// This file is part of libigl, a simple c++ geometry processing library. // // Copyright (C) 2016 Michael Rabinovich // // This Source Code Form is subject to the terms of the Mozilla Public License // v. 2.0. If a copy of the MPL was not distributed with this file, You can // obtain one at http://mozilla.org/MPL/2.0/. #include "slim.h" #include "boundary_loop.h" #include "cotmatrix.h" #include "edge_lengths.h" #include "grad.h" #include "local_basis.h" #include "repdiag.h" #include "vector_area_matrix.h" #include "arap.h" #include "cat.h" #include "doublearea.h" #include "grad.h" #include "local_basis.h" #include "per_face_normals.h" #include "slice_into.h" #include "volume.h" #include "polar_svd.h" #include "flip_avoiding_line_search.h" #include "mapping_energy_with_jacobians.h" #include #include #include #include #include #include #include #include "Timer.h" #include "sparse_cached.h" #include "AtA_cached.h" #ifdef CHOLMOD #include #endif namespace igl { namespace slim { // Definitions of internal functions IGL_INLINE void buildRhs(igl::SLIMData& s, const Eigen::SparseMatrix &A); IGL_INLINE void add_soft_constraints(igl::SLIMData& s, Eigen::SparseMatrix &L); IGL_INLINE double compute_energy(igl::SLIMData& s, Eigen::MatrixXd &V_new); IGL_INLINE double compute_soft_const_energy(igl::SLIMData& s, const Eigen::MatrixXd &V, const Eigen::MatrixXi &F, Eigen::MatrixXd &V_o); IGL_INLINE void solve_weighted_arap(igl::SLIMData& s, const Eigen::MatrixXd &V, const Eigen::MatrixXi &F, Eigen::MatrixXd &uv, Eigen::VectorXi &soft_b_p, Eigen::MatrixXd &soft_bc_p); IGL_INLINE void update_weights_and_closest_rotations( igl::SLIMData& s, Eigen::MatrixXd &uv); IGL_INLINE void compute_jacobians(igl::SLIMData& s, const Eigen::MatrixXd &uv); IGL_INLINE void build_linear_system(igl::SLIMData& s, Eigen::SparseMatrix &L); IGL_INLINE void pre_calc(igl::SLIMData& s); // Implementation IGL_INLINE void compute_jacobians(igl::SLIMData& s, const Eigen::MatrixXd &uv) { if (s.F.cols() == 3) { // Ji=[D1*u,D2*u,D1*v,D2*v]; s.Ji.col(0) = s.Dx * uv.col(0); s.Ji.col(1) = s.Dy * uv.col(0); s.Ji.col(2) = s.Dx * uv.col(1); s.Ji.col(3) = s.Dy * uv.col(1); } else /*tet mesh*/{ // Ji=[D1*u,D2*u,D3*u, D1*v,D2*v, D3*v, D1*w,D2*w,D3*w]; s.Ji.col(0) = s.Dx * uv.col(0); s.Ji.col(1) = s.Dy * uv.col(0); s.Ji.col(2) = s.Dz * uv.col(0); s.Ji.col(3) = s.Dx * uv.col(1); s.Ji.col(4) = s.Dy * uv.col(1); s.Ji.col(5) = s.Dz * uv.col(1); s.Ji.col(6) = s.Dx * uv.col(2); s.Ji.col(7) = s.Dy * uv.col(2); s.Ji.col(8) = s.Dz * uv.col(2); } } IGL_INLINE void update_weights_and_closest_rotations(igl::SLIMData& s, Eigen::MatrixXd &uv) { compute_jacobians(s, uv); slim_update_weights_and_closest_rotations_with_jacobians(s.Ji, s.slim_energy, s.exp_factor, s.W, s.Ri); } IGL_INLINE void solve_weighted_arap(igl::SLIMData& s, const Eigen::MatrixXd &V, const Eigen::MatrixXi &F, Eigen::MatrixXd &uv, Eigen::VectorXi &soft_b_p, Eigen::MatrixXd &soft_bc_p) { using namespace Eigen; Eigen::SparseMatrix L; build_linear_system(s,L); igl::Timer t; //t.start(); // solve Eigen::VectorXd Uc; #ifndef CHOLMOD if (s.dim == 2) { SimplicialLDLT > solver; Uc = solver.compute(L).solve(s.rhs); } else { // seems like CG performs much worse for 2D and way better for 3D Eigen::VectorXd guess(uv.rows() * s.dim); for (int i = 0; i < s.v_num; i++) for (int j = 0; j < s.dim; j++) guess(uv.rows() * j + i) = uv(i, j); // flatten vector ConjugateGradient, Lower | Upper> cg; cg.setTolerance(1e-8); cg.compute(L); Uc = cg.solveWithGuess(s.rhs, guess); } #else CholmodSimplicialLDLT > solver; Uc = solver.compute(L).solve(s.rhs); #endif for (int i = 0; i < s.dim; i++) uv.col(i) = Uc.block(i * s.v_n, 0, s.v_n, 1); // t.stop(); // std::cerr << "solve: " << t.getElapsedTime() << std::endl; } IGL_INLINE void pre_calc(igl::SLIMData& s) { if (!s.has_pre_calc) { s.v_n = s.v_num; s.f_n = s.f_num; if (s.F.cols() == 3) { s.dim = 2; Eigen::MatrixXd F1, F2, F3; igl::local_basis(s.V, s.F, F1, F2, F3); Eigen::SparseMatrix G; igl::grad(s.V, s.F, G); Eigen::SparseMatrix Face_Proj; auto face_proj = [](Eigen::MatrixXd& F){ std::vector >IJV; int f_num = F.rows(); for(int i=0; i(i, i, F(i,0))); IJV.push_back(Eigen::Triplet(i, i+f_num, F(i,1))); IJV.push_back(Eigen::Triplet(i, i+2*f_num, F(i,2))); } Eigen::SparseMatrix P(f_num, 3*f_num); P.setFromTriplets(IJV.begin(), IJV.end()); return P; }; s.Dx = face_proj(F1) * G; s.Dy = face_proj(F2) * G; } else { s.dim = 3; Eigen::SparseMatrix G; igl::grad(s.V, s.F, G, s.mesh_improvement_3d /*use normal gradient, or one from a "regular" tet*/); s.Dx = G.block(0, 0, s.F.rows(), s.V.rows()); s.Dy = G.block(s.F.rows(), 0, s.F.rows(), s.V.rows()); s.Dz = G.block(2 * s.F.rows(), 0, s.F.rows(), s.V.rows()); } s.W.resize(s.f_n, s.dim * s.dim); s.Dx.makeCompressed(); s.Dy.makeCompressed(); s.Dz.makeCompressed(); s.Ri.resize(s.f_n, s.dim * s.dim); s.Ji.resize(s.f_n, s.dim * s.dim); s.rhs.resize(s.dim * s.v_num); // flattened weight matrix s.WGL_M.resize(s.dim * s.dim * s.f_n); for (int i = 0; i < s.dim * s.dim; i++) for (int j = 0; j < s.f_n; j++) s.WGL_M(i * s.f_n + j) = s.M(j); s.first_solve = true; s.has_pre_calc = true; } } IGL_INLINE void build_linear_system(igl::SLIMData& s, Eigen::SparseMatrix &L) { // formula (35) in paper std::vector > IJV; #ifdef SLIM_CACHED slim_buildA(s.Dx, s.Dy, s.Dz, s.W, IJV); if (s.A.rows() == 0) { s.A = Eigen::SparseMatrix(s.dim * s.dim * s.f_n, s.dim * s.v_n); igl::sparse_cached_precompute(IJV,s.A_data,s.A); } else igl::sparse_cached(IJV,s.A_data,s.A); #else Eigen::SparseMatrix A(s.dim * s.dim * s.f_n, s.dim * s.v_n); slim_buildA(s.Dx, s.Dy, s.Dz, s.W, IJV); A.setFromTriplets(IJV.begin(),IJV.end()); A.makeCompressed(); #endif #ifdef SLIM_CACHED #else Eigen::SparseMatrix At = A.transpose(); At.makeCompressed(); #endif #ifdef SLIM_CACHED Eigen::SparseMatrix id_m(s.A.cols(), s.A.cols()); #else Eigen::SparseMatrix id_m(A.cols(), A.cols()); #endif id_m.setIdentity(); // add proximal penalty #ifdef SLIM_CACHED s.AtA_data.W = s.WGL_M; if (s.AtA.rows() == 0) igl::AtA_cached_precompute(s.A,s.AtA_data,s.AtA); else igl::AtA_cached(s.A,s.AtA_data,s.AtA); L = s.AtA + s.proximal_p * id_m; //add also a proximal L.makeCompressed(); #else L = At * s.WGL_M.asDiagonal() * A + s.proximal_p * id_m; //add also a proximal term L.makeCompressed(); #endif #ifdef SLIM_CACHED buildRhs(s, s.A); #else buildRhs(s, A); #endif Eigen::SparseMatrix OldL = L; add_soft_constraints(s,L); L.makeCompressed(); } IGL_INLINE void add_soft_constraints(igl::SLIMData& s, Eigen::SparseMatrix &L) { int v_n = s.v_num; for (int d = 0; d < s.dim; d++) { for (int i = 0; i < s.b.rows(); i++) { int v_idx = s.b(i); s.rhs(d * v_n + v_idx) += s.soft_const_p * s.bc(i, d); // rhs L.coeffRef(d * v_n + v_idx, d * v_n + v_idx) += s.soft_const_p; // diagonal of matrix } } } IGL_INLINE double compute_energy(igl::SLIMData& s, Eigen::MatrixXd &V_new) { compute_jacobians(s,V_new); return mapping_energy_with_jacobians(s.Ji, s.M, s.slim_energy, s.exp_factor) + compute_soft_const_energy(s, s.V, s.F, V_new); } IGL_INLINE double compute_soft_const_energy(igl::SLIMData& s, const Eigen::MatrixXd &V, const Eigen::MatrixXi &F, Eigen::MatrixXd &V_o) { double e = 0; for (int i = 0; i < s.b.rows(); i++) { e += s.soft_const_p * (s.bc.row(i) - V_o.row(s.b(i))).squaredNorm(); } return e; } IGL_INLINE void buildRhs(igl::SLIMData& s, const Eigen::SparseMatrix &A) { Eigen::VectorXd f_rhs(s.dim * s.dim * s.f_n); f_rhs.setZero(); if (s.dim == 2) { /*b = [W11*R11 + W12*R21; (formula (36)) W11*R12 + W12*R22; W21*R11 + W22*R21; W21*R12 + W22*R22];*/ for (int i = 0; i < s.f_n; i++) { f_rhs(i + 0 * s.f_n) = s.W(i, 0) * s.Ri(i, 0) + s.W(i, 1) * s.Ri(i, 1); f_rhs(i + 1 * s.f_n) = s.W(i, 0) * s.Ri(i, 2) + s.W(i, 1) * s.Ri(i, 3); f_rhs(i + 2 * s.f_n) = s.W(i, 2) * s.Ri(i, 0) + s.W(i, 3) * s.Ri(i, 1); f_rhs(i + 3 * s.f_n) = s.W(i, 2) * s.Ri(i, 2) + s.W(i, 3) * s.Ri(i, 3); } } else { /*b = [W11*R11 + W12*R21 + W13*R31; W11*R12 + W12*R22 + W13*R32; W11*R13 + W12*R23 + W13*R33; W21*R11 + W22*R21 + W23*R31; W21*R12 + W22*R22 + W23*R32; W21*R13 + W22*R23 + W23*R33; W31*R11 + W32*R21 + W33*R31; W31*R12 + W32*R22 + W33*R32; W31*R13 + W32*R23 + W33*R33;];*/ for (int i = 0; i < s.f_n; i++) { f_rhs(i + 0 * s.f_n) = s.W(i, 0) * s.Ri(i, 0) + s.W(i, 1) * s.Ri(i, 1) + s.W(i, 2) * s.Ri(i, 2); f_rhs(i + 1 * s.f_n) = s.W(i, 0) * s.Ri(i, 3) + s.W(i, 1) * s.Ri(i, 4) + s.W(i, 2) * s.Ri(i, 5); f_rhs(i + 2 * s.f_n) = s.W(i, 0) * s.Ri(i, 6) + s.W(i, 1) * s.Ri(i, 7) + s.W(i, 2) * s.Ri(i, 8); f_rhs(i + 3 * s.f_n) = s.W(i, 3) * s.Ri(i, 0) + s.W(i, 4) * s.Ri(i, 1) + s.W(i, 5) * s.Ri(i, 2); f_rhs(i + 4 * s.f_n) = s.W(i, 3) * s.Ri(i, 3) + s.W(i, 4) * s.Ri(i, 4) + s.W(i, 5) * s.Ri(i, 5); f_rhs(i + 5 * s.f_n) = s.W(i, 3) * s.Ri(i, 6) + s.W(i, 4) * s.Ri(i, 7) + s.W(i, 5) * s.Ri(i, 8); f_rhs(i + 6 * s.f_n) = s.W(i, 6) * s.Ri(i, 0) + s.W(i, 7) * s.Ri(i, 1) + s.W(i, 8) * s.Ri(i, 2); f_rhs(i + 7 * s.f_n) = s.W(i, 6) * s.Ri(i, 3) + s.W(i, 7) * s.Ri(i, 4) + s.W(i, 8) * s.Ri(i, 5); f_rhs(i + 8 * s.f_n) = s.W(i, 6) * s.Ri(i, 6) + s.W(i, 7) * s.Ri(i, 7) + s.W(i, 8) * s.Ri(i, 8); } } Eigen::VectorXd uv_flat(s.dim *s.v_n); for (int i = 0; i < s.dim; i++) for (int j = 0; j < s.v_n; j++) uv_flat(s.v_n * i + j) = s.V_o(j, i); s.rhs = (f_rhs.transpose() * s.WGL_M.asDiagonal() * A).transpose() + s.proximal_p * uv_flat; } } } IGL_INLINE void igl::slim_update_weights_and_closest_rotations_with_jacobians(const Eigen::MatrixXd &Ji, igl::MappingEnergyType slim_energy, double exp_factor, Eigen::MatrixXd &W, Eigen::MatrixXd &Ri) { const double eps = 1e-8; double exp_f = exp_factor; const int dim = (Ji.cols()==4? 2:3); if (dim == 2) { for (int i = 0; i < Ji.rows(); ++i) { typedef Eigen::Matrix2d Mat2; typedef Eigen::Matrix RMat2; typedef Eigen::Vector2d Vec2; Mat2 ji, ri, ti, ui, vi; Vec2 sing; Vec2 closest_sing_vec; RMat2 mat_W; Vec2 m_sing_new; double s1, s2; ji(0, 0) = Ji(i, 0); ji(0, 1) = Ji(i, 1); ji(1, 0) = Ji(i, 2); ji(1, 1) = Ji(i, 3); igl::polar_svd(ji, ri, ti, ui, sing, vi); s1 = sing(0); s2 = sing(1); // Update Weights according to energy switch (slim_energy) { case igl::MappingEnergyType::ARAP: { m_sing_new << 1, 1; break; } case igl::MappingEnergyType::SYMMETRIC_DIRICHLET: { double s1_g = 2 * (s1 - pow(s1, -3)); double s2_g = 2 * (s2 - pow(s2, -3)); m_sing_new << sqrt(s1_g / (2 * (s1 - 1))), sqrt(s2_g / (2 * (s2 - 1))); break; } case igl::MappingEnergyType::LOG_ARAP: { double s1_g = 2 * (log(s1) / s1); double s2_g = 2 * (log(s2) / s2); m_sing_new << sqrt(s1_g / (2 * (s1 - 1))), sqrt(s2_g / (2 * (s2 - 1))); break; } case igl::MappingEnergyType::CONFORMAL: { double s1_g = 1 / (2 * s2) - s2 / (2 * pow(s1, 2)); double s2_g = 1 / (2 * s1) - s1 / (2 * pow(s2, 2)); double geo_avg = sqrt(s1 * s2); double s1_min = geo_avg; double s2_min = geo_avg; m_sing_new << sqrt(s1_g / (2 * (s1 - s1_min))), sqrt(s2_g / (2 * (s2 - s2_min))); // change local step closest_sing_vec << s1_min, s2_min; ri = ui * closest_sing_vec.asDiagonal() * vi.transpose(); break; } case igl::MappingEnergyType::EXP_CONFORMAL: { double s1_g = 2 * (s1 - pow(s1, -3)); double s2_g = 2 * (s2 - pow(s2, -3)); double geo_avg = sqrt(s1 * s2); double s1_min = geo_avg; double s2_min = geo_avg; double in_exp = exp_f * ((pow(s1, 2) + pow(s2, 2)) / (2 * s1 * s2)); double exp_thing = exp(in_exp); s1_g *= exp_thing * exp_f; s2_g *= exp_thing * exp_f; m_sing_new << sqrt(s1_g / (2 * (s1 - 1))), sqrt(s2_g / (2 * (s2 - 1))); break; } case igl::MappingEnergyType::EXP_SYMMETRIC_DIRICHLET: { double s1_g = 2 * (s1 - pow(s1, -3)); double s2_g = 2 * (s2 - pow(s2, -3)); double in_exp = exp_f * (pow(s1, 2) + pow(s1, -2) + pow(s2, 2) + pow(s2, -2)); double exp_thing = exp(in_exp); s1_g *= exp_thing * exp_f; s2_g *= exp_thing * exp_f; m_sing_new << sqrt(s1_g / (2 * (s1 - 1))), sqrt(s2_g / (2 * (s2 - 1))); break; } } if (std::abs(s1 - 1) < eps) m_sing_new(0) = 1; if (std::abs(s2 - 1) < eps) m_sing_new(1) = 1; mat_W = ui * m_sing_new.asDiagonal() * ui.transpose(); W.row(i) = Eigen::Map>(mat_W.data()); // 2) Update local step (doesn't have to be a rotation, for instance in case of conformal energy) Ri.row(i) = Eigen::Map>(ri.data()); } } else { typedef Eigen::Matrix Vec3; typedef Eigen::Matrix Mat3; typedef Eigen::Matrix RMat3; Mat3 ji; Vec3 m_sing_new; Vec3 closest_sing_vec; const double sqrt_2 = sqrt(2); for (int i = 0; i < Ji.rows(); ++i) { ji << Ji(i,0), Ji(i,1), Ji(i,2), Ji(i,3), Ji(i,4), Ji(i,5), Ji(i,6), Ji(i,7), Ji(i,8); Mat3 ri, ti, ui, vi; Vec3 sing; igl::polar_svd(ji, ri, ti, ui, sing, vi); double s1 = sing(0); double s2 = sing(1); double s3 = sing(2); // 1) Update Weights switch (slim_energy) { case igl::MappingEnergyType::ARAP: { m_sing_new << 1, 1, 1; break; } case igl::MappingEnergyType::LOG_ARAP: { double s1_g = 2 * (log(s1) / s1); double s2_g = 2 * (log(s2) / s2); double s3_g = 2 * (log(s3) / s3); m_sing_new << sqrt(s1_g / (2 * (s1 - 1))), sqrt(s2_g / (2 * (s2 - 1))), sqrt(s3_g / (2 * (s3 - 1))); break; } case igl::MappingEnergyType::SYMMETRIC_DIRICHLET: { double s1_g = 2 * (s1 - pow(s1, -3)); double s2_g = 2 * (s2 - pow(s2, -3)); double s3_g = 2 * (s3 - pow(s3, -3)); m_sing_new << sqrt(s1_g / (2 * (s1 - 1))), sqrt(s2_g / (2 * (s2 - 1))), sqrt(s3_g / (2 * (s3 - 1))); break; } case igl::MappingEnergyType::EXP_SYMMETRIC_DIRICHLET: { double s1_g = 2 * (s1 - pow(s1, -3)); double s2_g = 2 * (s2 - pow(s2, -3)); double s3_g = 2 * (s3 - pow(s3, -3)); m_sing_new << sqrt(s1_g / (2 * (s1 - 1))), sqrt(s2_g / (2 * (s2 - 1))), sqrt(s3_g / (2 * (s3 - 1))); double in_exp = exp_f * (pow(s1, 2) + pow(s1, -2) + pow(s2, 2) + pow(s2, -2) + pow(s3, 2) + pow(s3, -2)); double exp_thing = exp(in_exp); s1_g *= exp_thing * exp_f; s2_g *= exp_thing * exp_f; s3_g *= exp_thing * exp_f; m_sing_new << sqrt(s1_g / (2 * (s1 - 1))), sqrt(s2_g / (2 * (s2 - 1))), sqrt(s3_g / (2 * (s3 - 1))); break; } case igl::MappingEnergyType::CONFORMAL: { double common_div = 9 * (pow(s1 * s2 * s3, 5. / 3.)); double s1_g = (-2 * s2 * s3 * (pow(s2, 2) + pow(s3, 2) - 2 * pow(s1, 2))) / common_div; double s2_g = (-2 * s1 * s3 * (pow(s1, 2) + pow(s3, 2) - 2 * pow(s2, 2))) / common_div; double s3_g = (-2 * s1 * s2 * (pow(s1, 2) + pow(s2, 2) - 2 * pow(s3, 2))) / common_div; double closest_s = sqrt(pow(s1, 2) + pow(s3, 2)) / sqrt_2; double s1_min = closest_s; double s2_min = closest_s; double s3_min = closest_s; m_sing_new << sqrt(s1_g / (2 * (s1 - s1_min))), sqrt(s2_g / (2 * (s2 - s2_min))), sqrt( s3_g / (2 * (s3 - s3_min))); // change local step closest_sing_vec << s1_min, s2_min, s3_min; ri = ui * closest_sing_vec.asDiagonal() * vi.transpose(); break; } case igl::MappingEnergyType::EXP_CONFORMAL: { // E_conf = (s1^2 + s2^2 + s3^2)/(3*(s1*s2*s3)^(2/3) ) // dE_conf/ds1 = (-2*(s2*s3)*(s2^2+s3^2 -2*s1^2) ) / (9*(s1*s2*s3)^(5/3)) // Argmin E_conf(s1): s1 = sqrt(s1^2+s2^2)/sqrt(2) double common_div = 9 * (pow(s1 * s2 * s3, 5. / 3.)); double s1_g = (-2 * s2 * s3 * (pow(s2, 2) + pow(s3, 2) - 2 * pow(s1, 2))) / common_div; double s2_g = (-2 * s1 * s3 * (pow(s1, 2) + pow(s3, 2) - 2 * pow(s2, 2))) / common_div; double s3_g = (-2 * s1 * s2 * (pow(s1, 2) + pow(s2, 2) - 2 * pow(s3, 2))) / common_div; double in_exp = exp_f * ((pow(s1, 2) + pow(s2, 2) + pow(s3, 2)) / (3 * pow((s1 * s2 * s3), 2. / 3)));; double exp_thing = exp(in_exp); double closest_s = sqrt(pow(s1, 2) + pow(s3, 2)) / sqrt_2; double s1_min = closest_s; double s2_min = closest_s; double s3_min = closest_s; s1_g *= exp_thing * exp_f; s2_g *= exp_thing * exp_f; s3_g *= exp_thing * exp_f; m_sing_new << sqrt(s1_g / (2 * (s1 - s1_min))), sqrt(s2_g / (2 * (s2 - s2_min))), sqrt( s3_g / (2 * (s3 - s3_min))); // change local step closest_sing_vec << s1_min, s2_min, s3_min; ri = ui * closest_sing_vec.asDiagonal() * vi.transpose(); } } if (std::abs(s1 - 1) < eps) m_sing_new(0) = 1; if (std::abs(s2 - 1) < eps) m_sing_new(1) = 1; if (std::abs(s3 - 1) < eps) m_sing_new(2) = 1; RMat3 mat_W; mat_W = ui * m_sing_new.asDiagonal() * ui.transpose(); W.row(i) = Eigen::Map>(mat_W.data()); // 2) Update closest rotations (not rotations in case of conformal energy) Ri.row(i) = Eigen::Map>(ri.data()); } // for loop end } // if dim end } IGL_INLINE void igl::slim_buildA(const Eigen::SparseMatrix &Dx, const Eigen::SparseMatrix &Dy, const Eigen::SparseMatrix &Dz, const Eigen::MatrixXd &W, std::vector > & IJV) { const int dim = (W.cols() == 4) ? 2 : 3; const int f_n = W.rows(); const int v_n = Dx.cols(); // formula (35) in paper if (dim == 2) { IJV.reserve(4 * (Dx.outerSize() + Dy.outerSize())); /*A = [W11*Dx, W12*Dx; W11*Dy, W12*Dy; W21*Dx, W22*Dx; W21*Dy, W22*Dy];*/ for (int k = 0; k < Dx.outerSize(); ++k) { for (Eigen::SparseMatrix::InnerIterator it(Dx, k); it; ++it) { int dx_r = it.row(); int dx_c = it.col(); double val = it.value(); IJV.push_back(Eigen::Triplet(dx_r, dx_c, val * W(dx_r, 0))); IJV.push_back(Eigen::Triplet(dx_r, v_n + dx_c, val * W(dx_r, 1))); IJV.push_back(Eigen::Triplet(2 * f_n + dx_r, dx_c, val * W(dx_r, 2))); IJV.push_back(Eigen::Triplet(2 * f_n + dx_r, v_n + dx_c, val * W(dx_r, 3))); } } for (int k = 0; k < Dy.outerSize(); ++k) { for (Eigen::SparseMatrix::InnerIterator it(Dy, k); it; ++it) { int dy_r = it.row(); int dy_c = it.col(); double val = it.value(); IJV.push_back(Eigen::Triplet(f_n + dy_r, dy_c, val * W(dy_r, 0))); IJV.push_back(Eigen::Triplet(f_n + dy_r, v_n + dy_c, val * W(dy_r, 1))); IJV.push_back(Eigen::Triplet(3 * f_n + dy_r, dy_c, val * W(dy_r, 2))); IJV.push_back(Eigen::Triplet(3 * f_n + dy_r, v_n + dy_c, val * W(dy_r, 3))); } } } else { /*A = [W11*Dx, W12*Dx, W13*Dx; W11*Dy, W12*Dy, W13*Dy; W11*Dz, W12*Dz, W13*Dz; W21*Dx, W22*Dx, W23*Dx; W21*Dy, W22*Dy, W23*Dy; W21*Dz, W22*Dz, W23*Dz; W31*Dx, W32*Dx, W33*Dx; W31*Dy, W32*Dy, W33*Dy; W31*Dz, W32*Dz, W33*Dz;];*/ IJV.reserve(9 * (Dx.outerSize() + Dy.outerSize() + Dz.outerSize())); for (int k = 0; k < Dx.outerSize(); k++) { for (Eigen::SparseMatrix::InnerIterator it(Dx, k); it; ++it) { int dx_r = it.row(); int dx_c = it.col(); double val = it.value(); IJV.push_back(Eigen::Triplet(dx_r, dx_c, val * W(dx_r, 0))); IJV.push_back(Eigen::Triplet(dx_r, v_n + dx_c, val * W(dx_r, 1))); IJV.push_back(Eigen::Triplet(dx_r, 2 * v_n + dx_c, val * W(dx_r, 2))); IJV.push_back(Eigen::Triplet(3 * f_n + dx_r, dx_c, val * W(dx_r, 3))); IJV.push_back(Eigen::Triplet(3 * f_n + dx_r, v_n + dx_c, val * W(dx_r, 4))); IJV.push_back(Eigen::Triplet(3 * f_n + dx_r, 2 * v_n + dx_c, val * W(dx_r, 5))); IJV.push_back(Eigen::Triplet(6 * f_n + dx_r, dx_c, val * W(dx_r, 6))); IJV.push_back(Eigen::Triplet(6 * f_n + dx_r, v_n + dx_c, val * W(dx_r, 7))); IJV.push_back(Eigen::Triplet(6 * f_n + dx_r, 2 * v_n + dx_c, val * W(dx_r, 8))); } } for (int k = 0; k < Dy.outerSize(); k++) { for (Eigen::SparseMatrix::InnerIterator it(Dy, k); it; ++it) { int dy_r = it.row(); int dy_c = it.col(); double val = it.value(); IJV.push_back(Eigen::Triplet(f_n + dy_r, dy_c, val * W(dy_r, 0))); IJV.push_back(Eigen::Triplet(f_n + dy_r, v_n + dy_c, val * W(dy_r, 1))); IJV.push_back(Eigen::Triplet(f_n + dy_r, 2 * v_n + dy_c, val * W(dy_r, 2))); IJV.push_back(Eigen::Triplet(4 * f_n + dy_r, dy_c, val * W(dy_r, 3))); IJV.push_back(Eigen::Triplet(4 * f_n + dy_r, v_n + dy_c, val * W(dy_r, 4))); IJV.push_back(Eigen::Triplet(4 * f_n + dy_r, 2 * v_n + dy_c, val * W(dy_r, 5))); IJV.push_back(Eigen::Triplet(7 * f_n + dy_r, dy_c, val * W(dy_r, 6))); IJV.push_back(Eigen::Triplet(7 * f_n + dy_r, v_n + dy_c, val * W(dy_r, 7))); IJV.push_back(Eigen::Triplet(7 * f_n + dy_r, 2 * v_n + dy_c, val * W(dy_r, 8))); } } for (int k = 0; k < Dz.outerSize(); k++) { for (Eigen::SparseMatrix::InnerIterator it(Dz, k); it; ++it) { int dz_r = it.row(); int dz_c = it.col(); double val = it.value(); IJV.push_back(Eigen::Triplet(2 * f_n + dz_r, dz_c, val * W(dz_r, 0))); IJV.push_back(Eigen::Triplet(2 * f_n + dz_r, v_n + dz_c, val * W(dz_r, 1))); IJV.push_back(Eigen::Triplet(2 * f_n + dz_r, 2 * v_n + dz_c, val * W(dz_r, 2))); IJV.push_back(Eigen::Triplet(5 * f_n + dz_r, dz_c, val * W(dz_r, 3))); IJV.push_back(Eigen::Triplet(5 * f_n + dz_r, v_n + dz_c, val * W(dz_r, 4))); IJV.push_back(Eigen::Triplet(5 * f_n + dz_r, 2 * v_n + dz_c, val * W(dz_r, 5))); IJV.push_back(Eigen::Triplet(8 * f_n + dz_r, dz_c, val * W(dz_r, 6))); IJV.push_back(Eigen::Triplet(8 * f_n + dz_r, v_n + dz_c, val * W(dz_r, 7))); IJV.push_back(Eigen::Triplet(8 * f_n + dz_r, 2 * v_n + dz_c, val * W(dz_r, 8))); } } } } /// Slim Implementation IGL_INLINE void igl::slim_precompute( const Eigen::MatrixXd &V, const Eigen::MatrixXi &F, const Eigen::MatrixXd &V_init, igl::SLIMData &data, igl::MappingEnergyType slim_energy, Eigen::VectorXi &b, Eigen::MatrixXd &bc, double soft_p) { data.V = V; data.F = F; data.V_o = V_init; data.v_num = V.rows(); data.f_num = F.rows(); data.slim_energy = slim_energy; data.b = b; data.bc = bc; data.soft_const_p = soft_p; data.proximal_p = 0.0001; igl::doublearea(V, F, data.M); data.M /= 2.; data.mesh_area = data.M.sum(); data.mesh_improvement_3d = false; // whether to use a jacobian derived from a real mesh or an abstract regular mesh (used for mesh improvement) data.exp_factor = 1.0; // param used only for exponential energies (e.g exponential symmetric dirichlet) assert (F.cols() == 3 || F.cols() == 4); igl::slim::pre_calc(data); data.energy = igl::slim::compute_energy(data,data.V_o) / data.mesh_area; } IGL_INLINE Eigen::MatrixXd igl::slim_solve(igl::SLIMData &data, int iter_num) { for (int i = 0; i < iter_num; i++) { Eigen::MatrixXd dest_res; dest_res = data.V_o; // Solve Weighted Proxy igl::slim::update_weights_and_closest_rotations(data, dest_res); igl::slim::solve_weighted_arap(data,data.V, data.F, dest_res, data.b, data.bc); double old_energy = data.energy; std::function compute_energy = [&]( Eigen::MatrixXd &aaa) { return igl::slim::compute_energy(data,aaa); }; data.energy = igl::flip_avoiding_line_search(data.F, data.V_o, dest_res, compute_energy, data.energy * data.mesh_area) / data.mesh_area; } return data.V_o; } #ifdef IGL_STATIC_LIBRARY // Explicit template instantiation #endif