// Copyright (c) 2003,2004 INRIA Sophia-Antipolis (France). // All rights reserved. // // This file is part of CGAL (www.cgal.org). // You can redistribute it and/or modify it under the terms of the GNU // General Public License as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: GPL-3.0+ // // // Author(s) : Menelaos Karavelas #ifndef CGAL_HYPERBOLA_2_H #define CGAL_HYPERBOLA_2_H #include #include #include #include #include namespace CGAL { template < class Gt > class Hyperbola_2 { public: typedef Gt Geom_traits; typedef typename Gt::Site_2 Site_2; typedef typename Gt::Segment_2 Segment_2; typedef typename Gt::Point_2 Point_2; typedef typename Gt::FT FT; #if 0 typedef typename Kernel_traits::Kernel Kernel; typedef CGAL::Apollonius_site_2 Site_2; typedef typename Kernel::Segment_2 Segment_2; typedef Point Point_2; typedef typename Kernel::FT FT; #endif // typedef typename R::RT FT; // typedef double FT; // typedef CGAL::Point_2< Cartesian > Point_2; // typedef CGAL::Segment_2< Cartesian< double > > Segment_2; protected: FT STEP; Point_2 f1, f2; FT r; Point_2 o; inline Point_2 lchain(const FT &t) const { std::vector< Point_2 > p = compute_points(t); if ( right(p[0]) ) return p[1]; return p[0]; } inline Point_2 rchain(const FT &t) const { std::vector< Point_2 > p = compute_points(t); if ( right(p[0]) ) return p[0]; return p[1]; } inline FT norm2(const Point_2& p) const { return (CGAL::square(p.x()) + CGAL::square(p.y())); } inline FT distance2(const Point_2& p1, const Point_2& p2) const { FT dx = p1.x()-p2.x(); FT dy = p1.y()-p2.y(); return (CGAL::square(dx) + CGAL::square(dy)); } inline FT distance(const Point_2& p1, const Point_2& p2) const { return CGAL::sqrt( distance2(p1, p2) ); } void compute_origin() { FT dx = f2.x() - f1.x(); FT dy = f2.y() - f1.y(); FT a = CGAL::sqrt(CGAL::square(dx) + CGAL::square(dy)); FT t = (FT(1) + r / a) / FT(2); o = Point_2(dx * t + f1.x(), dy * t + f1.y()); } std::vector< Point_2 > compute_points(const FT &d) const { FT d1 = distance(o, f1) + d; FT d2 = distance(o, f2) + d; d1 *= d1; d2 *= d2; Point_2 df = Point_2(f2.x() - f1.x(), f2.y()-f1.y()); std::vector< Point_2 > p; if ( CGAL::is_negative(d) ) return p; if ( CGAL::is_zero(df.x()) ) { FT y = (d1 - d2 + norm2(f2) - norm2(f1)) / (FT(2) * df.y()); FT D = d1 - CGAL::square(y - f1.y()); D = CGAL::abs(D); FT x1 = CGAL::sqrt(D) + f1.x(); FT x2 = -CGAL::sqrt(D) + f1.x(); p.push_back(Point_2(x1, y)); p.push_back(Point_2(x2, y)); return p; } FT gamma = (d1 - d2 + norm2(f2) - norm2(f1)) / (FT(2) * df.x()); FT gamma1 = gamma - f1.x(); FT beta = df.y() / df.x(); FT a = FT(1) + CGAL::square(beta); FT b = -FT(2) * (gamma1 * beta + f1.y()); FT c = CGAL::square(f1.y()) + CGAL::square(gamma1) - d1; FT D = CGAL::square(b) - FT(4) * a * c; D = CGAL::abs(D); FT y1 = (-b + CGAL::sqrt(D)) / (FT(2) * a); FT y2 = (-b - CGAL::sqrt(D)) / (FT(2) * a); FT x1 = gamma - beta * y1; FT x2 = gamma - beta * y2; p.push_back(Point_2(x1, y1)); p.push_back(Point_2(x2, y2)); return p; } bool right(const Point_2& p) const { return CGAL::is_negative( determinant(f1.x(), f1.y(), 1, f2.x(), f2.y(), 1, p.x(), p.y(), 1) ); } inline Point_2 midpoint(const Point_2& p1, const Point_2& p2) const { FT t1 = t(p1); FT t2 = t(p2); FT midt = (t1+t2)/2; return f(midt); } inline Point_2 f(FT t) const { if ( CGAL::is_negative(t) ) return rchain(-t); return lchain(t); } inline FT t(const Point_2 &p) const { FT tt = distance(f1, p) - distance(f1, o); if ( right(p) ) return -tt; return tt; } public: Hyperbola_2() { STEP = FT(2); } Hyperbola_2(const Site_2 &ff1, const Site_2 &ff2) { STEP = FT(2); this->r = ff1.weight() - ff2.weight(); this->f1 = ff1.point(); this->f2 = ff2.point(); compute_origin(); } Oriented_side side_of_hyperbola(const Point_2 &p) const { double dist = distance(p, f1) - distance(p, f2) - r; if ( dist < 0 ) return ON_NEGATIVE_SIDE; if ( dist > 0 ) return ON_POSITIVE_SIDE; return ON_ORIENTED_BOUNDARY; } template void generate_points_qt(const QTWIDGET& W, std::vector& pleft, std::vector& pright) const { std::vector< Point_2 > p; pleft.push_back(o); pright.push_back(o); double width = W.x_max() - W.x_min(); double height = W.y_max() - W.y_min(); FT STEP; if ( width < height ) { STEP = width / 500.0; } else { STEP = height / 500.0; } // double mind = distance(o, f1) - r1; for (int i = 1; i <= 100; i++) { p = compute_points(FT(i * i) * STEP); if ( p.size() > 0 ) { if ( right(p[0]) ) { pright.push_back(p[0]); pleft.push_back(p[1]); } else { pright.push_back(p[1]); pleft.push_back(p[0]); } } } } template void draw_qt(QTWIDGET& W) const { std::vector< Point_2 > pleft, pright; generate_points_qt(pleft, pright); for (unsigned int i = 0; i < pleft.size() - 1; i++) { W << Segment_2(pleft[i], pleft[i+1]); } for (unsigned int i = 0; i < pright.size() - 1; i++) { W << Segment_2(pright[i], pright[i+1]); } } void generate_points(std::vector& pleft, std::vector& pright) const { std::vector< Point_2 > p; pleft.push_back(o); pright.push_back(o); // double mind = distance(o, f1) - r1; for (int i = 1; i <= 100; i++) { p = compute_points(FT(i * i) * STEP); if ( p.size() > 0 ) { if ( right(p[0]) ) { pright.push_back(p[0]); pleft.push_back(p[1]); } else { pright.push_back(p[1]); pleft.push_back(p[0]); } } } } template< class Stream > void draw(Stream &W) const { std::vector< Point_2 > pleft, pright; generate_points(pleft,pright); for (unsigned int i = 0; i < pleft.size() - 1; i++) { W << Segment_2(pleft[i], pleft[i+1]); } for (unsigned int i = 0; i < pright.size() - 1; i++) { W << Segment_2(pright[i], pright[i+1]); } } }; template< class Stream, class Gt > inline Stream& operator<<(Stream& s, const Hyperbola_2 &H) { H.draw(s); return s; } } //namespace CGAL #endif // CGAL_HYPERBOLA_2_H