; ineighbor(j); int mj = this->mirror_index(c, j); Vertex_handle h1 = c->vertex(j); if(this->is_infinite(h1)) { if(this->side_of_sphere(c, cj->vertex(mj)->point(), true) != ON_UNBOUNDED_SIDE) { v->set_point(ant); return false; } } else { if(this->side_of_sphere(cj, h1->point(), true) != ON_UNBOUNDED_SIDE) { v->set_point(ant); return false; } } } v->set_point(ant); return true; } template < class Gt, class Tds, class Lds > bool Delaunay_triangulation_3:: is_Gabriel(const Facet& f) const { return is_Gabriel(f.first, f.second); } template < class Gt, class Tds, class Lds > bool Delaunay_triangulation_3:: is_Gabriel(Cell_handle c, int i) const { CGAL_triangulation_precondition(dimension() == 3 && !is_infinite(c,i)); typename Geom_traits::Side_of_bounded_sphere_3 side_of_bounded_sphere = geom_traits().side_of_bounded_sphere_3_object(); if((!is_infinite(c->vertex(i))) && side_of_bounded_sphere (c->vertex(vertex_triple_index(i,0))->point(), c->vertex(vertex_triple_index(i,1))->point(), c->vertex(vertex_triple_index(i,2))->point(), c->vertex(i)->point()) == ON_BOUNDED_SIDE) return false; Cell_handle neighbor = c->neighbor(i); int in = neighbor->index(c); if((!is_infinite(neighbor->vertex(in))) && side_of_bounded_sphere(c->vertex(vertex_triple_index(i,0))->point(), c->vertex(vertex_triple_index(i,1))->point(), c->vertex(vertex_triple_index(i,2))->point(), neighbor->vertex(in)->point()) == ON_BOUNDED_SIDE) return false; return true; } template < class Gt, class Tds, class Lds > bool Delaunay_triangulation_3:: is_Gabriel(const Edge& e) const { return is_Gabriel(e.first, e.second, e.third); } template < class Gt, class Tds, class Lds > bool Delaunay_triangulation_3:: is_Gabriel(Cell_handle c, int i, int j) const { CGAL_triangulation_precondition(dimension() == 3 && !is_infinite(c,i,j)); typename Geom_traits::Side_of_bounded_sphere_3 side_of_bounded_sphere = geom_traits().side_of_bounded_sphere_3_object(); Facet_circulator fcirc = incident_facets(c,i,j), fdone(fcirc); Vertex_handle v1 = c->vertex(i); Vertex_handle v2 = c->vertex(j); do { // test whether the vertex of cc opposite to *fcirc // is inside the sphere defined by the edge e = (s, i,j) Cell_handle cc = (*fcirc).first; int ii = (*fcirc).second; if(!is_infinite(cc->vertex(ii)) && side_of_bounded_sphere(v1->point(), v2->point(), cc->vertex(ii)->point()) == ON_BOUNDED_SIDE) return false; } while(++fcirc != fdone); return true; } template < class Gt, class Tds, class Lds > typename Delaunay_triangulation_3::Point Delaunay_triangulation_3:: dual(Cell_handle c) const { CGAL_triangulation_precondition(dimension()==3); CGAL_triangulation_precondition(! is_infinite(c)); return c->circumcenter(geom_traits()); } template < class Gt, class Tds, class Lds > typename Delaunay_triangulation_3::Object Delaunay_triangulation_3:: dual(Cell_handle c, int i) const { CGAL_triangulation_precondition(dimension()>=2); CGAL_triangulation_precondition(! is_infinite(c,i)); if(dimension() == 2) { CGAL_triangulation_precondition(i == 3); return construct_object(construct_circumcenter(c->vertex(0)->point(), c->vertex(1)->point(), c->vertex(2)->point())); } // dimension() == 3 Cell_handle n = c->neighbor(i); if(! is_infinite(c) && ! is_infinite(n)) return construct_object(construct_segment(dual(c), dual(n))); // either n or c is infinite int in; if(is_infinite(c)) { in = n->index(c); } else { n = c; in = i; } // n now denotes a finite cell, either c or c->neighbor(i) int ind[3] = {(in+1)&3,(in+2)&3,(in+3)&3}; if((in&1) == 1) std::swap(ind[0], ind[1]); // in=0: 1 2 3 // in=1: 3 2 0 // in=2: 3 0 1 // in=3: 1 0 2 const Point& p = n->vertex(ind[0])->point(); const Point& q = n->vertex(ind[1])->point(); const Point& r = n->vertex(ind[2])->point(); Line l = construct_equidistant_line(p, q, r); return construct_object(construct_ray(dual(n), l)); } template < class Gt, class Tds, class Lds > typename Delaunay_triangulation_3::Line Delaunay_triangulation_3:: dual_support(Cell_handle c, int i) const { CGAL_triangulation_precondition(dimension()>=2); CGAL_triangulation_precondition(! is_infinite(c,i)); if(dimension() == 2) { CGAL_triangulation_precondition(i == 3); return construct_equidistant_line(c->vertex(0)->point(), c->vertex(1)->point(), c->vertex(2)->point()); } return construct_equidistant_line(c->vertex((i+1)&3)->point(), c->vertex((i+2)&3)->point(), c->vertex((i+3)&3)->point()); } template < class Gt, class Tds, class Lds > bool Delaunay_triangulation_3:: is_valid(bool verbose, int level) const { if(! tds().is_valid(verbose,level)) { if(verbose) std::cerr << "invalid data structure" << std::endl; CGAL_triangulation_assertion(false); return false; } if(infinite_vertex() == Vertex_handle()) { if(verbose) std::cerr << "no infinite vertex" << std::endl; CGAL_triangulation_assertion(false); return false; } switch(dimension()) { case 3: { for(Finite_cells_iterator it = finite_cells_begin(), end = finite_cells_end(); it != end; ++it) { is_valid_finite(it); for(int i=0; i<4; i++) { if(!is_infinite(it->neighbor(i)->vertex(it->neighbor(i)->index(it)))) { if(side_of_sphere(it, it->neighbor(i)->vertex( it->neighbor(i)->index(it))->point()) == ON_BOUNDED_SIDE) { if(verbose) std::cerr << "non-empty sphere " << std::endl; CGAL_triangulation_assertion(false); return false; } } } } break; } case 2: { for(Finite_facets_iterator it = finite_facets_begin(), end = finite_facets_end(); it != end; ++it) { is_valid_finite((*it).first); for(int i=0; i<3; i++) { if(!is_infinite((*it).first->neighbor(i)->vertex( (((*it).first)->neighbor(i))->index( (*it).first)))) { if(side_of_circle((*it).first, 3, (*it).first->neighbor(i)-> vertex((((*it).first)->neighbor(i))->index( (*it).first))->point()) == ON_BOUNDED_SIDE) { if(verbose) std::cerr << "non-empty circle " << std::endl; CGAL_triangulation_assertion(false); return false; } } } } break; } case 1: { for(Finite_edges_iterator it = finite_edges_begin(), end = finite_edges_end(); it != end; ++it) { is_valid_finite((*it).first); } break; } } if(verbose) std::cerr << "Delaunay valid triangulation" << std::endl; return true; } template < class Gt, class Tds, class Lds > bool Delaunay_triangulation_3:: is_valid(Cell_handle c, bool verbose, int level) const { if(! Tr_Base::is_valid(c, verbose, level)) { if(verbose) { std::cerr << "combinatorically invalid cell" ; for(int i=0; i <= dimension(); i++) std::cerr << c->vertex(i)->point() << ", " ; std::cerr << std::endl; } CGAL_triangulation_assertion(false); return false; } switch(dimension()) { case 3: { if(! is_infinite(c)) { is_valid_finite(c, verbose, level); for(int i=0; i<4; i++) { if(side_of_sphere(c, c->vertex((c->neighbor(i))->index(c))->point()) == ON_BOUNDED_SIDE) { if(verbose) std::cerr << "non-empty sphere " << std::endl; CGAL_triangulation_assertion(false); return false; } } } break; } case 2: { if(! is_infinite(c,3)) { for(int i=0; i<2; i++) { if(side_of_circle(c, 3, c->vertex(c->neighbor(i)->index(c))->point()) == ON_BOUNDED_SIDE) { if(verbose) std::cerr << "non-empty circle " << std::endl; CGAL_triangulation_assertion(false); return false; } } } break; } } if(verbose) std::cerr << "Delaunay valid cell" << std::endl; return true; } } //namespace CGAL #include #include #endif // CGAL_DELAUNAY_TRIANGULATION_3_H