// This file is part of libigl, a simple c++ geometry processing library. // // Copyright (C) 2013 Alec Jacobson // // This Source Code Form is subject to the terms of the Mozilla Public License // v. 2.0. If a copy of the MPL was not distributed with this file, You can // obtain one at http://mozilla.org/MPL/2.0/. #ifndef IGL_HARMONIC_H #define IGL_HARMONIC_H #include "igl_inline.h" #include #include namespace igl { // Compute k-harmonic weight functions "coordinates". // // // Inputs: // V #V by dim vertex positions // F #F by simplex-size list of element indices // b #b boundary indices into V // bc #b by #W list of boundary values // k power of harmonic operation (1: harmonic, 2: biharmonic, etc) // Outputs: // W #V by #W list of weights // template < typename DerivedV, typename DerivedF, typename Derivedb, typename Derivedbc, typename DerivedW> IGL_INLINE bool harmonic( const Eigen::MatrixBase & V, const Eigen::MatrixBase & F, const Eigen::MatrixBase & b, const Eigen::MatrixBase & bc, const int k, Eigen::PlainObjectBase & W); // Compute harmonic map using uniform laplacian operator // // Inputs: // F #F by simplex-size list of element indices // b #b boundary indices into V // bc #b by #W list of boundary values // k power of harmonic operation (1: harmonic, 2: biharmonic, etc) // Outputs: // W #V by #W list of weights // template < typename DerivedF, typename Derivedb, typename Derivedbc, typename DerivedW> IGL_INLINE bool harmonic( const Eigen::MatrixBase & F, const Eigen::MatrixBase & b, const Eigen::MatrixBase & bc, const int k, Eigen::PlainObjectBase & W); // Compute a harmonic map using a given Laplacian and mass matrix // // Inputs: // L #V by #V discrete (integrated) Laplacian // M #V by #V mass matrix // b #b boundary indices into V // bc #b by #W list of boundary values // k power of harmonic operation (1: harmonic, 2: biharmonic, etc) // Outputs: // W #V by #V list of weights template < typename DerivedL, typename DerivedM, typename Derivedb, typename Derivedbc, typename DerivedW> IGL_INLINE bool harmonic( const Eigen::SparseMatrix & L, const Eigen::SparseMatrix & M, const Eigen::MatrixBase & b, const Eigen::MatrixBase & bc, const int k, Eigen::PlainObjectBase & W); // Build the discrete k-harmonic operator (computing integrated quantities). // That is, if the k-harmonic PDE is Q x = 0, then this minimizes x' Q x // // Inputs: // L #V by #V discrete (integrated) Laplacian // M #V by #V mass matrix // k power of harmonic operation (1: harmonic, 2: biharmonic, etc) // Outputs: // Q #V by #V discrete (integrated) k-Laplacian template < typename DerivedL, typename DerivedM, typename DerivedQ> IGL_INLINE void harmonic( const Eigen::SparseMatrix & L, const Eigen::SparseMatrix & M, const int k, Eigen::SparseMatrix & Q); // Inputs: // V #V by dim vertex positions // F #F by simplex-size list of element indices // k power of harmonic operation (1: harmonic, 2: biharmonic, etc) // Outputs: // Q #V by #V discrete (integrated) k-Laplacian template < typename DerivedV, typename DerivedF, typename DerivedQ> IGL_INLINE void harmonic( const Eigen::MatrixBase & V, const Eigen::MatrixBase & F, const int k, Eigen::SparseMatrix & Q); }; #ifndef IGL_STATIC_LIBRARY #include "harmonic.cpp" #endif #endif