dust3d/thirdparty/QuadriFlow/3rd/lemon-1.3.1/lemon/bellman_ford.h

1117 lines
38 KiB
C++
Executable File

/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2013
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_BELLMAN_FORD_H
#define LEMON_BELLMAN_FORD_H
/// \ingroup shortest_path
/// \file
/// \brief Bellman-Ford algorithm.
#include <lemon/list_graph.h>
#include <lemon/bits/path_dump.h>
#include <lemon/core.h>
#include <lemon/error.h>
#include <lemon/maps.h>
#include <lemon/path.h>
#include <limits>
namespace lemon {
/// \brief Default OperationTraits for the BellmanFord algorithm class.
///
/// This operation traits class defines all computational operations
/// and constants that are used in the Bellman-Ford algorithm.
/// The default implementation is based on the \c numeric_limits class.
/// If the numeric type does not have infinity value, then the maximum
/// value is used as extremal infinity value.
template <
typename V,
bool has_inf = std::numeric_limits<V>::has_infinity>
struct BellmanFordDefaultOperationTraits {
/// \e
typedef V Value;
/// \brief Gives back the zero value of the type.
static Value zero() {
return static_cast<Value>(0);
}
/// \brief Gives back the positive infinity value of the type.
static Value infinity() {
return std::numeric_limits<Value>::infinity();
}
/// \brief Gives back the sum of the given two elements.
static Value plus(const Value& left, const Value& right) {
return left + right;
}
/// \brief Gives back \c true only if the first value is less than
/// the second.
static bool less(const Value& left, const Value& right) {
return left < right;
}
};
template <typename V>
struct BellmanFordDefaultOperationTraits<V, false> {
typedef V Value;
static Value zero() {
return static_cast<Value>(0);
}
static Value infinity() {
return std::numeric_limits<Value>::max();
}
static Value plus(const Value& left, const Value& right) {
if (left == infinity() || right == infinity()) return infinity();
return left + right;
}
static bool less(const Value& left, const Value& right) {
return left < right;
}
};
/// \brief Default traits class of BellmanFord class.
///
/// Default traits class of BellmanFord class.
/// \param GR The type of the digraph.
/// \param LEN The type of the length map.
template<typename GR, typename LEN>
struct BellmanFordDefaultTraits {
/// The type of the digraph the algorithm runs on.
typedef GR Digraph;
/// \brief The type of the map that stores the arc lengths.
///
/// The type of the map that stores the arc lengths.
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
typedef LEN LengthMap;
/// The type of the arc lengths.
typedef typename LEN::Value Value;
/// \brief Operation traits for Bellman-Ford algorithm.
///
/// It defines the used operations and the infinity value for the
/// given \c Value type.
/// \see BellmanFordDefaultOperationTraits
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
/// \brief The type of the map that stores the last arcs of the
/// shortest paths.
///
/// The type of the map that stores the last
/// arcs of the shortest paths.
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
typedef typename GR::template NodeMap<typename GR::Arc> PredMap;
/// \brief Instantiates a \c PredMap.
///
/// This function instantiates a \ref PredMap.
/// \param g is the digraph to which we would like to define the
/// \ref PredMap.
static PredMap *createPredMap(const GR& g) {
return new PredMap(g);
}
/// \brief The type of the map that stores the distances of the nodes.
///
/// The type of the map that stores the distances of the nodes.
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
typedef typename GR::template NodeMap<typename LEN::Value> DistMap;
/// \brief Instantiates a \c DistMap.
///
/// This function instantiates a \ref DistMap.
/// \param g is the digraph to which we would like to define the
/// \ref DistMap.
static DistMap *createDistMap(const GR& g) {
return new DistMap(g);
}
};
/// \brief %BellmanFord algorithm class.
///
/// \ingroup shortest_path
/// This class provides an efficient implementation of the Bellman-Ford
/// algorithm. The maximum time complexity of the algorithm is
/// <tt>O(nm)</tt>.
///
/// The Bellman-Ford algorithm solves the single-source shortest path
/// problem when the arcs can have negative lengths, but the digraph
/// should not contain directed cycles with negative total length.
/// If all arc costs are non-negative, consider to use the Dijkstra
/// algorithm instead, since it is more efficient.
///
/// The arc lengths are passed to the algorithm using a
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any
/// kind of length. The type of the length values is determined by the
/// \ref concepts::ReadMap::Value "Value" type of the length map.
///
/// There is also a \ref bellmanFord() "function-type interface" for the
/// Bellman-Ford algorithm, which is convenient in the simplier cases and
/// it can be used easier.
///
/// \tparam GR The type of the digraph the algorithm runs on.
/// The default type is \ref ListDigraph.
/// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies
/// the lengths of the arcs. The default map type is
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
/// \tparam TR The traits class that defines various types used by the
/// algorithm. By default, it is \ref BellmanFordDefaultTraits
/// "BellmanFordDefaultTraits<GR, LEN>".
/// In most cases, this parameter should not be set directly,
/// consider to use the named template parameters instead.
#ifdef DOXYGEN
template <typename GR, typename LEN, typename TR>
#else
template <typename GR=ListDigraph,
typename LEN=typename GR::template ArcMap<int>,
typename TR=BellmanFordDefaultTraits<GR,LEN> >
#endif
class BellmanFord {
public:
///The type of the underlying digraph.
typedef typename TR::Digraph Digraph;
/// \brief The type of the arc lengths.
typedef typename TR::LengthMap::Value Value;
/// \brief The type of the map that stores the arc lengths.
typedef typename TR::LengthMap LengthMap;
/// \brief The type of the map that stores the last
/// arcs of the shortest paths.
typedef typename TR::PredMap PredMap;
/// \brief The type of the map that stores the distances of the nodes.
typedef typename TR::DistMap DistMap;
/// The type of the paths.
typedef PredMapPath<Digraph, PredMap> Path;
///\brief The \ref lemon::BellmanFordDefaultOperationTraits
/// "operation traits class" of the algorithm.
typedef typename TR::OperationTraits OperationTraits;
///\brief The \ref lemon::BellmanFordDefaultTraits "traits class"
///of the algorithm.
typedef TR Traits;
private:
typedef typename Digraph::Node Node;
typedef typename Digraph::NodeIt NodeIt;
typedef typename Digraph::Arc Arc;
typedef typename Digraph::OutArcIt OutArcIt;
// Pointer to the underlying digraph.
const Digraph *_gr;
// Pointer to the length map
const LengthMap *_length;
// Pointer to the map of predecessors arcs.
PredMap *_pred;
// Indicates if _pred is locally allocated (true) or not.
bool _local_pred;
// Pointer to the map of distances.
DistMap *_dist;
// Indicates if _dist is locally allocated (true) or not.
bool _local_dist;
typedef typename Digraph::template NodeMap<bool> MaskMap;
MaskMap *_mask;
std::vector<Node> _process;
// Creates the maps if necessary.
void create_maps() {
if(!_pred) {
_local_pred = true;
_pred = Traits::createPredMap(*_gr);
}
if(!_dist) {
_local_dist = true;
_dist = Traits::createDistMap(*_gr);
}
if(!_mask) {
_mask = new MaskMap(*_gr);
}
}
public :
typedef BellmanFord Create;
/// \name Named Template Parameters
///@{
template <class T>
struct SetPredMapTraits : public Traits {
typedef T PredMap;
static PredMap *createPredMap(const Digraph&) {
LEMON_ASSERT(false, "PredMap is not initialized");
return 0; // ignore warnings
}
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// \c PredMap type.
///
/// \ref named-templ-param "Named parameter" for setting
/// \c PredMap type.
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
template <class T>
struct SetPredMap
: public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > {
typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create;
};
template <class T>
struct SetDistMapTraits : public Traits {
typedef T DistMap;
static DistMap *createDistMap(const Digraph&) {
LEMON_ASSERT(false, "DistMap is not initialized");
return 0; // ignore warnings
}
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// \c DistMap type.
///
/// \ref named-templ-param "Named parameter" for setting
/// \c DistMap type.
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
template <class T>
struct SetDistMap
: public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > {
typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create;
};
template <class T>
struct SetOperationTraitsTraits : public Traits {
typedef T OperationTraits;
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// \c OperationTraits type.
///
/// \ref named-templ-param "Named parameter" for setting
/// \c OperationTraits type.
/// For more information, see \ref BellmanFordDefaultOperationTraits.
template <class T>
struct SetOperationTraits
: public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > {
typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> >
Create;
};
///@}
protected:
BellmanFord() {}
public:
/// \brief Constructor.
///
/// Constructor.
/// \param g The digraph the algorithm runs on.
/// \param length The length map used by the algorithm.
BellmanFord(const Digraph& g, const LengthMap& length) :
_gr(&g), _length(&length),
_pred(0), _local_pred(false),
_dist(0), _local_dist(false), _mask(0) {}
///Destructor.
~BellmanFord() {
if(_local_pred) delete _pred;
if(_local_dist) delete _dist;
if(_mask) delete _mask;
}
/// \brief Sets the length map.
///
/// Sets the length map.
/// \return <tt>(*this)</tt>
BellmanFord &lengthMap(const LengthMap &map) {
_length = &map;
return *this;
}
/// \brief Sets the map that stores the predecessor arcs.
///
/// Sets the map that stores the predecessor arcs.
/// If you don't use this function before calling \ref run()
/// or \ref init(), an instance will be allocated automatically.
/// The destructor deallocates this automatically allocated map,
/// of course.
/// \return <tt>(*this)</tt>
BellmanFord &predMap(PredMap &map) {
if(_local_pred) {
delete _pred;
_local_pred=false;
}
_pred = &map;
return *this;
}
/// \brief Sets the map that stores the distances of the nodes.
///
/// Sets the map that stores the distances of the nodes calculated
/// by the algorithm.
/// If you don't use this function before calling \ref run()
/// or \ref init(), an instance will be allocated automatically.
/// The destructor deallocates this automatically allocated map,
/// of course.
/// \return <tt>(*this)</tt>
BellmanFord &distMap(DistMap &map) {
if(_local_dist) {
delete _dist;
_local_dist=false;
}
_dist = &map;
return *this;
}
/// \name Execution Control
/// The simplest way to execute the Bellman-Ford algorithm is to use
/// one of the member functions called \ref run().\n
/// If you need better control on the execution, you have to call
/// \ref init() first, then you can add several source nodes
/// with \ref addSource(). Finally the actual path computation can be
/// performed with \ref start(), \ref checkedStart() or
/// \ref limitedStart().
///@{
/// \brief Initializes the internal data structures.
///
/// Initializes the internal data structures. The optional parameter
/// is the initial distance of each node.
void init(const Value value = OperationTraits::infinity()) {
create_maps();
for (NodeIt it(*_gr); it != INVALID; ++it) {
_pred->set(it, INVALID);
_dist->set(it, value);
}
_process.clear();
if (OperationTraits::less(value, OperationTraits::infinity())) {
for (NodeIt it(*_gr); it != INVALID; ++it) {
_process.push_back(it);
_mask->set(it, true);
}
} else {
for (NodeIt it(*_gr); it != INVALID; ++it) {
_mask->set(it, false);
}
}
}
/// \brief Adds a new source node.
///
/// This function adds a new source node. The optional second parameter
/// is the initial distance of the node.
void addSource(Node source, Value dst = OperationTraits::zero()) {
_dist->set(source, dst);
if (!(*_mask)[source]) {
_process.push_back(source);
_mask->set(source, true);
}
}
/// \brief Executes one round from the Bellman-Ford algorithm.
///
/// If the algoritm calculated the distances in the previous round
/// exactly for the paths of at most \c k arcs, then this function
/// will calculate the distances exactly for the paths of at most
/// <tt>k+1</tt> arcs. Performing \c k iterations using this function
/// calculates the shortest path distances exactly for the paths
/// consisting of at most \c k arcs.
///
/// \warning The paths with limited arc number cannot be retrieved
/// easily with \ref path() or \ref predArc() functions. If you also
/// need the shortest paths and not only the distances, you should
/// store the \ref predMap() "predecessor map" after each iteration
/// and build the path manually.
///
/// \return \c true when the algorithm have not found more shorter
/// paths.
///
/// \see ActiveIt
bool processNextRound() {
for (int i = 0; i < int(_process.size()); ++i) {
_mask->set(_process[i], false);
}
std::vector<Node> nextProcess;
std::vector<Value> values(_process.size());
for (int i = 0; i < int(_process.size()); ++i) {
values[i] = (*_dist)[_process[i]];
}
for (int i = 0; i < int(_process.size()); ++i) {
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
Node target = _gr->target(it);
Value relaxed = OperationTraits::plus(values[i], (*_length)[it]);
if (OperationTraits::less(relaxed, (*_dist)[target])) {
_pred->set(target, it);
_dist->set(target, relaxed);
if (!(*_mask)[target]) {
_mask->set(target, true);
nextProcess.push_back(target);
}
}
}
}
_process.swap(nextProcess);
return _process.empty();
}
/// \brief Executes one weak round from the Bellman-Ford algorithm.
///
/// If the algorithm calculated the distances in the previous round
/// at least for the paths of at most \c k arcs, then this function
/// will calculate the distances at least for the paths of at most
/// <tt>k+1</tt> arcs.
/// This function does not make it possible to calculate the shortest
/// path distances exactly for paths consisting of at most \c k arcs,
/// this is why it is called weak round.
///
/// \return \c true when the algorithm have not found more shorter
/// paths.
///
/// \see ActiveIt
bool processNextWeakRound() {
for (int i = 0; i < int(_process.size()); ++i) {
_mask->set(_process[i], false);
}
std::vector<Node> nextProcess;
for (int i = 0; i < int(_process.size()); ++i) {
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
Node target = _gr->target(it);
Value relaxed =
OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]);
if (OperationTraits::less(relaxed, (*_dist)[target])) {
_pred->set(target, it);
_dist->set(target, relaxed);
if (!(*_mask)[target]) {
_mask->set(target, true);
nextProcess.push_back(target);
}
}
}
}
_process.swap(nextProcess);
return _process.empty();
}
/// \brief Executes the algorithm.
///
/// Executes the algorithm.
///
/// This method runs the Bellman-Ford algorithm from the root node(s)
/// in order to compute the shortest path to each node.
///
/// The algorithm computes
/// - the shortest path tree (forest),
/// - the distance of each node from the root(s).
///
/// \pre init() must be called and at least one root node should be
/// added with addSource() before using this function.
void start() {
int num = countNodes(*_gr) - 1;
for (int i = 0; i < num; ++i) {
if (processNextWeakRound()) break;
}
}
/// \brief Executes the algorithm and checks the negative cycles.
///
/// Executes the algorithm and checks the negative cycles.
///
/// This method runs the Bellman-Ford algorithm from the root node(s)
/// in order to compute the shortest path to each node and also checks
/// if the digraph contains cycles with negative total length.
///
/// The algorithm computes
/// - the shortest path tree (forest),
/// - the distance of each node from the root(s).
///
/// \return \c false if there is a negative cycle in the digraph.
///
/// \pre init() must be called and at least one root node should be
/// added with addSource() before using this function.
bool checkedStart() {
int num = countNodes(*_gr);
for (int i = 0; i < num; ++i) {
if (processNextWeakRound()) return true;
}
return _process.empty();
}
/// \brief Executes the algorithm with arc number limit.
///
/// Executes the algorithm with arc number limit.
///
/// This method runs the Bellman-Ford algorithm from the root node(s)
/// in order to compute the shortest path distance for each node
/// using only the paths consisting of at most \c num arcs.
///
/// The algorithm computes
/// - the limited distance of each node from the root(s),
/// - the predecessor arc for each node.
///
/// \warning The paths with limited arc number cannot be retrieved
/// easily with \ref path() or \ref predArc() functions. If you also
/// need the shortest paths and not only the distances, you should
/// store the \ref predMap() "predecessor map" after each iteration
/// and build the path manually.
///
/// \pre init() must be called and at least one root node should be
/// added with addSource() before using this function.
void limitedStart(int num) {
for (int i = 0; i < num; ++i) {
if (processNextRound()) break;
}
}
/// \brief Runs the algorithm from the given root node.
///
/// This method runs the Bellman-Ford algorithm from the given root
/// node \c s in order to compute the shortest path to each node.
///
/// The algorithm computes
/// - the shortest path tree (forest),
/// - the distance of each node from the root(s).
///
/// \note bf.run(s) is just a shortcut of the following code.
/// \code
/// bf.init();
/// bf.addSource(s);
/// bf.start();
/// \endcode
void run(Node s) {
init();
addSource(s);
start();
}
/// \brief Runs the algorithm from the given root node with arc
/// number limit.
///
/// This method runs the Bellman-Ford algorithm from the given root
/// node \c s in order to compute the shortest path distance for each
/// node using only the paths consisting of at most \c num arcs.
///
/// The algorithm computes
/// - the limited distance of each node from the root(s),
/// - the predecessor arc for each node.
///
/// \warning The paths with limited arc number cannot be retrieved
/// easily with \ref path() or \ref predArc() functions. If you also
/// need the shortest paths and not only the distances, you should
/// store the \ref predMap() "predecessor map" after each iteration
/// and build the path manually.
///
/// \note bf.run(s, num) is just a shortcut of the following code.
/// \code
/// bf.init();
/// bf.addSource(s);
/// bf.limitedStart(num);
/// \endcode
void run(Node s, int num) {
init();
addSource(s);
limitedStart(num);
}
///@}
/// \brief LEMON iterator for getting the active nodes.
///
/// This class provides a common style LEMON iterator that traverses
/// the active nodes of the Bellman-Ford algorithm after the last
/// phase. These nodes should be checked in the next phase to
/// find augmenting arcs outgoing from them.
class ActiveIt {
public:
/// \brief Constructor.
///
/// Constructor for getting the active nodes of the given BellmanFord
/// instance.
ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm)
{
_index = _algorithm->_process.size() - 1;
}
/// \brief Invalid constructor.
///
/// Invalid constructor.
ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
/// \brief Conversion to \c Node.
///
/// Conversion to \c Node.
operator Node() const {
return _index >= 0 ? _algorithm->_process[_index] : INVALID;
}
/// \brief Increment operator.
///
/// Increment operator.
ActiveIt& operator++() {
--_index;
return *this;
}
bool operator==(const ActiveIt& it) const {
return static_cast<Node>(*this) == static_cast<Node>(it);
}
bool operator!=(const ActiveIt& it) const {
return static_cast<Node>(*this) != static_cast<Node>(it);
}
bool operator<(const ActiveIt& it) const {
return static_cast<Node>(*this) < static_cast<Node>(it);
}
private:
const BellmanFord* _algorithm;
int _index;
};
/// \name Query Functions
/// The result of the Bellman-Ford algorithm can be obtained using these
/// functions.\n
/// Either \ref run() or \ref init() should be called before using them.
///@{
/// \brief The shortest path to the given node.
///
/// Gives back the shortest path to the given node from the root(s).
///
/// \warning \c t should be reached from the root(s).
///
/// \pre Either \ref run() or \ref init() must be called before
/// using this function.
Path path(Node t) const
{
return Path(*_gr, *_pred, t);
}
/// \brief The distance of the given node from the root(s).
///
/// Returns the distance of the given node from the root(s).
///
/// \warning If node \c v is not reached from the root(s), then
/// the return value of this function is undefined.
///
/// \pre Either \ref run() or \ref init() must be called before
/// using this function.
Value dist(Node v) const { return (*_dist)[v]; }
/// \brief Returns the 'previous arc' of the shortest path tree for
/// the given node.
///
/// This function returns the 'previous arc' of the shortest path
/// tree for node \c v, i.e. it returns the last arc of a
/// shortest path from a root to \c v. It is \c INVALID if \c v
/// is not reached from the root(s) or if \c v is a root.
///
/// The shortest path tree used here is equal to the shortest path
/// tree used in \ref predNode() and \ref predMap().
///
/// \pre Either \ref run() or \ref init() must be called before
/// using this function.
Arc predArc(Node v) const { return (*_pred)[v]; }
/// \brief Returns the 'previous node' of the shortest path tree for
/// the given node.
///
/// This function returns the 'previous node' of the shortest path
/// tree for node \c v, i.e. it returns the last but one node of
/// a shortest path from a root to \c v. It is \c INVALID if \c v
/// is not reached from the root(s) or if \c v is a root.
///
/// The shortest path tree used here is equal to the shortest path
/// tree used in \ref predArc() and \ref predMap().
///
/// \pre Either \ref run() or \ref init() must be called before
/// using this function.
Node predNode(Node v) const {
return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]);
}
/// \brief Returns a const reference to the node map that stores the
/// distances of the nodes.
///
/// Returns a const reference to the node map that stores the distances
/// of the nodes calculated by the algorithm.
///
/// \pre Either \ref run() or \ref init() must be called before
/// using this function.
const DistMap &distMap() const { return *_dist;}
/// \brief Returns a const reference to the node map that stores the
/// predecessor arcs.
///
/// Returns a const reference to the node map that stores the predecessor
/// arcs, which form the shortest path tree (forest).
///
/// \pre Either \ref run() or \ref init() must be called before
/// using this function.
const PredMap &predMap() const { return *_pred; }
/// \brief Checks if a node is reached from the root(s).
///
/// Returns \c true if \c v is reached from the root(s).
///
/// \pre Either \ref run() or \ref init() must be called before
/// using this function.
bool reached(Node v) const {
return (*_dist)[v] != OperationTraits::infinity();
}
/// \brief Gives back a negative cycle.
///
/// This function gives back a directed cycle with negative total
/// length if the algorithm has already found one.
/// Otherwise it gives back an empty path.
lemon::Path<Digraph> negativeCycle() const {
typename Digraph::template NodeMap<int> state(*_gr, -1);
lemon::Path<Digraph> cycle;
for (int i = 0; i < int(_process.size()); ++i) {
if (state[_process[i]] != -1) continue;
for (Node v = _process[i]; (*_pred)[v] != INVALID;
v = _gr->source((*_pred)[v])) {
if (state[v] == i) {
cycle.addFront((*_pred)[v]);
for (Node u = _gr->source((*_pred)[v]); u != v;
u = _gr->source((*_pred)[u])) {
cycle.addFront((*_pred)[u]);
}
return cycle;
}
else if (state[v] >= 0) {
break;
}
state[v] = i;
}
}
return cycle;
}
///@}
};
/// \brief Default traits class of bellmanFord() function.
///
/// Default traits class of bellmanFord() function.
/// \tparam GR The type of the digraph.
/// \tparam LEN The type of the length map.
template <typename GR, typename LEN>
struct BellmanFordWizardDefaultTraits {
/// The type of the digraph the algorithm runs on.
typedef GR Digraph;
/// \brief The type of the map that stores the arc lengths.
///
/// The type of the map that stores the arc lengths.
/// It must meet the \ref concepts::ReadMap "ReadMap" concept.
typedef LEN LengthMap;
/// The type of the arc lengths.
typedef typename LEN::Value Value;
/// \brief Operation traits for Bellman-Ford algorithm.
///
/// It defines the used operations and the infinity value for the
/// given \c Value type.
/// \see BellmanFordDefaultOperationTraits
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
/// \brief The type of the map that stores the last
/// arcs of the shortest paths.
///
/// The type of the map that stores the last arcs of the shortest paths.
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
typedef typename GR::template NodeMap<typename GR::Arc> PredMap;
/// \brief Instantiates a \c PredMap.
///
/// This function instantiates a \ref PredMap.
/// \param g is the digraph to which we would like to define the
/// \ref PredMap.
static PredMap *createPredMap(const GR &g) {
return new PredMap(g);
}
/// \brief The type of the map that stores the distances of the nodes.
///
/// The type of the map that stores the distances of the nodes.
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
typedef typename GR::template NodeMap<Value> DistMap;
/// \brief Instantiates a \c DistMap.
///
/// This function instantiates a \ref DistMap.
/// \param g is the digraph to which we would like to define the
/// \ref DistMap.
static DistMap *createDistMap(const GR &g) {
return new DistMap(g);
}
///The type of the shortest paths.
///The type of the shortest paths.
///It must meet the \ref concepts::Path "Path" concept.
typedef lemon::Path<Digraph> Path;
};
/// \brief Default traits class used by BellmanFordWizard.
///
/// Default traits class used by BellmanFordWizard.
/// \tparam GR The type of the digraph.
/// \tparam LEN The type of the length map.
template <typename GR, typename LEN>
class BellmanFordWizardBase
: public BellmanFordWizardDefaultTraits<GR, LEN> {
typedef BellmanFordWizardDefaultTraits<GR, LEN> Base;
protected:
// Type of the nodes in the digraph.
typedef typename Base::Digraph::Node Node;
// Pointer to the underlying digraph.
void *_graph;
// Pointer to the length map
void *_length;
// Pointer to the map of predecessors arcs.
void *_pred;
// Pointer to the map of distances.
void *_dist;
//Pointer to the shortest path to the target node.
void *_path;
//Pointer to the distance of the target node.
void *_di;
public:
/// Constructor.
/// This constructor does not require parameters, it initiates
/// all of the attributes to default values \c 0.
BellmanFordWizardBase() :
_graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {}
/// Constructor.
/// This constructor requires two parameters,
/// others are initiated to \c 0.
/// \param gr The digraph the algorithm runs on.
/// \param len The length map.
BellmanFordWizardBase(const GR& gr,
const LEN& len) :
_graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))),
_length(reinterpret_cast<void*>(const_cast<LEN*>(&len))),
_pred(0), _dist(0), _path(0), _di(0) {}
};
/// \brief Auxiliary class for the function-type interface of the
/// \ref BellmanFord "Bellman-Ford" algorithm.
///
/// This auxiliary class is created to implement the
/// \ref bellmanFord() "function-type interface" of the
/// \ref BellmanFord "Bellman-Ford" algorithm.
/// It does not have own \ref run() method, it uses the
/// functions and features of the plain \ref BellmanFord.
///
/// This class should only be used through the \ref bellmanFord()
/// function, which makes it easier to use the algorithm.
///
/// \tparam TR The traits class that defines various types used by the
/// algorithm.
template<class TR>
class BellmanFordWizard : public TR {
typedef TR Base;
typedef typename TR::Digraph Digraph;
typedef typename Digraph::Node Node;
typedef typename Digraph::NodeIt NodeIt;
typedef typename Digraph::Arc Arc;
typedef typename Digraph::OutArcIt ArcIt;
typedef typename TR::LengthMap LengthMap;
typedef typename LengthMap::Value Value;
typedef typename TR::PredMap PredMap;
typedef typename TR::DistMap DistMap;
typedef typename TR::Path Path;
public:
/// Constructor.
BellmanFordWizard() : TR() {}
/// \brief Constructor that requires parameters.
///
/// Constructor that requires parameters.
/// These parameters will be the default values for the traits class.
/// \param gr The digraph the algorithm runs on.
/// \param len The length map.
BellmanFordWizard(const Digraph& gr, const LengthMap& len)
: TR(gr, len) {}
/// \brief Copy constructor
BellmanFordWizard(const TR &b) : TR(b) {}
~BellmanFordWizard() {}
/// \brief Runs the Bellman-Ford algorithm from the given source node.
///
/// This method runs the Bellman-Ford algorithm from the given source
/// node in order to compute the shortest path to each node.
void run(Node s) {
BellmanFord<Digraph,LengthMap,TR>
bf(*reinterpret_cast<const Digraph*>(Base::_graph),
*reinterpret_cast<const LengthMap*>(Base::_length));
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
bf.run(s);
}
/// \brief Runs the Bellman-Ford algorithm to find the shortest path
/// between \c s and \c t.
///
/// This method runs the Bellman-Ford algorithm from node \c s
/// in order to compute the shortest path to node \c t.
/// Actually, it computes the shortest path to each node, but using
/// this function you can retrieve the distance and the shortest path
/// for a single target node easier.
///
/// \return \c true if \c t is reachable form \c s.
bool run(Node s, Node t) {
BellmanFord<Digraph,LengthMap,TR>
bf(*reinterpret_cast<const Digraph*>(Base::_graph),
*reinterpret_cast<const LengthMap*>(Base::_length));
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
bf.run(s);
if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t);
if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t);
return bf.reached(t);
}
template<class T>
struct SetPredMapBase : public Base {
typedef T PredMap;
static PredMap *createPredMap(const Digraph &) { return 0; };
SetPredMapBase(const TR &b) : TR(b) {}
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// the predecessor map.
///
/// \ref named-templ-param "Named parameter" for setting
/// the map that stores the predecessor arcs of the nodes.
template<class T>
BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) {
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
return BellmanFordWizard<SetPredMapBase<T> >(*this);
}
template<class T>
struct SetDistMapBase : public Base {
typedef T DistMap;
static DistMap *createDistMap(const Digraph &) { return 0; };
SetDistMapBase(const TR &b) : TR(b) {}
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// the distance map.
///
/// \ref named-templ-param "Named parameter" for setting
/// the map that stores the distances of the nodes calculated
/// by the algorithm.
template<class T>
BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) {
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
return BellmanFordWizard<SetDistMapBase<T> >(*this);
}
template<class T>
struct SetPathBase : public Base {
typedef T Path;
SetPathBase(const TR &b) : TR(b) {}
};
/// \brief \ref named-func-param "Named parameter" for getting
/// the shortest path to the target node.
///
/// \ref named-func-param "Named parameter" for getting
/// the shortest path to the target node.
template<class T>
BellmanFordWizard<SetPathBase<T> > path(const T &t)
{
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
return BellmanFordWizard<SetPathBase<T> >(*this);
}
/// \brief \ref named-func-param "Named parameter" for getting
/// the distance of the target node.
///
/// \ref named-func-param "Named parameter" for getting
/// the distance of the target node.
BellmanFordWizard dist(const Value &d)
{
Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d));
return *this;
}
};
/// \brief Function type interface for the \ref BellmanFord "Bellman-Ford"
/// algorithm.
///
/// \ingroup shortest_path
/// Function type interface for the \ref BellmanFord "Bellman-Ford"
/// algorithm.
///
/// This function also has several \ref named-templ-func-param
/// "named parameters", they are declared as the members of class
/// \ref BellmanFordWizard.
/// The following examples show how to use these parameters.
/// \code
/// // Compute shortest path from node s to each node
/// bellmanFord(g,length).predMap(preds).distMap(dists).run(s);
///
/// // Compute shortest path from s to t
/// bool reached = bellmanFord(g,length).path(p).dist(d).run(s,t);
/// \endcode
/// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()"
/// to the end of the parameter list.
/// \sa BellmanFordWizard
/// \sa BellmanFord
template<typename GR, typename LEN>
BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >
bellmanFord(const GR& digraph,
const LEN& length)
{
return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length);
}
} //END OF NAMESPACE LEMON
#endif