// Copyright (c) 1999 // Utrecht University (The Netherlands), // ETH Zurich (Switzerland), // INRIA Sophia-Antipolis (France), // Max-Planck-Institute Saarbruecken (Germany), // and Tel-Aviv University (Israel). All rights reserved. // // This file is part of CGAL (www.cgal.org); you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation; either version 3 of the License, // or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: LGPL-3.0+ // // // Author(s) : Andreas Fabri, Stefan Schirra #ifndef CGAL_TETRAHEDRON_3_H #define CGAL_TETRAHEDRON_3_H #include #include #include #include #include namespace CGAL { template class Tetrahedron_3 : public R_::Kernel_base::Tetrahedron_3 { typedef typename R_::Point_3 Point_3; typedef typename R_::Aff_transformation_3 Aff_transformation_3; typedef Tetrahedron_3 Self; CGAL_static_assertion((boost::is_same::value)); public: typedef Dimension_tag<3> Ambient_dimension; typedef Dimension_tag<3> Feature_dimension; typedef typename R_::Kernel_base::Tetrahedron_3 Rep; const Rep& rep() const { return *this; } Rep& rep() { return *this; } typedef R_ R; Tetrahedron_3() {} Tetrahedron_3(const Rep& t) : Rep(t) {} Tetrahedron_3(const Point_3& p, const Point_3& q, const Point_3& r, const Point_3& s) : Rep(typename R::Construct_tetrahedron_3()(Return_base_tag(), p, q, r, s)) {} Tetrahedron_3 transform(const Aff_transformation_3 &t) const { return Tetrahedron_3(t.transform(this->vertex(0)), t.transform(this->vertex(1)), t.transform(this->vertex(2)), t.transform(this->vertex(3))); } typename cpp11::result_of::type vertex(int i) const { return R().construct_vertex_3_object()(*this,i); } typename cpp11::result_of::type operator[](int i) const { return vertex(i); } bool is_degenerate() const { return R().is_degenerate_3_object()(*this); } Orientation orientation() const { return R().orientation_3_object()(*this); } Bounded_side bounded_side(const Point_3 &p) const { return R().bounded_side_3_object()(*this, p); } Oriented_side oriented_side(const Point_3 &p) const { return R().oriented_side_3_object()(*this, p); } bool has_on_positive_side(const Point_3 &p) const { return R().has_on_positive_side_3_object()(*this, p); } bool has_on_negative_side(const Point_3 &p) const { return R().has_on_negative_side_3_object()(*this, p); } bool has_on_boundary(const Point_3 &p) const { return R().has_on_boundary_3_object()(*this, p); } bool has_on_bounded_side(const Point_3 &p) const { return R().has_on_bounded_side_3_object()(*this, p); } bool has_on_unbounded_side(const Point_3 &p) const { return R().has_on_unbounded_side_3_object()(*this, p); } typename cpp11::result_of::type volume() const { return R().compute_volume_3_object()(*this); } Bbox_3 bbox() const { return R().construct_bbox_3_object()(*this); } }; template < class R > std::ostream & operator<<(std::ostream &os, const Tetrahedron_3 &t) { switch(get_mode(os)) { case IO::ASCII : return os << t[0] << ' ' << t[1] << ' ' << t[2] << ' ' << t[3]; case IO::BINARY : return os << t[0] << t[1] << t[2] << t[3]; default: os << "Tetrahedron_3(" << t[0] << ", " << t[1] << ", " << t[2]; os << ", " << t[3] << ")"; return os; } } template < class R > std::istream & operator>>(std::istream &is, Tetrahedron_3 &t) { typename R::Point_3 p, q, r, s; is >> p >> q >> r >> s; if (is) t = Tetrahedron_3(p, q, r, s); return is; } } //namespace CGAL #endif // CGAL_TETRAHEDRON_3_H