// This file is part of libigl, a simple c++ geometry processing library. // // Copyright (C) 2016 Michael Rabinovich // // This Source Code Form is subject to the terms of the Mozilla Public License // v. 2.0. If a copy of the MPL was not distributed with this file, You can // obtain one at http://mozilla.org/MPL/2.0/. #include "flip_avoiding_line_search.h" #include "line_search.h" #include "PI.h" #include #include namespace igl { namespace flip_avoiding { //--------------------------------------------------------------------------- // x - array of size 3 // In case 3 real roots: => x[0], x[1], x[2], return 3 // 2 real roots: x[0], x[1], return 2 // 1 real root : x[0], x[1] ± i*x[2], return 1 // http://math.ivanovo.ac.ru/dalgebra/Khashin/poly/index.html IGL_INLINE int SolveP3(std::vector& x,double a,double b,double c) { // solve cubic equation x^3 + a*x^2 + b*x + c using namespace std; double a2 = a*a; double q = (a2 - 3*b)/9; double r = (a*(2*a2-9*b) + 27*c)/54; double r2 = r*r; double q3 = q*q*q; double A,B; if(r2 1) t= 1; t=acos(t); a/=3; q=-2*sqrt(q); x[0]=q*cos(t/3)-a; x[1]=q*cos((t+(2*igl::PI))/3)-a; x[2]=q*cos((t-(2*igl::PI))/3)-a; return(3); } else { A =-pow(fabs(r)+sqrt(r2-q3),1./3); if( r<0 ) A=-A; B = A==0? 0 : q/A; a/=3; x[0] =(A+B)-a; x[1] =-0.5*(A+B)-a; x[2] = 0.5*sqrt(3.)*(A-B); if(fabs(x[2])<1e-14) { x[2]=x[1]; return(2); } return(1); } } IGL_INLINE double get_smallest_pos_quad_zero(double a,double b, double c) { using namespace std; double t1, t2; if(std::abs(a) > 1.0e-10) { double delta_in = pow(b, 2) - 4 * a * c; if(delta_in <= 0) { return INFINITY; } double delta = sqrt(delta_in); // delta >= 0 if(b >= 0) // avoid subtracting two similar numbers { double bd = - b - delta; t1 = 2 * c / bd; t2 = bd / (2 * a); } else { double bd = - b + delta; t1 = bd / (2 * a); t2 = (2 * c) / bd; } assert (std::isfinite(t1)); assert (std::isfinite(t2)); if(a < 0) std::swap(t1, t2); // make t1 > t2 // return the smaller positive root if it exists, otherwise return infinity if(t1 > 0) { return t2 > 0 ? t2 : t1; } else { return INFINITY; } } else { if(b == 0) return INFINITY; // just to avoid divide-by-zero t1 = -c / b; return t1 > 0 ? t1 : INFINITY; } } IGL_INLINE double get_min_pos_root_2D(const Eigen::MatrixXd& uv, const Eigen::MatrixXi& F, Eigen::MatrixXd& d, int f) { using namespace std; /* Finding the smallest timestep t s.t a triangle get degenerated (<=> det = 0) The following code can be derived by a symbolic expression in matlab: Symbolic matlab: U11 = sym('U11'); U12 = sym('U12'); U21 = sym('U21'); U22 = sym('U22'); U31 = sym('U31'); U32 = sym('U32'); V11 = sym('V11'); V12 = sym('V12'); V21 = sym('V21'); V22 = sym('V22'); V31 = sym('V31'); V32 = sym('V32'); t = sym('t'); U1 = [U11,U12]; U2 = [U21,U22]; U3 = [U31,U32]; V1 = [V11,V12]; V2 = [V21,V22]; V3 = [V31,V32]; A = [(U2+V2*t) - (U1+ V1*t)]; B = [(U3+V3*t) - (U1+ V1*t)]; C = [A;B]; solve(det(C), t); cf = coeffs(det(C),t); % Now cf(1),cf(2),cf(3) holds the coefficients for the polynom. at order c,b,a */ int v1 = F(f,0); int v2 = F(f,1); int v3 = F(f,2); // get quadratic coefficients (ax^2 + b^x + c) const double& U11 = uv(v1,0); const double& U12 = uv(v1,1); const double& U21 = uv(v2,0); const double& U22 = uv(v2,1); const double& U31 = uv(v3,0); const double& U32 = uv(v3,1); const double& V11 = d(v1,0); const double& V12 = d(v1,1); const double& V21 = d(v2,0); const double& V22 = d(v2,1); const double& V31 = d(v3,0); const double& V32 = d(v3,1); double a = V11*V22 - V12*V21 - V11*V32 + V12*V31 + V21*V32 - V22*V31; double b = U11*V22 - U12*V21 - U21*V12 + U22*V11 - U11*V32 + U12*V31 + U31*V12 - U32*V11 + U21*V32 - U22*V31 - U31*V22 + U32*V21; double c = U11*U22 - U12*U21 - U11*U32 + U12*U31 + U21*U32 - U22*U31; return get_smallest_pos_quad_zero(a,b,c); } IGL_INLINE double get_min_pos_root_3D(const Eigen::MatrixXd& uv, const Eigen::MatrixXi& F, Eigen::MatrixXd& direc, int f) { using namespace std; /* Searching for the roots of: +-1/6 * |ax ay az 1| |bx by bz 1| |cx cy cz 1| |dx dy dz 1| Every point ax,ay,az has a search direction a_dx,a_dy,a_dz, and so we add those to the matrix, and solve the cubic to find the step size t for a 0 volume Symbolic matlab: syms a_x a_y a_z a_dx a_dy a_dz % tetrahedera point and search direction syms b_x b_y b_z b_dx b_dy b_dz syms c_x c_y c_z c_dx c_dy c_dz syms d_x d_y d_z d_dx d_dy d_dz syms t % Timestep var, this is what we're looking for a_plus_t = [a_x,a_y,a_z] + t*[a_dx,a_dy,a_dz]; b_plus_t = [b_x,b_y,b_z] + t*[b_dx,b_dy,b_dz]; c_plus_t = [c_x,c_y,c_z] + t*[c_dx,c_dy,c_dz]; d_plus_t = [d_x,d_y,d_z] + t*[d_dx,d_dy,d_dz]; vol_mat = [a_plus_t,1;b_plus_t,1;c_plus_t,1;d_plus_t,1] //cf = coeffs(det(vol_det),t); % Now cf(1),cf(2),cf(3),cf(4) holds the coefficients for the polynom [coefficients,terms] = coeffs(det(vol_det),t); % terms = [ t^3, t^2, t, 1], Coefficients hold the coeff we seek */ int v1 = F(f,0); int v2 = F(f,1); int v3 = F(f,2); int v4 = F(f,3); const double& a_x = uv(v1,0); const double& a_y = uv(v1,1); const double& a_z = uv(v1,2); const double& b_x = uv(v2,0); const double& b_y = uv(v2,1); const double& b_z = uv(v2,2); const double& c_x = uv(v3,0); const double& c_y = uv(v3,1); const double& c_z = uv(v3,2); const double& d_x = uv(v4,0); const double& d_y = uv(v4,1); const double& d_z = uv(v4,2); const double& a_dx = direc(v1,0); const double& a_dy = direc(v1,1); const double& a_dz = direc(v1,2); const double& b_dx = direc(v2,0); const double& b_dy = direc(v2,1); const double& b_dz = direc(v2,2); const double& c_dx = direc(v3,0); const double& c_dy = direc(v3,1); const double& c_dz = direc(v3,2); const double& d_dx = direc(v4,0); const double& d_dy = direc(v4,1); const double& d_dz = direc(v4,2); // Find solution for: a*t^3 + b*t^2 + c*d +d = 0 double a = a_dx*b_dy*c_dz - a_dx*b_dz*c_dy - a_dy*b_dx*c_dz + a_dy*b_dz*c_dx + a_dz*b_dx*c_dy - a_dz*b_dy*c_dx - a_dx*b_dy*d_dz + a_dx*b_dz*d_dy + a_dy*b_dx*d_dz - a_dy*b_dz*d_dx - a_dz*b_dx*d_dy + a_dz*b_dy*d_dx + a_dx*c_dy*d_dz - a_dx*c_dz*d_dy - a_dy*c_dx*d_dz + a_dy*c_dz*d_dx + a_dz*c_dx*d_dy - a_dz*c_dy*d_dx - b_dx*c_dy*d_dz + b_dx*c_dz*d_dy + b_dy*c_dx*d_dz - b_dy*c_dz*d_dx - b_dz*c_dx*d_dy + b_dz*c_dy*d_dx; double b = a_dy*b_dz*c_x - a_dy*b_x*c_dz - a_dz*b_dy*c_x + a_dz*b_x*c_dy + a_x*b_dy*c_dz - a_x*b_dz*c_dy - a_dx*b_dz*c_y + a_dx*b_y*c_dz + a_dz*b_dx*c_y - a_dz*b_y*c_dx - a_y*b_dx*c_dz + a_y*b_dz*c_dx + a_dx*b_dy*c_z - a_dx*b_z*c_dy - a_dy*b_dx*c_z + a_dy*b_z*c_dx + a_z*b_dx*c_dy - a_z*b_dy*c_dx - a_dy*b_dz*d_x + a_dy*b_x*d_dz + a_dz*b_dy*d_x - a_dz*b_x*d_dy - a_x*b_dy*d_dz + a_x*b_dz*d_dy + a_dx*b_dz*d_y - a_dx*b_y*d_dz - a_dz*b_dx*d_y + a_dz*b_y*d_dx + a_y*b_dx*d_dz - a_y*b_dz*d_dx - a_dx*b_dy*d_z + a_dx*b_z*d_dy + a_dy*b_dx*d_z - a_dy*b_z*d_dx - a_z*b_dx*d_dy + a_z*b_dy*d_dx + a_dy*c_dz*d_x - a_dy*c_x*d_dz - a_dz*c_dy*d_x + a_dz*c_x*d_dy + a_x*c_dy*d_dz - a_x*c_dz*d_dy - a_dx*c_dz*d_y + a_dx*c_y*d_dz + a_dz*c_dx*d_y - a_dz*c_y*d_dx - a_y*c_dx*d_dz + a_y*c_dz*d_dx + a_dx*c_dy*d_z - a_dx*c_z*d_dy - a_dy*c_dx*d_z + a_dy*c_z*d_dx + a_z*c_dx*d_dy - a_z*c_dy*d_dx - b_dy*c_dz*d_x + b_dy*c_x*d_dz + b_dz*c_dy*d_x - b_dz*c_x*d_dy - b_x*c_dy*d_dz + b_x*c_dz*d_dy + b_dx*c_dz*d_y - b_dx*c_y*d_dz - b_dz*c_dx*d_y + b_dz*c_y*d_dx + b_y*c_dx*d_dz - b_y*c_dz*d_dx - b_dx*c_dy*d_z + b_dx*c_z*d_dy + b_dy*c_dx*d_z - b_dy*c_z*d_dx - b_z*c_dx*d_dy + b_z*c_dy*d_dx; double c = a_dz*b_x*c_y - a_dz*b_y*c_x - a_x*b_dz*c_y + a_x*b_y*c_dz + a_y*b_dz*c_x - a_y*b_x*c_dz - a_dy*b_x*c_z + a_dy*b_z*c_x + a_x*b_dy*c_z - a_x*b_z*c_dy - a_z*b_dy*c_x + a_z*b_x*c_dy + a_dx*b_y*c_z - a_dx*b_z*c_y - a_y*b_dx*c_z + a_y*b_z*c_dx + a_z*b_dx*c_y - a_z*b_y*c_dx - a_dz*b_x*d_y + a_dz*b_y*d_x + a_x*b_dz*d_y - a_x*b_y*d_dz - a_y*b_dz*d_x + a_y*b_x*d_dz + a_dy*b_x*d_z - a_dy*b_z*d_x - a_x*b_dy*d_z + a_x*b_z*d_dy + a_z*b_dy*d_x - a_z*b_x*d_dy - a_dx*b_y*d_z + a_dx*b_z*d_y + a_y*b_dx*d_z - a_y*b_z*d_dx - a_z*b_dx*d_y + a_z*b_y*d_dx + a_dz*c_x*d_y - a_dz*c_y*d_x - a_x*c_dz*d_y + a_x*c_y*d_dz + a_y*c_dz*d_x - a_y*c_x*d_dz - a_dy*c_x*d_z + a_dy*c_z*d_x + a_x*c_dy*d_z - a_x*c_z*d_dy - a_z*c_dy*d_x + a_z*c_x*d_dy + a_dx*c_y*d_z - a_dx*c_z*d_y - a_y*c_dx*d_z + a_y*c_z*d_dx + a_z*c_dx*d_y - a_z*c_y*d_dx - b_dz*c_x*d_y + b_dz*c_y*d_x + b_x*c_dz*d_y - b_x*c_y*d_dz - b_y*c_dz*d_x + b_y*c_x*d_dz + b_dy*c_x*d_z - b_dy*c_z*d_x - b_x*c_dy*d_z + b_x*c_z*d_dy + b_z*c_dy*d_x - b_z*c_x*d_dy - b_dx*c_y*d_z + b_dx*c_z*d_y + b_y*c_dx*d_z - b_y*c_z*d_dx - b_z*c_dx*d_y + b_z*c_y*d_dx; double d = a_x*b_y*c_z - a_x*b_z*c_y - a_y*b_x*c_z + a_y*b_z*c_x + a_z*b_x*c_y - a_z*b_y*c_x - a_x*b_y*d_z + a_x*b_z*d_y + a_y*b_x*d_z - a_y*b_z*d_x - a_z*b_x*d_y + a_z*b_y*d_x + a_x*c_y*d_z - a_x*c_z*d_y - a_y*c_x*d_z + a_y*c_z*d_x + a_z*c_x*d_y - a_z*c_y*d_x - b_x*c_y*d_z + b_x*c_z*d_y + b_y*c_x*d_z - b_y*c_z*d_x - b_z*c_x*d_y + b_z*c_y*d_x; if (std::abs(a)<=1.e-10) { return get_smallest_pos_quad_zero(b,c,d); } b/=a; c/=a; d/=a; // normalize it all std::vector res(3); int real_roots_num = SolveP3(res,b,c,d); switch (real_roots_num) { case 1: return (res[0] >= 0) ? res[0]:INFINITY; case 2: { double max_root = std::max(res[0],res[1]); double min_root = std::min(res[0],res[1]); if (min_root > 0) return min_root; if (max_root > 0) return max_root; return INFINITY; } case 3: default: { std::sort(res.begin(),res.end()); if (res[0] > 0) return res[0]; if (res[1] > 0) return res[1]; if (res[2] > 0) return res[2]; return INFINITY; } } } IGL_INLINE double compute_max_step_from_singularities(const Eigen::MatrixXd& uv, const Eigen::MatrixXi& F, Eigen::MatrixXd& d) { using namespace std; double max_step = INFINITY; // The if statement is outside the for loops to avoid branching/ease parallelizing if (uv.cols() == 2) { for (int f = 0; f < F.rows(); f++) { double min_positive_root = get_min_pos_root_2D(uv,F,d,f); max_step = std::min(max_step, min_positive_root); } } else { // volumetric deformation for (int f = 0; f < F.rows(); f++) { double min_positive_root = get_min_pos_root_3D(uv,F,d,f); max_step = std::min(max_step, min_positive_root); } } return max_step; } } } IGL_INLINE double igl::flip_avoiding_line_search( const Eigen::MatrixXi F, Eigen::MatrixXd& cur_v, Eigen::MatrixXd& dst_v, std::function energy, double cur_energy) { using namespace std; Eigen::MatrixXd d = dst_v - cur_v; double min_step_to_singularity = igl::flip_avoiding::compute_max_step_from_singularities(cur_v,F,d); double max_step_size = std::min(1., min_step_to_singularity*0.8); return igl::line_search(cur_v,d,max_step_size, energy, cur_energy); } #ifdef IGL_STATIC_LIBRARY #endif