// Copyright (c) 2013 INRIA Sophia-Antipolis (France). // Copyright (c) 2016 GeometryFactory Sarl (France). // All rights reserved. // // This file is part of CGAL (www.cgal.org). // // $URL: https://github.com/CGAL/cgal/blob/v5.1/Point_set_processing_3/include/CGAL/estimate_scale.h $ // $Id: estimate_scale.h c253679 2020-04-18T16:27:58+02:00 Sébastien Loriot // SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial // // Author(s) : Simon Giraudot #ifndef CGAL_ESTIMATE_SCALE_H #define CGAL_ESTIMATE_SCALE_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace CGAL { // ---------------------------------------------------------------------------- // Private section // ---------------------------------------------------------------------------- /// \cond SKIP_IN_MANUAL namespace internal { template class Quick_multiscale_approximate_knn_distance { }; template class Quick_multiscale_approximate_knn_distance { typedef typename Kernel::FT FT; typedef Search_traits_3 Tree_traits; typedef Orthogonal_k_neighbor_search Neighbor_search; typedef typename Neighbor_search::Tree Tree; typedef typename Neighbor_search::iterator Iterator; template struct Pmap_unary_function : public CGAL::cpp98::unary_function { PointMap point_map; Pmap_unary_function (PointMap point_map) : point_map (point_map) { } typename boost::property_traits::reference operator() (const ValueType& v) const { return get(point_map, v); } }; std::size_t m_cluster_size; std::vector m_trees; std::vector m_weights; std::vector m_precomputed_factor; public: template Quick_multiscale_approximate_knn_distance (InputIterator first, InputIterator beyond, PointMap point_map, std::size_t cluster_size = 25) : m_cluster_size (cluster_size) { typedef Pmap_unary_function::value_type, PointMap> Unary_f; // Avoid moving points of input as the range is const std::vector kd_tree_points; std::copy (boost::make_transform_iterator (first, Unary_f(point_map)), boost::make_transform_iterator (beyond, Unary_f(point_map)), std::back_inserter (kd_tree_points)); m_trees.push_back (new Tree (kd_tree_points.begin(), kd_tree_points.end())); m_weights.push_back (1.); std::size_t nb_pts = m_trees[0]->size(); std::size_t nb_trees = 0; while (nb_pts > m_cluster_size) { nb_trees ++; nb_pts /= m_cluster_size; } m_trees.reserve (nb_trees); m_weights.reserve (nb_trees); typename std::vector::iterator first_unused = kd_tree_points.end(); nb_pts = m_trees[0]->size(); for (std::size_t i = 1; i < nb_trees; ++ i) { CGAL::Iterator_range::iterator> points (kd_tree_points.begin(), first_unused); first_unused = CGAL::hierarchy_simplify_point_set (points, CGAL::parameters::size(static_cast(m_cluster_size)). maximum_variation(1./3.)); m_trees.push_back (new Tree(kd_tree_points.begin(), first_unused)); m_weights.push_back (m_trees[0]->size() / (FT)(m_trees.back()->size())); } } ~Quick_multiscale_approximate_knn_distance() { for (std::size_t i = 0; i < m_trees.size(); ++ i) delete m_trees[i]; } template std::size_t compute_k_scale (InputIterator query, PointMap point_map) { std::size_t out; FT dummy; compute_scale (query, point_map, out, dummy); return out; } template FT compute_range_scale (InputIterator query, PointMap point_map) { std::size_t dummy; FT out; compute_scale (query, point_map, dummy, out); return out; } void precompute_factors () { FT nb = 0.; for (std::size_t t = 0; t < m_trees.size(); ++ t) { std::size_t size = (t == (m_trees.size() - 1) ? m_trees[t]->size() : static_cast(m_weights[t+1] / m_weights[t])); for (std::size_t i = (t == 0 ? 0 : 1); i < size; ++ i) { nb += m_weights[t]; if (nb < 6.) // do not consider values under 6 continue; m_precomputed_factor.push_back (0.91666666 * std::log (nb)); } } } template void compute_scale (InputIterator query, PointMap point_map, std::size_t& k, FT& d) { if (m_precomputed_factor.empty()) precompute_factors(); k = 0; d = 0.; FT dist_min = (std::numeric_limits::max)(); FT sum_sq_distances = 0.; FT nb = 0.; std::size_t index = 0; for (std::size_t t = 0; t < m_trees.size(); ++ t) { Neighbor_search search (*(m_trees[t]), get(point_map, *query), static_cast((t == (m_trees.size() - 1) ? m_trees[t]->size() : m_weights[t+1] / m_weights[t]))); Iterator it = search.begin(); if (t != 0) // Skip first point except on first scale ++ it; for (; it != search.end(); ++ it) { sum_sq_distances += m_weights[t] * it->second; nb += m_weights[t]; if (nb < 6.) // do not consider values under 6 continue; // sqrt(sum_sq_distances / nb) / nb^(5/12) // Computed in log space with precomputed factor for time optimization FT dist = 0.5 * std::log (sum_sq_distances) - m_precomputed_factor[index ++]; if (dist < dist_min) { dist_min = dist; k = (std::size_t)nb; d = it->second; } } } } }; template class Quick_multiscale_approximate_knn_distance { typedef typename Kernel::FT FT; typedef CGAL::Point_set_2 Point_set; typedef typename Point_set::Vertex_handle Vertex_handle; template struct Pmap_unary_function : public CGAL::cpp98::unary_function { PointMap point_map; Pmap_unary_function (PointMap point_map) : point_map (point_map) { } typename boost::property_traits::reference operator() (const ValueType& v) const { return get(point_map, v); } }; template struct Pmap_to_3d { PointMap point_map; typedef typename Kernel::Point_3 value_type; typedef const value_type& reference; typedef typename Kernel::Point_2 key_type; typedef boost::lvalue_property_map_tag category; Pmap_to_3d () { } Pmap_to_3d (PointMap point_map) : point_map (point_map) { } friend inline value_type get (const Pmap_to_3d& pmap, key_type p) { typename boost::property_traits::reference p2 = get(pmap.point_map, p); return value_type (p2.x(), p2.y(), 0.); } }; struct Sort_by_distance_to_point { const typename Kernel::Point_2& ref; Sort_by_distance_to_point (const typename Kernel::Point_2& ref) : ref (ref) { } bool operator() (const Vertex_handle& a, const Vertex_handle& b) { return (CGAL::squared_distance (a->point(), ref) < CGAL::squared_distance (b->point(), ref)); } }; std::size_t m_cluster_size; std::vector m_point_sets; std::vector m_weights; std::vector m_precomputed_factor; public: template Quick_multiscale_approximate_knn_distance (InputIterator first, InputIterator beyond, PointMap point_map, std::size_t cluster_size = 25) : m_cluster_size (cluster_size) { typedef Pmap_unary_function::value_type, PointMap> Unary_f; // Avoid moving points of input as the range is const std::vector search_points; std::copy (boost::make_transform_iterator (first, Unary_f(point_map)), boost::make_transform_iterator (beyond, Unary_f(point_map)), std::back_inserter (search_points)); m_point_sets.push_back (new Point_set (search_points.begin(), search_points.end())); m_weights.push_back (1.); std::size_t nb_pts = m_point_sets[0]->number_of_vertices(); std::size_t nb_trees = 0; while (nb_pts > m_cluster_size) { nb_trees ++; nb_pts /= m_cluster_size; } m_point_sets.reserve (nb_trees); m_weights.reserve (nb_trees); typename std::vector::iterator first_unused = search_points.end(); nb_pts = m_point_sets[0]->number_of_vertices(); for (std::size_t i = 1; i < nb_trees; ++ i) { CGAL::Iterator_range::iterator> points (search_points.begin(), first_unused); first_unused = CGAL::hierarchy_simplify_point_set (points, CGAL::parameters::point_map(Pmap_to_3d(point_map)). size(static_cast(m_cluster_size)). maximum_variation(1./3.)); m_point_sets.push_back (new Point_set (search_points.begin(), first_unused)); m_weights.push_back (nb_pts / (FT)(m_point_sets.back()->number_of_vertices())); } m_cluster_size = cluster_size; } ~Quick_multiscale_approximate_knn_distance() { for (std::size_t i = 0; i < m_point_sets.size(); ++ i) delete m_point_sets[i]; } template std::size_t compute_k_scale (InputIterator query, PointMap point_map) { std::size_t out; FT dummy; compute_scale (query, point_map, out, dummy); return out; } template FT compute_range_scale (InputIterator query, PointMap point_map) { std::size_t dummy; FT out; compute_scale (query, point_map, dummy, out); return out; } void precompute_factors () { FT nb = 0.; for (std::size_t t = 0; t < m_point_sets.size(); ++ t) { std::size_t size = (t == m_point_sets.size() - 1 ? m_point_sets[t]->number_of_vertices() : static_cast(m_weights[t+1] / m_weights[t])); for (std::size_t i = (t == 0 ? 0 : 1); i < size; ++ i) { nb += m_weights[t]; if (nb < 6.) // do not consider values under 6 continue; m_precomputed_factor.push_back (1.25 * std::log (nb)); } } } template void compute_scale (InputIterator query, PointMap point_map, std::size_t& k, FT& d) { if (m_precomputed_factor.empty()) precompute_factors(); k = 0; d = 0.; FT dist_min = (std::numeric_limits::max)(); FT sum_sq_distances = 0.; FT nb = 0.; std::size_t index = 0; typename boost::property_traits::reference pquery = get(point_map, *query); for (std::size_t t = 0; t < m_point_sets.size(); ++ t) { std::size_t size = ((t == m_point_sets.size() - 1) ? m_point_sets[t]->number_of_vertices() : static_cast(m_weights[t+1] / m_weights[t])); std::vector neighbors; neighbors.reserve (size); m_point_sets[t]->nearest_neighbors (pquery, size, std::back_inserter (neighbors)); std::sort (neighbors.begin(), neighbors.end(), Sort_by_distance_to_point (pquery)); for (std::size_t n = (t == 0 ? 0 : 1); n < neighbors.size(); ++ n) { FT sq_dist = CGAL::squared_distance (pquery, neighbors[n]->point()); sum_sq_distances += m_weights[t] * sq_dist; nb += m_weights[t]; if (nb < 6.) // do not consider values under 6 continue; // sqrt(sum_sq_distances / nb) / nb^(3/4) // Computed in log space with precomputed factor for time optimization FT dist = 0.5 * std::log (sum_sq_distances) - m_precomputed_factor[index ++]; if (dist < dist_min) { dist_min = dist; k = (std::size_t)nb; d = sq_dist; } } } } }; } /* namespace internal */ /// \endcond // ---------------------------------------------------------------------------- // Public section // ---------------------------------------------------------------------------- /** \ingroup PkgPointSetProcessing3Algorithms Estimates the local scale in a K nearest neighbors sense on a set of user-defined query points. The computed scales correspond to the smallest scales such that the K subsets of points have the appearance of a surface in 3D or the appearance of a curve in 2D (see \ref Point_set_processing_3Scale). \tparam PointRange is a model of `ConstRange`. The value type of its iterator is the key type of the named parameter `point_map`. \tparam QueryPointRange is a model of `ConstRange`. The value type of its iterator is the key type of the named parameter `query_point_map`. \tparam OutputIterator is used to store the computed scales. It accepts values of type `std::size_t`. \param points input point range. \param queries range of locations where scale must be estimated \param output iterator to store the computed scales \param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below \cgalNamedParamsBegin \cgalParamNBegin{point_map} \cgalParamDescription{a property map associating points to the elements of the point set `points`} \cgalParamType{a model of `ReadablePropertyMap` whose key type is the value type of the iterator of `PointRange` and whose value type is `geom_traits::Point_3` (or `geom_traits::Point_2`)} \cgalParamDefault{`CGAL::Identity_property_map` (or `CGAL::Identity_property_map`)} \cgalParamNEnd \cgalParamNBegin{query_point_map} \cgalParamDescription{the property map containing the points associated to the elements of the point range `queries`} \cgalParamType{a model of `ReadablePropertyMap` with value type `geom_traits::Point_3` (or `geom_traits::Point_2`)} \cgalParamDefault{`CGAL::Identity_property_map` (or `CGAL::Identity_property_map`)} \cgalParamNEnd \cgalParamNBegin{geom_traits} \cgalParamDescription{an instance of a geometric traits class} \cgalParamType{a model of `Kernel`} \cgalParamDefault{a \cgal Kernel deduced from the point type, using `CGAL::Kernel_traits`} \cgalParamNEnd \cgalNamedParamsEnd \note This function accepts both 2D and 3D points, but sample points and query must have the same dimension. */ template OutputIterator estimate_local_k_neighbor_scales( const PointRange& points, const QueryPointRange& queries, OutputIterator output, const NamedParameters& np) { using parameters::choose_parameter; using parameters::get_parameter; typedef typename CGAL::GetPointMap::const_type PointMap; typedef typename Point_set_processing_3::GetQueryPointMap::const_type QueryPointMap; typedef typename Point_set_processing_3::GetK::Kernel Kernel; typedef typename boost::property_traits::value_type Point_d; PointMap point_map = choose_parameter(get_parameter(np, internal_np::point_map)); QueryPointMap query_point_map = choose_parameter(get_parameter(np, internal_np::query_point_map)); // Build multi-scale KD-tree internal::Quick_multiscale_approximate_knn_distance kdtree (points.begin(), points.end(), point_map); // Compute local scales everywhere for (typename QueryPointRange::const_iterator it = queries.begin(); it != queries.end(); ++ it) *(output ++) = kdtree.compute_k_scale (it, query_point_map); return output; } /// \cond SKIP_IN_MANUAL // variant with default NP template OutputIterator estimate_local_k_neighbor_scales( const PointRange& points, const QueryPointRange& queries, OutputIterator output) { return estimate_local_k_neighbor_scales (points, queries, output, CGAL::Point_set_processing_3::parameters::all_default(points)); } /// \endcond /** \ingroup PkgPointSetProcessing3Algorithms Estimates the global scale in a K nearest neighbors sense. The computed scale corresponds to the smallest scale such that the K subsets of points have the appearance of a surface in 3D or the appearance of a curve in 2D (see \ref Point_set_processing_3Scale). \tparam PointRange is a model of `ConstRange`. The value type of its iterator is the key type of the named parameter `point_map`. \param points input point range. \param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below \cgalNamedParamsBegin \cgalParamNBegin{point_map} \cgalParamDescription{a property map associating points to the elements of the point set `points`} \cgalParamType{a model of `ReadablePropertyMap` whose key type is the value type of the iterator of `PointRange` and whose value type is `geom_traits::Point_3` (or `geom_traits::Point_2`)} \cgalParamDefault{`CGAL::Identity_property_map` (or `CGAL::Identity_property_map`)} \cgalParamNEnd \cgalParamNBegin{geom_traits} \cgalParamDescription{an instance of a geometric traits class} \cgalParamType{a model of `Kernel`} \cgalParamDefault{a \cgal Kernel deduced from the point type, using `CGAL::Kernel_traits`} \cgalParamNEnd \cgalNamedParamsEnd \note This function accepts both 2D and 3D points. \return The estimated scale in the K nearest neighbors sense. */ template std::size_t estimate_global_k_neighbor_scale( const PointRange& points, const NamedParameters& np) { using parameters::choose_parameter; using parameters::get_parameter; typedef typename CGAL::GetPointMap::const_type PointMap; PointMap point_map = choose_parameter(get_parameter(np, internal_np::point_map)); std::vector scales; estimate_local_k_neighbor_scales (points, points, std::back_inserter (scales), np.query_point_map(point_map)); std::sort (scales.begin(), scales.end()); return scales[scales.size() / 2]; } /// \cond SKIP_IN_MANUAL // variant with default NP template std::size_t estimate_global_k_neighbor_scale(const PointRange& points) { return estimate_global_k_neighbor_scale (points, CGAL::Point_set_processing_3::parameters::all_default(points)); } /// \endcond /** \ingroup PkgPointSetProcessing3Algorithms Estimates the local scale in a range sense on a set of user-defined query points. The computed scales correspond to the smallest scales such that the subsets of points included in the sphere range have the appearance of a surface in 3D or the appearance of a curve in 2D (see \ref Point_set_processing_3Scale). \tparam PointRange is a model of `ConstRange`. The value type of its iterator is the key type of the named parameter `point_map`. \tparam QueryPointRange is a model of `ConstRange`. The value type of its iterator is the key type of the named parameter `query_point_map`. \tparam OutputIterator is used to store the computed scales. It accepts values of type `geom_traits::FT`. \param points input point range. \param queries range of locations where scale must be estimated \param output iterator to store the computed scales \param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below \cgalNamedParamsBegin \cgalParamNBegin{point_map} \cgalParamDescription{a property map associating points to the elements of the point set `points`} \cgalParamType{a model of `ReadablePropertyMap` whose key type is the value type of the iterator of `PointRange` and whose value type is `geom_traits::Point_3` (or `geom_traits::Point_2`)} \cgalParamDefault{`CGAL::Identity_property_map` (or `CGAL::Identity_property_map`)} \cgalParamNEnd \cgalParamNBegin{query_point_map} \cgalParamDescription{the property map containing the points associated to the elements of the point range `queries`} \cgalParamType{a model of `ReadablePropertyMap` with value type `geom_traits::Point_3` (or `geom_traits::Point_2`)} \cgalParamDefault{`CGAL::Identity_property_map` (or `CGAL::Identity_property_map`)} \cgalParamNEnd \cgalParamNBegin{geom_traits} \cgalParamDescription{an instance of a geometric traits class} \cgalParamType{a model of `Kernel`} \cgalParamDefault{a \cgal Kernel deduced from the point type, using `CGAL::Kernel_traits`} \cgalParamNEnd \cgalNamedParamsEnd \note This function accepts both 2D and 3D points, but sample points and query must have the same dimension. */ template OutputIterator estimate_local_range_scales( const PointRange& points, const QueryPointRange& queries, OutputIterator output, const NamedParameters& np) { using parameters::choose_parameter; using parameters::get_parameter; typedef typename CGAL::GetPointMap::const_type PointMap; typedef typename Point_set_processing_3::GetQueryPointMap::const_type QueryPointMap; typedef typename Point_set_processing_3::GetK::Kernel Kernel; typedef typename boost::property_traits::value_type Point_d; PointMap point_map = choose_parameter(get_parameter(np, internal_np::point_map)); QueryPointMap query_point_map = choose_parameter(get_parameter(np, internal_np::query_point_map)); // Build multi-scale KD-tree internal::Quick_multiscale_approximate_knn_distance kdtree (points.begin(), points.end(), point_map); // Compute local scales everywhere for (typename QueryPointRange::const_iterator it = queries.begin(); it != queries.end(); ++ it) *(output ++) = kdtree.compute_range_scale (it, query_point_map); return output; } /// \cond SKIP_IN_MANUAL // variant with default NP template OutputIterator estimate_local_range_scales( const PointRange& points, const QueryPointRange& queries, OutputIterator output) { return estimate_local_range_scales (points, queries, output, CGAL::Point_set_processing_3::parameters::all_default(points)); } /// \endcond /** \ingroup PkgPointSetProcessing3Algorithms Estimates the global scale in a range sense. The computed scale corresponds to the smallest scale such that the subsets of points inside the sphere range have the appearance of a surface in 3D or the appearance of a curve in 2D (see \ref Point_set_processing_3Scale). \tparam PointRange is a model of `ConstRange`. The value type of its iterator is the key type of the named parameter `point_map`. \param points input point range. \param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below \cgalNamedParamsBegin \cgalParamNBegin{point_map} \cgalParamDescription{a property map associating points to the elements of the point set `points`} \cgalParamType{a model of `ReadablePropertyMap` whose key type is the value type of the iterator of `PointRange` and whose value type is `geom_traits::Point_3` (or `geom_traits::Point_2`)} \cgalParamDefault{`CGAL::Identity_property_map` (or `CGAL::Identity_property_map`)} \cgalParamNEnd \cgalParamNBegin{geom_traits} \cgalParamDescription{an instance of a geometric traits class} \cgalParamType{a model of `Kernel`} \cgalParamDefault{a \cgal Kernel deduced from the point type, using `CGAL::Kernel_traits`} \cgalParamNEnd \cgalNamedParamsEnd \note This function accepts both 2D and 3D points. \return The estimated scale in the range sense. The return type `FT` is a number type. It is either deduced from the `geom_traits` \ref bgl_namedparameters "Named Parameters" if provided, or the geometric traits class deduced from the point property map of `points`. */ template #ifdef DOXYGEN_RUNNING FT #else typename Point_set_processing_3::GetK::Kernel::FT #endif estimate_global_range_scale( const PointRange& points, const NamedParameters& np) { using parameters::choose_parameter; using parameters::get_parameter; std::vector scales; typedef typename CGAL::GetPointMap::const_type PointMap; PointMap point_map = choose_parameter(get_parameter(np, internal_np::point_map)); estimate_local_range_scales (points, points, std::back_inserter (scales), np.query_point_map(point_map)); std::sort (scales.begin(), scales.end()); return std::sqrt (scales[scales.size() / 2]); } /// \cond SKIP_IN_MANUAL // variant with default NP template typename Point_set_processing_3::GetFT::type estimate_global_range_scale(const PointRange& points) { return estimate_global_range_scale (points, CGAL::Point_set_processing_3::parameters::all_default(points)); } /// \endcond } //namespace CGAL #include #endif // CGAL_ESTIMATE_SCALE_3_H