// Copyright (c) 1999 // Utrecht University (The Netherlands), // ETH Zurich (Switzerland), // INRIA Sophia-Antipolis (France), // Max-Planck-Institute Saarbruecken (Germany), // and Tel-Aviv University (Israel). All rights reserved. // // This file is part of CGAL (www.cgal.org); you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation; either version 3 of the License, // or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: LGPL-3.0+ // // // Author(s) : Andreas Fabri #ifndef CGAL_TRIANGLE_2_H #define CGAL_TRIANGLE_2_H #include #include #include #include #include #include #include namespace CGAL { template class Triangle_2 : public R_::Kernel_base::Triangle_2 { typedef typename R_::Point_2 Point_2; typedef typename R_::Aff_transformation_2 Aff_transformation_2; typedef typename R_::Kernel_base::Triangle_2 RTriangle_2; typedef Triangle_2 Self; CGAL_static_assertion((boost::is_same::value)); public: typedef Dimension_tag<2> Ambient_dimension; typedef Dimension_tag<2> Feature_dimension; typedef RTriangle_2 Rep; const Rep& rep() const { return *this; } Rep& rep() { return *this; } typedef R_ R; typedef typename R::FT FT; Triangle_2() {} Triangle_2(const RTriangle_2& t) : RTriangle_2(t) {} Triangle_2(const Point_2 &p, const Point_2 &q, const Point_2 &r) : RTriangle_2(typename R::Construct_triangle_2()(Return_base_tag(), p,q,r)) {} FT area() const { return R().compute_area_2_object()(vertex(0), vertex(1), vertex(2)); } typename R::Orientation orientation() const { return R().orientation_2_object()(vertex(0), vertex(1), vertex(2)); } typename R::Bounded_side bounded_side(const Point_2 &p) const { return R().bounded_side_2_object()(*this,p); } typename R::Oriented_side oriented_side(const Point_2 &p) const { return R().oriented_side_2_object()(*this,p); } typename R::Boolean operator==(const Triangle_2 &t) const { return R().equal_2_object()(*this,t); } typename R::Boolean operator!=(const Triangle_2 &t) const { return !(*this == t); } typename cpp11::result_of::type vertex(int i) const { return R().construct_vertex_2_object()(*this,i); } typename cpp11::result_of::type operator[](int i) const { return vertex(i); } typename R::Boolean has_on_bounded_side(const Point_2 &p) const { return bounded_side(p) == ON_BOUNDED_SIDE; } typename R::Boolean has_on_unbounded_side(const Point_2 &p) const { return bounded_side(p) == ON_UNBOUNDED_SIDE; } typename R::Boolean has_on_boundary(const Point_2 &p) const { return bounded_side(p) == ON_BOUNDARY; } typename R::Boolean has_on_negative_side(const Point_2 &p) const { return oriented_side(p) == ON_NEGATIVE_SIDE; } typename R::Boolean has_on_positive_side(const Point_2 &p) const { return oriented_side(p) == ON_POSITIVE_SIDE; } typename R::Boolean is_degenerate() const { return R().collinear_2_object()(vertex(0), vertex(1), vertex(2)); } Bbox_2 bbox() const { return R().construct_bbox_2_object()(*this); } Triangle_2 opposite() const { return R().construct_opposite_triangle_2_object()(*this); } Triangle_2 transform(const Aff_transformation_2 &t) const { return Triangle_2(t.transform(vertex(0)), t.transform(vertex(1)), t.transform(vertex(2))); } }; template < class R > std::ostream & operator<<(std::ostream &os, const Triangle_2 &t) { switch(get_mode(os)) { case IO::ASCII : return os << t[0] << ' ' << t[1] << ' ' << t[2]; case IO::BINARY : return os << t[0] << t[1] << t[2]; default: return os<< "Triangle_2(" << t[0] << ", " << t[1] << ", " << t[2] <<")"; } } template < class R > std::istream & operator>>(std::istream &is, Triangle_2 &t) { typename R::Point_2 p, q, r; is >> p >> q >> r; if (is) t = Triangle_2(p, q, r); return is; } } //namespace CGAL #endif // CGAL_TRIANGLE_2_H