// This file is part of libigl, a simple c++ geometry processing library. // // Copyright (C) 2013 Alec Jacobson // // This Source Code Form is subject to the terms of the Mozilla Public License // v. 2.0. If a copy of the MPL was not distributed with this file, You can // obtain one at http://mozilla.org/MPL/2.0/. #ifndef IGL_ARAP_ENERGY_TYPE_DOF_H #define IGL_ARAP_ENERGY_TYPE_DOF_H #include "igl_inline.h" #include #include #include "ARAPEnergyType.h" #include namespace igl { // Caller example: // // Once: // arap_dof_precomputation(...) // // Each frame: // while(not satisfied) // arap_dof_update(...) // end template struct ArapDOFData; /////////////////////////////////////////////////////////////////////////// // // Arap DOF precomputation consists of two parts the computation. The first is // that which depends solely on the mesh (V,F), the linear blend skinning // weights (M) and the groups G. Then there's the part that depends on the // previous precomputation and the list of free and fixed vertices. // /////////////////////////////////////////////////////////////////////////// // The code and variables differ from the description in Section 3 of "Fast // Automatic Skinning Transformations" by [Jacobson et al. 2012] // // Here is a useful conversion table: // // [article] [code] // S = \tilde{K} T S = CSM * Lsep // S --> R S --> R --shuffled--> Rxyz // Gamma_solve RT = Pi_1 \tilde{K} RT L_part1xyz = CSolveBlock1 * Rxyz // Pi_1 \tilde{K} CSolveBlock1 // Peq = [T_full; P_pos] // T_full B_eq_fix <--- L0 // P_pos B_eq // Pi_2 * P_eq = Lpart2and3 = Lpart2 + Lpart3 // Pi_2_left T_full + Lpart3 = M_fullsolve(right) * B_eq_fix // Pi_2_right P_pos Lpart2 = M_fullsolve(left) * B_eq // T = [Pi_1 Pi_2] [\tilde{K}TRT P_eq] L = Lpart1 + Lpart2and3 // // Precomputes the system we are going to optimize. This consists of building // constructor matrices (to compute covariance matrices from transformations // and to build the poisson solve right hand side from rotation matrix entries) // and also prefactoring the poisson system. // // Inputs: // V #V by dim list of vertex positions // F #F by {3|4} list of face indices // M #V * dim by #handles * dim * (dim+1) matrix such that // new_V(:) = LBS(V,W,A) = reshape(M * A,size(V)), where A is a column // vectors formed by the entries in each handle's dim by dim+1 // transformation matrix. Specifcally, A = // reshape(permute(Astack,[3 1 2]),n*dim*(dim+1),1) // or A = [Lxx;Lyx;Lxy;Lyy;tx;ty], and likewise for other dim // if Astack(:,:,i) is the dim by (dim+1) transformation at handle i // handles are ordered according to P then BE (point handles before bone // handles) // G #V list of group indices (1 to k) for each vertex, such that vertex i // is assigned to group G(i) // Outputs: // data structure containing all necessary precomputation for calling // arap_dof_update // Returns true on success, false on error // // See also: lbs_matrix_column template IGL_INLINE bool arap_dof_precomputation( const Eigen::MatrixXd & V, const Eigen::MatrixXi & F, const LbsMatrixType & M, const Eigen::Matrix & G, ArapDOFData & data); // Should always be called after arap_dof_precomputation, but may be called in // between successive calls to arap_dof_update, recomputes precomputation // given that there are only changes in free and fixed // // Inputs: // fixed_dim list of transformation element indices for fixed (or partailly // fixed) handles: not necessarily the complement of 'free' // NOTE: the constraints for fixed transformations still need to be // present in A_eq // A_eq dim*#constraint_points by m*dim*(dim+1) matrix of linear equality // constraint coefficients. Each row corresponds to a linear constraint, // so that A_eq * L = Beq says that the linear transformation entries in // the column L should produce the user supplied positional constraints // for each handle in Beq. The row A_eq(i*dim+d) corresponds to the // constrain on coordinate d of position i // Outputs: // data structure containing all necessary precomputation for calling // arap_dof_update // Returns true on success, false on error // // See also: lbs_matrix_column template IGL_INLINE bool arap_dof_recomputation( const Eigen::Matrix & fixed_dim, const Eigen::SparseMatrix & A_eq, ArapDOFData & data); // Optimizes the transformations attached to each weight function based on // precomputed system. // // Inputs: // data precomputation data struct output from arap_dof_precomputation // Beq dim*#constraint_points constraint values. // L0 #handles * dim * dim+1 list of initial guess transformation entries, // also holds fixed transformation entries for fixed handles // max_iters maximum number of iterations // tol stopping criteria parameter. If variables (linear transformation // matrix entries) change by less than 'tol' the optimization terminates, // 0.75 (weak tolerance) // 0.0 (extreme tolerance) // Outputs: // L #handles * dim * dim+1 list of final optimized transformation entries, // allowed to be the same as L template IGL_INLINE bool arap_dof_update( const ArapDOFData & data, const Eigen::Matrix & B_eq, const Eigen::MatrixXd & L0, const int max_iters, const double tol, Eigen::MatrixXd & L ); // Structure that contains fields for all precomputed data or data that needs // to be remembered at update template struct ArapDOFData { typedef Eigen::Matrix MatrixXS; // Type of arap energy we're solving igl::ARAPEnergyType energy; //// LU decomposition precomptation data; note: not used by araf_dop_update //// any more, replaced by M_FullSolve //igl::min_quad_with_fixed_data lu_data; // List of indices of fixed transformation entries Eigen::Matrix fixed_dim; // List of precomputed covariance scatter matrices multiplied by lbs // matrices //std::vector > CSM_M; std::vector CSM_M; LbsMatrixType M_KG; // Number of mesh vertices int n; // Number of weight functions int m; // Number of dimensions int dim; // Effective dimensions int effective_dim; // List of indices into C of positional constraints Eigen::Matrix interpolated; std::vector free_mask; // Full quadratic coefficients matrix before lagrangian (should be dense) LbsMatrixType Q; //// Solve matrix for the global step //Eigen::MatrixXd M_Solve; // TODO: remove from here // Full solve matrix that contains also conversion from rotations to the right hand side, // i.e., solves Poisson transformations just from rotations and positional constraints MatrixXS M_FullSolve; // Precomputed condensed matrices (3x3 commutators folded to 1x1): MatrixXS CSM; MatrixXS CSolveBlock1; // Print timings at each update bool print_timings; // Dynamics bool with_dynamics; // I'm hiding the extra dynamics stuff in this struct, which sort of defeats // the purpose of this function-based coding style... // Time step double h; // L0 #handles * dim * dim+1 list of transformation entries from // previous solve MatrixXS L0; //// Lm1 #handles * dim * dim+1 list of transformation entries from //// previous-previous solve //MatrixXS Lm1; // "Velocity" MatrixXS Lvel0; // #V by dim matrix of external forces // fext MatrixXS fext; // Mass_tilde: MT * Mass * M LbsMatrixType Mass_tilde; // Force due to gravity (premultiplier) Eigen::MatrixXd fgrav; // Direction of gravity Eigen::Vector3d grav_dir; // Magnitude of gravity double grav_mag; // Π1 from the paper MatrixXS Pi_1; // Default values ArapDOFData(): energy(igl::ARAP_ENERGY_TYPE_SPOKES), with_dynamics(false), h(1), grav_dir(0,-1,0), grav_mag(0) { } }; } #ifndef IGL_STATIC_LIBRARY # include "arap_dof.cpp" #endif #endif