// Copyright (c) 2000 // Utrecht University (The Netherlands), // ETH Zurich (Switzerland), // INRIA Sophia-Antipolis (France), // Max-Planck-Institute Saarbruecken (Germany), // and Tel-Aviv University (Israel). All rights reserved. // // This file is part of CGAL (www.cgal.org) // // $URL: https://github.com/CGAL/cgal/blob/v5.1/Cartesian_kernel/include/CGAL/Cartesian/Tetrahedron_3.h $ // $Id: Tetrahedron_3.h 0779373 2020-03-26T13:31:46+01:00 Sébastien Loriot // SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial // // // Author(s) : Andreas Fabri #ifndef CGAL_CARTESIAN_TETRAHEDRON_3_H #define CGAL_CARTESIAN_TETRAHEDRON_3_H #include #include #include #include #include namespace CGAL { template class TetrahedronC3 { typedef typename R_::FT FT; typedef typename R_::Point_3 Point_3; typedef typename R_::Plane_3 Plane_3; typedef typename R_::Tetrahedron_3 Tetrahedron_3; typedef std::array Rep; typedef typename R_::template Handle::type Base; Base base; public: typedef R_ R; TetrahedronC3() {} TetrahedronC3(const Point_3 &p, const Point_3 &q, const Point_3 &r, const Point_3 &s) : base(CGAL::make_array(p, q, r, s)) {} const Point_3 & vertex(int i) const; const Point_3 & operator[](int i) const; typename R::Boolean operator==(const TetrahedronC3 &t) const; typename R::Boolean operator!=(const TetrahedronC3 &t) const; typename R::Orientation orientation() const; typename R::Oriented_side oriented_side(const Point_3 &p) const; typename R::Bounded_side bounded_side(const Point_3 &p) const; typename R::Boolean has_on_boundary(const Point_3 &p) const; typename R::Boolean has_on_positive_side(const Point_3 &p) const; typename R::Boolean has_on_negative_side(const Point_3 &p) const; typename R::Boolean has_on_bounded_side(const Point_3 &p) const; typename R::Boolean has_on_unbounded_side(const Point_3 &p) const; typename R::Boolean is_degenerate() const; }; template < class R > typename R::Boolean TetrahedronC3:: operator==(const TetrahedronC3 &t) const { if (CGAL::identical(base, t.base)) return true; if (orientation() != t.orientation()) return false; std::vector< Point_3 > V1; std::vector< Point_3 > V2; typename std::vector< Point_3 >::iterator uniq_end1; typename std::vector< Point_3 >::iterator uniq_end2; int k; for ( k=0; k < 4; k++) V1.push_back( vertex(k)); for ( k=0; k < 4; k++) V2.push_back( t.vertex(k)); typename R::Less_xyz_3 Less_object = R().less_xyz_3_object(); std::sort(V1.begin(), V1.end(), Less_object); std::sort(V2.begin(), V2.end(), Less_object); uniq_end1 = std::unique( V1.begin(), V1.end()); uniq_end2 = std::unique( V2.begin(), V2.end()); V1.erase( uniq_end1, V1.end()); V2.erase( uniq_end2, V2.end()); return V1 == V2; } template < class R > inline typename R::Boolean TetrahedronC3:: operator!=(const TetrahedronC3 &t) const { return !(*this == t); } template < class R > const typename TetrahedronC3::Point_3 & TetrahedronC3:: vertex(int i) const { if (i<0) i=(i%4)+4; else if (i>3) i=i%4; switch (i) { case 0: return get_pointee_or_identity(base)[0]; case 1: return get_pointee_or_identity(base)[1]; case 2: return get_pointee_or_identity(base)[2]; default: return get_pointee_or_identity(base)[3]; } } template < class R > inline const typename TetrahedronC3::Point_3 & TetrahedronC3:: operator[](int i) const { return vertex(i); } template < class R > typename R::Orientation TetrahedronC3:: orientation() const { return R().orientation_3_object()(vertex(0), vertex(1), vertex(2), vertex(3)); } template < class R > typename R::Oriented_side TetrahedronC3:: oriented_side(const typename TetrahedronC3::Point_3 &p) const { typename R::Orientation o = orientation(); if (o != ZERO) return enum_cast(bounded_side(p)) * o; CGAL_kernel_assertion (!is_degenerate()); return ON_ORIENTED_BOUNDARY; } template < class R > typename R::Bounded_side TetrahedronC3:: bounded_side(const typename TetrahedronC3::Point_3 &p) const { return R().bounded_side_3_object() (static_cast(*this), p); } template < class R > inline typename R::Boolean TetrahedronC3::has_on_boundary (const typename TetrahedronC3::Point_3 &p) const { return oriented_side(p) == ON_ORIENTED_BOUNDARY; } template < class R > inline typename R::Boolean TetrahedronC3::has_on_positive_side (const typename TetrahedronC3::Point_3 &p) const { return oriented_side(p) == ON_POSITIVE_SIDE; } template < class R > inline typename R::Boolean TetrahedronC3::has_on_negative_side (const typename TetrahedronC3::Point_3 &p) const { return oriented_side(p) == ON_NEGATIVE_SIDE; } template < class R > inline typename R::Boolean TetrahedronC3::has_on_bounded_side (const typename TetrahedronC3::Point_3 &p) const { return bounded_side(p) == ON_BOUNDED_SIDE; } template < class R > inline typename R::Boolean TetrahedronC3::has_on_unbounded_side (const typename TetrahedronC3::Point_3 &p) const { return bounded_side(p) == ON_UNBOUNDED_SIDE; } template < class R > inline typename R::Boolean TetrahedronC3::is_degenerate() const { return orientation() == COPLANAR; } } //namespace CGAL #endif // CGAL_CARTESIAN_TETRAHEDRON_3_H