// Copyright (c) 1998-2004 // Utrecht University (The Netherlands), // ETH Zurich (Switzerland), // INRIA Sophia-Antipolis (France), // Max-Planck-Institute Saarbruecken (Germany), // and Tel-Aviv University (Israel). All rights reserved. // // This file is part of CGAL (www.cgal.org); you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation; either version 3 of the License, // or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: LGPL-3.0+ // // // Author(s) : Geert-Jan Giezeman, Andreas Fabri #ifndef CGAL_DISTANCE_3_2_H #define CGAL_DISTANCE_3_2_H #include #include #include #include #include #include #include #include #include namespace CGAL { namespace internal { template bool contains_vector(const typename K::Plane_3 &pl, const typename K::Vector_3 &vec, const K&) { typedef typename K::RT RT; return pl.a()*vec.hx() + pl.b()*vec.hy() + pl.c() * vec.hz() == RT(0); } template inline typename K::FT squared_distance( const typename K::Point_3 & pt, const typename K::Plane_3 & plane, const K& k) { typename K::Construct_vector_3 construct_vector; typedef typename K::Vector_3 Vector_3; Vector_3 diff = construct_vector(plane.point(), pt); return squared_distance_to_plane(plane.orthogonal_vector(), diff, k); } template inline typename K::FT squared_distance( const typename K::Plane_3 & plane, const typename K::Point_3 & pt, const K& k) { return squared_distance(pt, plane, k); } template typename K::FT squared_distance( const typename K::Line_3 &line, const typename K::Plane_3 &plane, const K& k) { typedef typename K::FT FT; if (contains_vector(plane, line.direction().vector(), k)) return squared_distance(plane, line.point(), k); return FT(0); } template inline typename K::FT squared_distance( const typename K::Plane_3 & p, const typename K::Line_3 & line, const K& k) { return squared_distance(line, p, k); } template typename K::FT squared_distance( const typename K::Ray_3 &ray, const typename K::Plane_3 &plane, const K& k) { typename K::Construct_vector_3 construct_vector; typedef typename K::Point_3 Point_3; typedef typename K::Vector_3 Vector_3; typedef typename K::RT RT; typedef typename K::FT FT; const Point_3 &start = ray.start(); const Point_3 &planepoint = plane.point(); Vector_3 start_min_pp = construct_vector(planepoint, start); Vector_3 end_min_pp = ray.direction().vector(); const Vector_3 &normal = plane.orthogonal_vector(); RT sdm_rs2pp = wdot(normal, start_min_pp, k); RT sdm_re2pp = wdot(normal, end_min_pp, k); switch (CGAL_NTS sign(sdm_rs2pp)) { case -1: if (sdm_re2pp > RT(0)) return FT(0); return squared_distance_to_plane(normal, start_min_pp, k); case 0: default: return FT(0); case 1: if (sdm_re2pp < RT(0)) return FT(0); return squared_distance_to_plane(normal, start_min_pp, k); } } template inline typename K::FT squared_distance( const typename K::Plane_3 & plane, const typename K::Ray_3 & ray, const K& k) { return squared_distance(ray, plane, k); } template typename K::FT squared_distance( const typename K::Segment_3 &seg, const typename K::Plane_3 &plane, const K& k) { typename K::Construct_vector_3 construct_vector; typedef typename K::Point_3 Point_3; typedef typename K::Vector_3 Vector_3; typedef typename K::RT RT; typedef typename K::FT FT; const Point_3 &start = seg.start(); const Point_3 &end = seg.end(); if (start == end) return squared_distance(start, plane, k); const Point_3 &planepoint = plane.point(); Vector_3 start_min_pp = construct_vector(planepoint, start); Vector_3 end_min_pp = construct_vector(planepoint, end); const Vector_3 &normal = plane.orthogonal_vector(); RT sdm_ss2pp = wdot(normal, start_min_pp, k); RT sdm_se2pp = wdot(normal, end_min_pp, k); switch (CGAL_NTS sign(sdm_ss2pp)) { case -1: if (sdm_se2pp >= RT(0)) return FT(0); if (sdm_ss2pp * end_min_pp.hw() >= sdm_se2pp * start_min_pp.hw()) return squared_distance_to_plane(normal, start_min_pp, k); else return squared_distance_to_plane(normal, end_min_pp, k); case 0: default: return FT(0); case 1: if (sdm_se2pp <= RT(0)) return FT(0); if (sdm_ss2pp * end_min_pp.hw() <= sdm_se2pp * start_min_pp.hw()) return squared_distance_to_plane(normal, start_min_pp, k); else return squared_distance_to_plane(normal, end_min_pp, k); } } template inline typename K::FT squared_distance( const typename K::Plane_3 & plane, const typename K::Segment_3 & seg, const K& k) { return squared_distance(seg, plane, k); } template inline bool on_left_of_triangle_edge(const typename K::Point_3 & pt, const typename K::Vector_3 & normal, const typename K::Point_3 & ep0, const typename K::Point_3 & ep1, const K& k) { // return true iff pt is on the negative side of the plane defined // by (ep0, ep1) and normal typename K::Construct_vector_3 vector; typename K::Vector_3 edge = vector(ep0, ep1); typename K::Vector_3 diff = vector(ep0, pt); typedef typename K::RT RT; const bool result = RT(wdot(wcross(edge, normal, k), diff, k)) <= RT(0); return result; } template inline typename K::FT squared_distance_to_triangle( const typename K::Point_3 & pt, const typename K::Point_3 & t0, const typename K::Point_3 & t1, const typename K::Point_3 & t2, const K& k) { typename K::Construct_vector_3 vector; typedef typename K::Vector_3 Vector_3; const Vector_3 e1 = vector(t0, t1); const Vector_3 oe3 = vector(t0, t2); const Vector_3 normal = wcross(e1, oe3, k); if(normal != NULL_VECTOR && on_left_of_triangle_edge(pt, normal, t0, t1, k) && on_left_of_triangle_edge(pt, normal, t1, t2, k) && on_left_of_triangle_edge(pt, normal, t2, t0, k)) { // the projection of pt is inside the triangle return squared_distance_to_plane(normal, vector(t0, pt), k); } else { // The case normal==NULL_VECTOR covers the case when the triangle // is colinear, or even more degenerate. In that case, we can // simply take also the distance to the three segments. typename K::FT d1 = squared_distance(pt, typename K::Segment_3(t2, t0), k); typename K::FT d2 = squared_distance(pt, typename K::Segment_3(t1, t2), k); typename K::FT d3 = squared_distance(pt, typename K::Segment_3(t0, t1), k); return (std::min)( (std::min)(d1, d2), d3); } } template inline typename K::FT squared_distance( const typename K::Point_3 & pt, const typename K::Triangle_3 & t, const K& k) { typename K::Construct_vertex_3 vertex; return squared_distance_to_triangle(pt, vertex(t, 0), vertex(t, 1), vertex(t, 2), k); } } // namespace internal template bool contains_vector(const Plane_3 &pl, const Vector_3 &vec) { return internal::contains_vector(pl,vec, K()); } template inline typename K::FT squared_distance( const Point_3 & pt, const Plane_3 & plane) { return internal::squared_distance(pt, plane, K()); } template inline typename K::FT squared_distance( const Plane_3 & plane, const Point_3 & pt) { return internal::squared_distance(pt, plane, K()); } template inline typename K::FT squared_distance( const Line_3 &line, const Plane_3 &plane) { return internal::squared_distance(line, plane, K()); } template inline typename K::FT squared_distance( const Plane_3 & p, const Line_3 & line) { return internal::squared_distance(line, p, K()); } template inline typename K::FT squared_distance( const Ray_3 &ray, const Plane_3 &plane) { return internal::squared_distance(ray, plane, K()); } template inline typename K::FT squared_distance( const Plane_3 & plane, const Ray_3 & ray) { return internal::squared_distance(ray, plane, K()); } template inline typename K::FT squared_distance( const Segment_3 &seg, const Plane_3 &plane) { return internal::squared_distance(seg, plane, K()); } template inline typename K::FT squared_distance( const Plane_3 & plane, const Segment_3 & seg) { return internal::squared_distance(seg, plane, K()); } template inline typename K::FT squared_distance(const Point_3 & pt, const Triangle_3 & t) { return internal::squared_distance(pt, t, K()); } template inline typename K::FT squared_distance(const Triangle_3 & t, const Point_3 & pt) { return internal::squared_distance(pt, t, K()); } } //namespace CGAL #endif