// Copyright (c) 1997-2002 Max-Planck-Institute Saarbruecken (Germany). // All rights reserved. // // This file is part of CGAL (www.cgal.org). // You can redistribute it and/or modify it under the terms of the GNU // General Public License as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: GPL-3.0+ // // // Author(s) : Michael Seel // Peter Hachenberger #ifndef CGAL_SPHERE_GEOMETRY_H #define CGAL_SPHERE_GEOMETRY_H #include #include #include #include #undef CGAL_NEF_DEBUG #define CGAL_NEF_DEBUG 113 #include namespace CGAL { template class Sphere_point; template class Sphere_segment; template class Sphere_triangle; template class Sphere_circle; template class Sphere_direction; } //namespace CGAL #include #include #include #include #include #include namespace CGAL { template struct Positive_halfsphere_geometry { typedef R_ R; typedef CGAL::Sphere_point Point_2; typedef CGAL::Sphere_segment Segment_2; int axis; Positive_halfsphere_geometry() : axis(2) {} Positive_halfsphere_geometry(int check_sphere) : axis(check_sphere) {} Point_2 source(const Segment_2& s) const { return s.source(); } Point_2 target(const Segment_2& s) const { return s.target(); } Segment_2 construct_segment(const Point_2& p, const Point_2& q) const { return Segment_2(p,q); } void xz_pi_half_rotate(Point_2& p) const { p = Point_2(-p.hz(),p.hy(),p.hx()); } void zx_pi_half_rotate(Point_2& p) const { p = Point_2(-p.hz(),p.hy(),p.hx()); } void xy_pi_half_rotate(Point_2& p) const { p = Point_2(-p.hy(),p.hx(),p.hz()); } int orientation(const Point_2& p1, const Point_2& p2, const Point_2& p3) const { int sor = CGAL::spherical_orientation(p1,p2,p3); if (sor) return sor; Point_2 pp1(p1), pp2(p2), pp3(p3); switch(axis) { case 0: if ( !( p1.hx() == 0 && p2.hx() == 0 && p3.hx() == 0) ) return sor; if ( p1.hz()<0 ) zx_pi_half_rotate(pp1); if ( p2.hz()<0 ) zx_pi_half_rotate(pp2); if ( p3.hz()<0 ) zx_pi_half_rotate(pp3); return CGAL::spherical_orientation(pp1,pp2,pp3); break; case 1: if ( !( p1.hy() == 0 && p2.hy() == 0 && p3.hy() == 0) ) return sor; if ( p1.hx()>0 ) xy_pi_half_rotate(pp1); if ( p2.hx()>0 ) xy_pi_half_rotate(pp2); if ( p3.hx()>0 ) xy_pi_half_rotate(pp3); return CGAL::spherical_orientation(pp1,pp2,pp3); break; case 2: if ( !( p1.hz() == 0 && p2.hz() == 0 && p3.hz() == 0) ) return sor; // sor==0 we perturb any point in the xy-plane with x>0 // by a negative rotation around the y-axis // our perturbation is big :-) we take PI/2 : if ( p1.hx()>0 ) xz_pi_half_rotate(pp1); if ( p2.hx()>0 ) xz_pi_half_rotate(pp2); if ( p3.hx()>0 ) xz_pi_half_rotate(pp3); return CGAL::spherical_orientation(pp1,pp2,pp3); break; } return 0; } int orientation(const Segment_2& s, const Point_2& p) const { return orientation(s.source(),s.target(),p); } bool is_degenerate(const Segment_2& s) const { return s.is_degenerate(); } int compare_xy(const Point_2& p1, const Point_2& p2) const { CGAL_NEF_TRACEN("compare_xy " << axis << ":" << p1 << " / " << p2); return CGAL::spherical_compare(p1,p2,axis,+1); } Point_2 intersection(const Segment_2& s1, const Segment_2& s2) const { if (s1.sphere_circle() != s2.sphere_circle().opposite()) return s1.intersection(s2); CGAL_assertion(s1.target()==s2.target()); return s1.target(); } }; // Positive_halfsphere_geometry template struct Negative_halfsphere_geometry : public Positive_halfsphere_geometry { typedef Positive_halfsphere_geometry Base; typedef typename Base::Point_2 Point_2; typedef typename Base::Segment_2 Segment_2; using Base::xz_pi_half_rotate; using Base::zx_pi_half_rotate; using Base::xy_pi_half_rotate; Negative_halfsphere_geometry() : Base() {} Negative_halfsphere_geometry(int check_sphere) : Base(check_sphere) {} int orientation(const Point_2& p1, const Point_2& p2, const Point_2& p3) const { int sor = CGAL::spherical_orientation(p1,p2,p3); if (sor) return sor; Point_2 pp1(p1), pp2(p2), pp3(p3); switch(((Base*) this)->axis) { case 0: if ( !( p1.hx() == 0 && p2.hx() == 0 && p3.hx() == 0) ) return sor; if ( p1.hz()>0 ) zx_pi_half_rotate(pp1); if ( p2.hz()>0 ) zx_pi_half_rotate(pp2); if ( p3.hz()>0 ) zx_pi_half_rotate(pp3); return CGAL::spherical_orientation(pp1,pp2,pp3); break; case 1: if ( !( p1.hy() == 0 && p2.hy() == 0 && p3.hy() == 0) ) return sor; if ( p1.hx()<0 ) xy_pi_half_rotate(pp1); if ( p2.hx()<0 ) xy_pi_half_rotate(pp2); if ( p3.hx()<0 ) xy_pi_half_rotate(pp3); return CGAL::spherical_orientation(pp1,pp2,pp3); break; case 2: if ( !( p1.hz() == 0 && p2.hz() == 0 && p3.hz() == 0) ) return sor; // sor==0 we perturb any point in the xy-plane with x>0 // by a negative rotation around the y-axis // our perturbation is big :-) we take PI/2 : if ( p1.hx()<0 ) xz_pi_half_rotate(pp1); if ( p2.hx()<0 ) xz_pi_half_rotate(pp2); if ( p3.hx()<0 ) xz_pi_half_rotate(pp3); return CGAL::spherical_orientation(pp1,pp2,pp3); break; } return 0; } int orientation(const Segment_2& s, const Point_2& p) const { return orientation(s.source(),s.target(),p); } int compare_xy(const Point_2& p1, const Point_2& p2) const { return CGAL::spherical_compare(p1,p2,this->axis,-1); } }; // Negative_halfsphere_geometry template struct Sphere_geometry { typedef R_ R; typedef typename R_::RT RT; typedef typename R_::FT FT; typedef CGAL::Sphere_point Sphere_point; typedef CGAL::Sphere_segment Sphere_segment; typedef CGAL::Sphere_circle Sphere_circle; typedef CGAL::Sphere_direction Sphere_direction; typedef CGAL::Sphere_triangle Sphere_triangle; typedef typename R::Point_3 Point_3; typedef typename R::Plane_3 Plane_3; typedef typename R::Aff_transformation_3 Aff_transformation_3; typedef CGAL::Positive_halfsphere_geometry Positive_halfsphere_geometry; typedef CGAL::Negative_halfsphere_geometry Negative_halfsphere_geometry; Sphere_point source(const Sphere_segment& s) const { return s.source(); } Sphere_point target(const Sphere_segment& s) const { return s.target(); } Sphere_segment construct_segment(const Sphere_point& p, const Sphere_point& q) const { return Sphere_segment(p,q); } Sphere_segment construct_segment(const Sphere_point& p, const Sphere_point& q, const Plane_3& h) const { return Sphere_segment(p,q,Sphere_circle(h)); } Plane_3 affine_representation(const Plane_3& h, const Point_3& p) const { RT wp = p.hw(); return Plane_3(wp*h.a(),wp*h.b(),wp*h.c(), -(p.hx()*h.a() + p.hy()*h.b() + p.hz()*h.c())); } Plane_3 linear_representation(const Plane_3& h) const { return Plane_3(h.a(),h.b(),h.c(),0); } /* Positive_halfsphere_geometry PHG; const Positive_halfsphere_geometry& get_positive_halfsphere_geometry() const { return PHG; } Negative_halfsphere_geometry NHG; const Negative_halfsphere_geometry& get_negative_halfsphere_geometry() const { return NHG; } */ const Positive_halfsphere_geometry& get_positive_halfsphere_geometry(int a) const { return Positive_halfsphere_geometry(a); } const Negative_halfsphere_geometry& get_negative_halfsphere_geometry(int a) const { return Negative_halfsphere_geometry(a); } }; } //namespace CGAL #endif //CGAL_SPHERE_GEOMETRY_H