1117 lines
38 KiB
C++
Executable File
1117 lines
38 KiB
C++
Executable File
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
|
*
|
|
* This file is a part of LEMON, a generic C++ optimization library.
|
|
*
|
|
* Copyright (C) 2003-2013
|
|
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
|
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
|
*
|
|
* Permission to use, modify and distribute this software is granted
|
|
* provided that this copyright notice appears in all copies. For
|
|
* precise terms see the accompanying LICENSE file.
|
|
*
|
|
* This software is provided "AS IS" with no warranty of any kind,
|
|
* express or implied, and with no claim as to its suitability for any
|
|
* purpose.
|
|
*
|
|
*/
|
|
|
|
#ifndef LEMON_BELLMAN_FORD_H
|
|
#define LEMON_BELLMAN_FORD_H
|
|
|
|
/// \ingroup shortest_path
|
|
/// \file
|
|
/// \brief Bellman-Ford algorithm.
|
|
|
|
#include <lemon/list_graph.h>
|
|
#include <lemon/bits/path_dump.h>
|
|
#include <lemon/core.h>
|
|
#include <lemon/error.h>
|
|
#include <lemon/maps.h>
|
|
#include <lemon/path.h>
|
|
|
|
#include <limits>
|
|
|
|
namespace lemon {
|
|
|
|
/// \brief Default OperationTraits for the BellmanFord algorithm class.
|
|
///
|
|
/// This operation traits class defines all computational operations
|
|
/// and constants that are used in the Bellman-Ford algorithm.
|
|
/// The default implementation is based on the \c numeric_limits class.
|
|
/// If the numeric type does not have infinity value, then the maximum
|
|
/// value is used as extremal infinity value.
|
|
template <
|
|
typename V,
|
|
bool has_inf = std::numeric_limits<V>::has_infinity>
|
|
struct BellmanFordDefaultOperationTraits {
|
|
/// \e
|
|
typedef V Value;
|
|
/// \brief Gives back the zero value of the type.
|
|
static Value zero() {
|
|
return static_cast<Value>(0);
|
|
}
|
|
/// \brief Gives back the positive infinity value of the type.
|
|
static Value infinity() {
|
|
return std::numeric_limits<Value>::infinity();
|
|
}
|
|
/// \brief Gives back the sum of the given two elements.
|
|
static Value plus(const Value& left, const Value& right) {
|
|
return left + right;
|
|
}
|
|
/// \brief Gives back \c true only if the first value is less than
|
|
/// the second.
|
|
static bool less(const Value& left, const Value& right) {
|
|
return left < right;
|
|
}
|
|
};
|
|
|
|
template <typename V>
|
|
struct BellmanFordDefaultOperationTraits<V, false> {
|
|
typedef V Value;
|
|
static Value zero() {
|
|
return static_cast<Value>(0);
|
|
}
|
|
static Value infinity() {
|
|
return std::numeric_limits<Value>::max();
|
|
}
|
|
static Value plus(const Value& left, const Value& right) {
|
|
if (left == infinity() || right == infinity()) return infinity();
|
|
return left + right;
|
|
}
|
|
static bool less(const Value& left, const Value& right) {
|
|
return left < right;
|
|
}
|
|
};
|
|
|
|
/// \brief Default traits class of BellmanFord class.
|
|
///
|
|
/// Default traits class of BellmanFord class.
|
|
/// \param GR The type of the digraph.
|
|
/// \param LEN The type of the length map.
|
|
template<typename GR, typename LEN>
|
|
struct BellmanFordDefaultTraits {
|
|
/// The type of the digraph the algorithm runs on.
|
|
typedef GR Digraph;
|
|
|
|
/// \brief The type of the map that stores the arc lengths.
|
|
///
|
|
/// The type of the map that stores the arc lengths.
|
|
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
|
|
typedef LEN LengthMap;
|
|
|
|
/// The type of the arc lengths.
|
|
typedef typename LEN::Value Value;
|
|
|
|
/// \brief Operation traits for Bellman-Ford algorithm.
|
|
///
|
|
/// It defines the used operations and the infinity value for the
|
|
/// given \c Value type.
|
|
/// \see BellmanFordDefaultOperationTraits
|
|
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
|
|
|
|
/// \brief The type of the map that stores the last arcs of the
|
|
/// shortest paths.
|
|
///
|
|
/// The type of the map that stores the last
|
|
/// arcs of the shortest paths.
|
|
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
|
|
typedef typename GR::template NodeMap<typename GR::Arc> PredMap;
|
|
|
|
/// \brief Instantiates a \c PredMap.
|
|
///
|
|
/// This function instantiates a \ref PredMap.
|
|
/// \param g is the digraph to which we would like to define the
|
|
/// \ref PredMap.
|
|
static PredMap *createPredMap(const GR& g) {
|
|
return new PredMap(g);
|
|
}
|
|
|
|
/// \brief The type of the map that stores the distances of the nodes.
|
|
///
|
|
/// The type of the map that stores the distances of the nodes.
|
|
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
|
|
typedef typename GR::template NodeMap<typename LEN::Value> DistMap;
|
|
|
|
/// \brief Instantiates a \c DistMap.
|
|
///
|
|
/// This function instantiates a \ref DistMap.
|
|
/// \param g is the digraph to which we would like to define the
|
|
/// \ref DistMap.
|
|
static DistMap *createDistMap(const GR& g) {
|
|
return new DistMap(g);
|
|
}
|
|
|
|
};
|
|
|
|
/// \brief %BellmanFord algorithm class.
|
|
///
|
|
/// \ingroup shortest_path
|
|
/// This class provides an efficient implementation of the Bellman-Ford
|
|
/// algorithm. The maximum time complexity of the algorithm is
|
|
/// <tt>O(nm)</tt>.
|
|
///
|
|
/// The Bellman-Ford algorithm solves the single-source shortest path
|
|
/// problem when the arcs can have negative lengths, but the digraph
|
|
/// should not contain directed cycles with negative total length.
|
|
/// If all arc costs are non-negative, consider to use the Dijkstra
|
|
/// algorithm instead, since it is more efficient.
|
|
///
|
|
/// The arc lengths are passed to the algorithm using a
|
|
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any
|
|
/// kind of length. The type of the length values is determined by the
|
|
/// \ref concepts::ReadMap::Value "Value" type of the length map.
|
|
///
|
|
/// There is also a \ref bellmanFord() "function-type interface" for the
|
|
/// Bellman-Ford algorithm, which is convenient in the simplier cases and
|
|
/// it can be used easier.
|
|
///
|
|
/// \tparam GR The type of the digraph the algorithm runs on.
|
|
/// The default type is \ref ListDigraph.
|
|
/// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies
|
|
/// the lengths of the arcs. The default map type is
|
|
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
|
|
/// \tparam TR The traits class that defines various types used by the
|
|
/// algorithm. By default, it is \ref BellmanFordDefaultTraits
|
|
/// "BellmanFordDefaultTraits<GR, LEN>".
|
|
/// In most cases, this parameter should not be set directly,
|
|
/// consider to use the named template parameters instead.
|
|
#ifdef DOXYGEN
|
|
template <typename GR, typename LEN, typename TR>
|
|
#else
|
|
template <typename GR=ListDigraph,
|
|
typename LEN=typename GR::template ArcMap<int>,
|
|
typename TR=BellmanFordDefaultTraits<GR,LEN> >
|
|
#endif
|
|
class BellmanFord {
|
|
public:
|
|
|
|
///The type of the underlying digraph.
|
|
typedef typename TR::Digraph Digraph;
|
|
|
|
/// \brief The type of the arc lengths.
|
|
typedef typename TR::LengthMap::Value Value;
|
|
/// \brief The type of the map that stores the arc lengths.
|
|
typedef typename TR::LengthMap LengthMap;
|
|
/// \brief The type of the map that stores the last
|
|
/// arcs of the shortest paths.
|
|
typedef typename TR::PredMap PredMap;
|
|
/// \brief The type of the map that stores the distances of the nodes.
|
|
typedef typename TR::DistMap DistMap;
|
|
/// The type of the paths.
|
|
typedef PredMapPath<Digraph, PredMap> Path;
|
|
///\brief The \ref lemon::BellmanFordDefaultOperationTraits
|
|
/// "operation traits class" of the algorithm.
|
|
typedef typename TR::OperationTraits OperationTraits;
|
|
|
|
///\brief The \ref lemon::BellmanFordDefaultTraits "traits class"
|
|
///of the algorithm.
|
|
typedef TR Traits;
|
|
|
|
private:
|
|
|
|
typedef typename Digraph::Node Node;
|
|
typedef typename Digraph::NodeIt NodeIt;
|
|
typedef typename Digraph::Arc Arc;
|
|
typedef typename Digraph::OutArcIt OutArcIt;
|
|
|
|
// Pointer to the underlying digraph.
|
|
const Digraph *_gr;
|
|
// Pointer to the length map
|
|
const LengthMap *_length;
|
|
// Pointer to the map of predecessors arcs.
|
|
PredMap *_pred;
|
|
// Indicates if _pred is locally allocated (true) or not.
|
|
bool _local_pred;
|
|
// Pointer to the map of distances.
|
|
DistMap *_dist;
|
|
// Indicates if _dist is locally allocated (true) or not.
|
|
bool _local_dist;
|
|
|
|
typedef typename Digraph::template NodeMap<bool> MaskMap;
|
|
MaskMap *_mask;
|
|
|
|
std::vector<Node> _process;
|
|
|
|
// Creates the maps if necessary.
|
|
void create_maps() {
|
|
if(!_pred) {
|
|
_local_pred = true;
|
|
_pred = Traits::createPredMap(*_gr);
|
|
}
|
|
if(!_dist) {
|
|
_local_dist = true;
|
|
_dist = Traits::createDistMap(*_gr);
|
|
}
|
|
if(!_mask) {
|
|
_mask = new MaskMap(*_gr);
|
|
}
|
|
}
|
|
|
|
public :
|
|
|
|
typedef BellmanFord Create;
|
|
|
|
/// \name Named Template Parameters
|
|
|
|
///@{
|
|
|
|
template <class T>
|
|
struct SetPredMapTraits : public Traits {
|
|
typedef T PredMap;
|
|
static PredMap *createPredMap(const Digraph&) {
|
|
LEMON_ASSERT(false, "PredMap is not initialized");
|
|
return 0; // ignore warnings
|
|
}
|
|
};
|
|
|
|
/// \brief \ref named-templ-param "Named parameter" for setting
|
|
/// \c PredMap type.
|
|
///
|
|
/// \ref named-templ-param "Named parameter" for setting
|
|
/// \c PredMap type.
|
|
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
|
|
template <class T>
|
|
struct SetPredMap
|
|
: public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > {
|
|
typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create;
|
|
};
|
|
|
|
template <class T>
|
|
struct SetDistMapTraits : public Traits {
|
|
typedef T DistMap;
|
|
static DistMap *createDistMap(const Digraph&) {
|
|
LEMON_ASSERT(false, "DistMap is not initialized");
|
|
return 0; // ignore warnings
|
|
}
|
|
};
|
|
|
|
/// \brief \ref named-templ-param "Named parameter" for setting
|
|
/// \c DistMap type.
|
|
///
|
|
/// \ref named-templ-param "Named parameter" for setting
|
|
/// \c DistMap type.
|
|
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
|
|
template <class T>
|
|
struct SetDistMap
|
|
: public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > {
|
|
typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create;
|
|
};
|
|
|
|
template <class T>
|
|
struct SetOperationTraitsTraits : public Traits {
|
|
typedef T OperationTraits;
|
|
};
|
|
|
|
/// \brief \ref named-templ-param "Named parameter" for setting
|
|
/// \c OperationTraits type.
|
|
///
|
|
/// \ref named-templ-param "Named parameter" for setting
|
|
/// \c OperationTraits type.
|
|
/// For more information, see \ref BellmanFordDefaultOperationTraits.
|
|
template <class T>
|
|
struct SetOperationTraits
|
|
: public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > {
|
|
typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> >
|
|
Create;
|
|
};
|
|
|
|
///@}
|
|
|
|
protected:
|
|
|
|
BellmanFord() {}
|
|
|
|
public:
|
|
|
|
/// \brief Constructor.
|
|
///
|
|
/// Constructor.
|
|
/// \param g The digraph the algorithm runs on.
|
|
/// \param length The length map used by the algorithm.
|
|
BellmanFord(const Digraph& g, const LengthMap& length) :
|
|
_gr(&g), _length(&length),
|
|
_pred(0), _local_pred(false),
|
|
_dist(0), _local_dist(false), _mask(0) {}
|
|
|
|
///Destructor.
|
|
~BellmanFord() {
|
|
if(_local_pred) delete _pred;
|
|
if(_local_dist) delete _dist;
|
|
if(_mask) delete _mask;
|
|
}
|
|
|
|
/// \brief Sets the length map.
|
|
///
|
|
/// Sets the length map.
|
|
/// \return <tt>(*this)</tt>
|
|
BellmanFord &lengthMap(const LengthMap &map) {
|
|
_length = ↦
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Sets the map that stores the predecessor arcs.
|
|
///
|
|
/// Sets the map that stores the predecessor arcs.
|
|
/// If you don't use this function before calling \ref run()
|
|
/// or \ref init(), an instance will be allocated automatically.
|
|
/// The destructor deallocates this automatically allocated map,
|
|
/// of course.
|
|
/// \return <tt>(*this)</tt>
|
|
BellmanFord &predMap(PredMap &map) {
|
|
if(_local_pred) {
|
|
delete _pred;
|
|
_local_pred=false;
|
|
}
|
|
_pred = ↦
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Sets the map that stores the distances of the nodes.
|
|
///
|
|
/// Sets the map that stores the distances of the nodes calculated
|
|
/// by the algorithm.
|
|
/// If you don't use this function before calling \ref run()
|
|
/// or \ref init(), an instance will be allocated automatically.
|
|
/// The destructor deallocates this automatically allocated map,
|
|
/// of course.
|
|
/// \return <tt>(*this)</tt>
|
|
BellmanFord &distMap(DistMap &map) {
|
|
if(_local_dist) {
|
|
delete _dist;
|
|
_local_dist=false;
|
|
}
|
|
_dist = ↦
|
|
return *this;
|
|
}
|
|
|
|
/// \name Execution Control
|
|
/// The simplest way to execute the Bellman-Ford algorithm is to use
|
|
/// one of the member functions called \ref run().\n
|
|
/// If you need better control on the execution, you have to call
|
|
/// \ref init() first, then you can add several source nodes
|
|
/// with \ref addSource(). Finally the actual path computation can be
|
|
/// performed with \ref start(), \ref checkedStart() or
|
|
/// \ref limitedStart().
|
|
|
|
///@{
|
|
|
|
/// \brief Initializes the internal data structures.
|
|
///
|
|
/// Initializes the internal data structures. The optional parameter
|
|
/// is the initial distance of each node.
|
|
void init(const Value value = OperationTraits::infinity()) {
|
|
create_maps();
|
|
for (NodeIt it(*_gr); it != INVALID; ++it) {
|
|
_pred->set(it, INVALID);
|
|
_dist->set(it, value);
|
|
}
|
|
_process.clear();
|
|
if (OperationTraits::less(value, OperationTraits::infinity())) {
|
|
for (NodeIt it(*_gr); it != INVALID; ++it) {
|
|
_process.push_back(it);
|
|
_mask->set(it, true);
|
|
}
|
|
} else {
|
|
for (NodeIt it(*_gr); it != INVALID; ++it) {
|
|
_mask->set(it, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Adds a new source node.
|
|
///
|
|
/// This function adds a new source node. The optional second parameter
|
|
/// is the initial distance of the node.
|
|
void addSource(Node source, Value dst = OperationTraits::zero()) {
|
|
_dist->set(source, dst);
|
|
if (!(*_mask)[source]) {
|
|
_process.push_back(source);
|
|
_mask->set(source, true);
|
|
}
|
|
}
|
|
|
|
/// \brief Executes one round from the Bellman-Ford algorithm.
|
|
///
|
|
/// If the algoritm calculated the distances in the previous round
|
|
/// exactly for the paths of at most \c k arcs, then this function
|
|
/// will calculate the distances exactly for the paths of at most
|
|
/// <tt>k+1</tt> arcs. Performing \c k iterations using this function
|
|
/// calculates the shortest path distances exactly for the paths
|
|
/// consisting of at most \c k arcs.
|
|
///
|
|
/// \warning The paths with limited arc number cannot be retrieved
|
|
/// easily with \ref path() or \ref predArc() functions. If you also
|
|
/// need the shortest paths and not only the distances, you should
|
|
/// store the \ref predMap() "predecessor map" after each iteration
|
|
/// and build the path manually.
|
|
///
|
|
/// \return \c true when the algorithm have not found more shorter
|
|
/// paths.
|
|
///
|
|
/// \see ActiveIt
|
|
bool processNextRound() {
|
|
for (int i = 0; i < int(_process.size()); ++i) {
|
|
_mask->set(_process[i], false);
|
|
}
|
|
std::vector<Node> nextProcess;
|
|
std::vector<Value> values(_process.size());
|
|
for (int i = 0; i < int(_process.size()); ++i) {
|
|
values[i] = (*_dist)[_process[i]];
|
|
}
|
|
for (int i = 0; i < int(_process.size()); ++i) {
|
|
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
|
|
Node target = _gr->target(it);
|
|
Value relaxed = OperationTraits::plus(values[i], (*_length)[it]);
|
|
if (OperationTraits::less(relaxed, (*_dist)[target])) {
|
|
_pred->set(target, it);
|
|
_dist->set(target, relaxed);
|
|
if (!(*_mask)[target]) {
|
|
_mask->set(target, true);
|
|
nextProcess.push_back(target);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
_process.swap(nextProcess);
|
|
return _process.empty();
|
|
}
|
|
|
|
/// \brief Executes one weak round from the Bellman-Ford algorithm.
|
|
///
|
|
/// If the algorithm calculated the distances in the previous round
|
|
/// at least for the paths of at most \c k arcs, then this function
|
|
/// will calculate the distances at least for the paths of at most
|
|
/// <tt>k+1</tt> arcs.
|
|
/// This function does not make it possible to calculate the shortest
|
|
/// path distances exactly for paths consisting of at most \c k arcs,
|
|
/// this is why it is called weak round.
|
|
///
|
|
/// \return \c true when the algorithm have not found more shorter
|
|
/// paths.
|
|
///
|
|
/// \see ActiveIt
|
|
bool processNextWeakRound() {
|
|
for (int i = 0; i < int(_process.size()); ++i) {
|
|
_mask->set(_process[i], false);
|
|
}
|
|
std::vector<Node> nextProcess;
|
|
for (int i = 0; i < int(_process.size()); ++i) {
|
|
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
|
|
Node target = _gr->target(it);
|
|
Value relaxed =
|
|
OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]);
|
|
if (OperationTraits::less(relaxed, (*_dist)[target])) {
|
|
_pred->set(target, it);
|
|
_dist->set(target, relaxed);
|
|
if (!(*_mask)[target]) {
|
|
_mask->set(target, true);
|
|
nextProcess.push_back(target);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
_process.swap(nextProcess);
|
|
return _process.empty();
|
|
}
|
|
|
|
/// \brief Executes the algorithm.
|
|
///
|
|
/// Executes the algorithm.
|
|
///
|
|
/// This method runs the Bellman-Ford algorithm from the root node(s)
|
|
/// in order to compute the shortest path to each node.
|
|
///
|
|
/// The algorithm computes
|
|
/// - the shortest path tree (forest),
|
|
/// - the distance of each node from the root(s).
|
|
///
|
|
/// \pre init() must be called and at least one root node should be
|
|
/// added with addSource() before using this function.
|
|
void start() {
|
|
int num = countNodes(*_gr) - 1;
|
|
for (int i = 0; i < num; ++i) {
|
|
if (processNextWeakRound()) break;
|
|
}
|
|
}
|
|
|
|
/// \brief Executes the algorithm and checks the negative cycles.
|
|
///
|
|
/// Executes the algorithm and checks the negative cycles.
|
|
///
|
|
/// This method runs the Bellman-Ford algorithm from the root node(s)
|
|
/// in order to compute the shortest path to each node and also checks
|
|
/// if the digraph contains cycles with negative total length.
|
|
///
|
|
/// The algorithm computes
|
|
/// - the shortest path tree (forest),
|
|
/// - the distance of each node from the root(s).
|
|
///
|
|
/// \return \c false if there is a negative cycle in the digraph.
|
|
///
|
|
/// \pre init() must be called and at least one root node should be
|
|
/// added with addSource() before using this function.
|
|
bool checkedStart() {
|
|
int num = countNodes(*_gr);
|
|
for (int i = 0; i < num; ++i) {
|
|
if (processNextWeakRound()) return true;
|
|
}
|
|
return _process.empty();
|
|
}
|
|
|
|
/// \brief Executes the algorithm with arc number limit.
|
|
///
|
|
/// Executes the algorithm with arc number limit.
|
|
///
|
|
/// This method runs the Bellman-Ford algorithm from the root node(s)
|
|
/// in order to compute the shortest path distance for each node
|
|
/// using only the paths consisting of at most \c num arcs.
|
|
///
|
|
/// The algorithm computes
|
|
/// - the limited distance of each node from the root(s),
|
|
/// - the predecessor arc for each node.
|
|
///
|
|
/// \warning The paths with limited arc number cannot be retrieved
|
|
/// easily with \ref path() or \ref predArc() functions. If you also
|
|
/// need the shortest paths and not only the distances, you should
|
|
/// store the \ref predMap() "predecessor map" after each iteration
|
|
/// and build the path manually.
|
|
///
|
|
/// \pre init() must be called and at least one root node should be
|
|
/// added with addSource() before using this function.
|
|
void limitedStart(int num) {
|
|
for (int i = 0; i < num; ++i) {
|
|
if (processNextRound()) break;
|
|
}
|
|
}
|
|
|
|
/// \brief Runs the algorithm from the given root node.
|
|
///
|
|
/// This method runs the Bellman-Ford algorithm from the given root
|
|
/// node \c s in order to compute the shortest path to each node.
|
|
///
|
|
/// The algorithm computes
|
|
/// - the shortest path tree (forest),
|
|
/// - the distance of each node from the root(s).
|
|
///
|
|
/// \note bf.run(s) is just a shortcut of the following code.
|
|
/// \code
|
|
/// bf.init();
|
|
/// bf.addSource(s);
|
|
/// bf.start();
|
|
/// \endcode
|
|
void run(Node s) {
|
|
init();
|
|
addSource(s);
|
|
start();
|
|
}
|
|
|
|
/// \brief Runs the algorithm from the given root node with arc
|
|
/// number limit.
|
|
///
|
|
/// This method runs the Bellman-Ford algorithm from the given root
|
|
/// node \c s in order to compute the shortest path distance for each
|
|
/// node using only the paths consisting of at most \c num arcs.
|
|
///
|
|
/// The algorithm computes
|
|
/// - the limited distance of each node from the root(s),
|
|
/// - the predecessor arc for each node.
|
|
///
|
|
/// \warning The paths with limited arc number cannot be retrieved
|
|
/// easily with \ref path() or \ref predArc() functions. If you also
|
|
/// need the shortest paths and not only the distances, you should
|
|
/// store the \ref predMap() "predecessor map" after each iteration
|
|
/// and build the path manually.
|
|
///
|
|
/// \note bf.run(s, num) is just a shortcut of the following code.
|
|
/// \code
|
|
/// bf.init();
|
|
/// bf.addSource(s);
|
|
/// bf.limitedStart(num);
|
|
/// \endcode
|
|
void run(Node s, int num) {
|
|
init();
|
|
addSource(s);
|
|
limitedStart(num);
|
|
}
|
|
|
|
///@}
|
|
|
|
/// \brief LEMON iterator for getting the active nodes.
|
|
///
|
|
/// This class provides a common style LEMON iterator that traverses
|
|
/// the active nodes of the Bellman-Ford algorithm after the last
|
|
/// phase. These nodes should be checked in the next phase to
|
|
/// find augmenting arcs outgoing from them.
|
|
class ActiveIt {
|
|
public:
|
|
|
|
/// \brief Constructor.
|
|
///
|
|
/// Constructor for getting the active nodes of the given BellmanFord
|
|
/// instance.
|
|
ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm)
|
|
{
|
|
_index = _algorithm->_process.size() - 1;
|
|
}
|
|
|
|
/// \brief Invalid constructor.
|
|
///
|
|
/// Invalid constructor.
|
|
ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
|
|
|
|
/// \brief Conversion to \c Node.
|
|
///
|
|
/// Conversion to \c Node.
|
|
operator Node() const {
|
|
return _index >= 0 ? _algorithm->_process[_index] : INVALID;
|
|
}
|
|
|
|
/// \brief Increment operator.
|
|
///
|
|
/// Increment operator.
|
|
ActiveIt& operator++() {
|
|
--_index;
|
|
return *this;
|
|
}
|
|
|
|
bool operator==(const ActiveIt& it) const {
|
|
return static_cast<Node>(*this) == static_cast<Node>(it);
|
|
}
|
|
bool operator!=(const ActiveIt& it) const {
|
|
return static_cast<Node>(*this) != static_cast<Node>(it);
|
|
}
|
|
bool operator<(const ActiveIt& it) const {
|
|
return static_cast<Node>(*this) < static_cast<Node>(it);
|
|
}
|
|
|
|
private:
|
|
const BellmanFord* _algorithm;
|
|
int _index;
|
|
};
|
|
|
|
/// \name Query Functions
|
|
/// The result of the Bellman-Ford algorithm can be obtained using these
|
|
/// functions.\n
|
|
/// Either \ref run() or \ref init() should be called before using them.
|
|
|
|
///@{
|
|
|
|
/// \brief The shortest path to the given node.
|
|
///
|
|
/// Gives back the shortest path to the given node from the root(s).
|
|
///
|
|
/// \warning \c t should be reached from the root(s).
|
|
///
|
|
/// \pre Either \ref run() or \ref init() must be called before
|
|
/// using this function.
|
|
Path path(Node t) const
|
|
{
|
|
return Path(*_gr, *_pred, t);
|
|
}
|
|
|
|
/// \brief The distance of the given node from the root(s).
|
|
///
|
|
/// Returns the distance of the given node from the root(s).
|
|
///
|
|
/// \warning If node \c v is not reached from the root(s), then
|
|
/// the return value of this function is undefined.
|
|
///
|
|
/// \pre Either \ref run() or \ref init() must be called before
|
|
/// using this function.
|
|
Value dist(Node v) const { return (*_dist)[v]; }
|
|
|
|
/// \brief Returns the 'previous arc' of the shortest path tree for
|
|
/// the given node.
|
|
///
|
|
/// This function returns the 'previous arc' of the shortest path
|
|
/// tree for node \c v, i.e. it returns the last arc of a
|
|
/// shortest path from a root to \c v. It is \c INVALID if \c v
|
|
/// is not reached from the root(s) or if \c v is a root.
|
|
///
|
|
/// The shortest path tree used here is equal to the shortest path
|
|
/// tree used in \ref predNode() and \ref predMap().
|
|
///
|
|
/// \pre Either \ref run() or \ref init() must be called before
|
|
/// using this function.
|
|
Arc predArc(Node v) const { return (*_pred)[v]; }
|
|
|
|
/// \brief Returns the 'previous node' of the shortest path tree for
|
|
/// the given node.
|
|
///
|
|
/// This function returns the 'previous node' of the shortest path
|
|
/// tree for node \c v, i.e. it returns the last but one node of
|
|
/// a shortest path from a root to \c v. It is \c INVALID if \c v
|
|
/// is not reached from the root(s) or if \c v is a root.
|
|
///
|
|
/// The shortest path tree used here is equal to the shortest path
|
|
/// tree used in \ref predArc() and \ref predMap().
|
|
///
|
|
/// \pre Either \ref run() or \ref init() must be called before
|
|
/// using this function.
|
|
Node predNode(Node v) const {
|
|
return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]);
|
|
}
|
|
|
|
/// \brief Returns a const reference to the node map that stores the
|
|
/// distances of the nodes.
|
|
///
|
|
/// Returns a const reference to the node map that stores the distances
|
|
/// of the nodes calculated by the algorithm.
|
|
///
|
|
/// \pre Either \ref run() or \ref init() must be called before
|
|
/// using this function.
|
|
const DistMap &distMap() const { return *_dist;}
|
|
|
|
/// \brief Returns a const reference to the node map that stores the
|
|
/// predecessor arcs.
|
|
///
|
|
/// Returns a const reference to the node map that stores the predecessor
|
|
/// arcs, which form the shortest path tree (forest).
|
|
///
|
|
/// \pre Either \ref run() or \ref init() must be called before
|
|
/// using this function.
|
|
const PredMap &predMap() const { return *_pred; }
|
|
|
|
/// \brief Checks if a node is reached from the root(s).
|
|
///
|
|
/// Returns \c true if \c v is reached from the root(s).
|
|
///
|
|
/// \pre Either \ref run() or \ref init() must be called before
|
|
/// using this function.
|
|
bool reached(Node v) const {
|
|
return (*_dist)[v] != OperationTraits::infinity();
|
|
}
|
|
|
|
/// \brief Gives back a negative cycle.
|
|
///
|
|
/// This function gives back a directed cycle with negative total
|
|
/// length if the algorithm has already found one.
|
|
/// Otherwise it gives back an empty path.
|
|
lemon::Path<Digraph> negativeCycle() const {
|
|
typename Digraph::template NodeMap<int> state(*_gr, -1);
|
|
lemon::Path<Digraph> cycle;
|
|
for (int i = 0; i < int(_process.size()); ++i) {
|
|
if (state[_process[i]] != -1) continue;
|
|
for (Node v = _process[i]; (*_pred)[v] != INVALID;
|
|
v = _gr->source((*_pred)[v])) {
|
|
if (state[v] == i) {
|
|
cycle.addFront((*_pred)[v]);
|
|
for (Node u = _gr->source((*_pred)[v]); u != v;
|
|
u = _gr->source((*_pred)[u])) {
|
|
cycle.addFront((*_pred)[u]);
|
|
}
|
|
return cycle;
|
|
}
|
|
else if (state[v] >= 0) {
|
|
break;
|
|
}
|
|
state[v] = i;
|
|
}
|
|
}
|
|
return cycle;
|
|
}
|
|
|
|
///@}
|
|
};
|
|
|
|
/// \brief Default traits class of bellmanFord() function.
|
|
///
|
|
/// Default traits class of bellmanFord() function.
|
|
/// \tparam GR The type of the digraph.
|
|
/// \tparam LEN The type of the length map.
|
|
template <typename GR, typename LEN>
|
|
struct BellmanFordWizardDefaultTraits {
|
|
/// The type of the digraph the algorithm runs on.
|
|
typedef GR Digraph;
|
|
|
|
/// \brief The type of the map that stores the arc lengths.
|
|
///
|
|
/// The type of the map that stores the arc lengths.
|
|
/// It must meet the \ref concepts::ReadMap "ReadMap" concept.
|
|
typedef LEN LengthMap;
|
|
|
|
/// The type of the arc lengths.
|
|
typedef typename LEN::Value Value;
|
|
|
|
/// \brief Operation traits for Bellman-Ford algorithm.
|
|
///
|
|
/// It defines the used operations and the infinity value for the
|
|
/// given \c Value type.
|
|
/// \see BellmanFordDefaultOperationTraits
|
|
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
|
|
|
|
/// \brief The type of the map that stores the last
|
|
/// arcs of the shortest paths.
|
|
///
|
|
/// The type of the map that stores the last arcs of the shortest paths.
|
|
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
|
|
typedef typename GR::template NodeMap<typename GR::Arc> PredMap;
|
|
|
|
/// \brief Instantiates a \c PredMap.
|
|
///
|
|
/// This function instantiates a \ref PredMap.
|
|
/// \param g is the digraph to which we would like to define the
|
|
/// \ref PredMap.
|
|
static PredMap *createPredMap(const GR &g) {
|
|
return new PredMap(g);
|
|
}
|
|
|
|
/// \brief The type of the map that stores the distances of the nodes.
|
|
///
|
|
/// The type of the map that stores the distances of the nodes.
|
|
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
|
|
typedef typename GR::template NodeMap<Value> DistMap;
|
|
|
|
/// \brief Instantiates a \c DistMap.
|
|
///
|
|
/// This function instantiates a \ref DistMap.
|
|
/// \param g is the digraph to which we would like to define the
|
|
/// \ref DistMap.
|
|
static DistMap *createDistMap(const GR &g) {
|
|
return new DistMap(g);
|
|
}
|
|
|
|
///The type of the shortest paths.
|
|
|
|
///The type of the shortest paths.
|
|
///It must meet the \ref concepts::Path "Path" concept.
|
|
typedef lemon::Path<Digraph> Path;
|
|
};
|
|
|
|
/// \brief Default traits class used by BellmanFordWizard.
|
|
///
|
|
/// Default traits class used by BellmanFordWizard.
|
|
/// \tparam GR The type of the digraph.
|
|
/// \tparam LEN The type of the length map.
|
|
template <typename GR, typename LEN>
|
|
class BellmanFordWizardBase
|
|
: public BellmanFordWizardDefaultTraits<GR, LEN> {
|
|
|
|
typedef BellmanFordWizardDefaultTraits<GR, LEN> Base;
|
|
protected:
|
|
// Type of the nodes in the digraph.
|
|
typedef typename Base::Digraph::Node Node;
|
|
|
|
// Pointer to the underlying digraph.
|
|
void *_graph;
|
|
// Pointer to the length map
|
|
void *_length;
|
|
// Pointer to the map of predecessors arcs.
|
|
void *_pred;
|
|
// Pointer to the map of distances.
|
|
void *_dist;
|
|
//Pointer to the shortest path to the target node.
|
|
void *_path;
|
|
//Pointer to the distance of the target node.
|
|
void *_di;
|
|
|
|
public:
|
|
/// Constructor.
|
|
|
|
/// This constructor does not require parameters, it initiates
|
|
/// all of the attributes to default values \c 0.
|
|
BellmanFordWizardBase() :
|
|
_graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {}
|
|
|
|
/// Constructor.
|
|
|
|
/// This constructor requires two parameters,
|
|
/// others are initiated to \c 0.
|
|
/// \param gr The digraph the algorithm runs on.
|
|
/// \param len The length map.
|
|
BellmanFordWizardBase(const GR& gr,
|
|
const LEN& len) :
|
|
_graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))),
|
|
_length(reinterpret_cast<void*>(const_cast<LEN*>(&len))),
|
|
_pred(0), _dist(0), _path(0), _di(0) {}
|
|
|
|
};
|
|
|
|
/// \brief Auxiliary class for the function-type interface of the
|
|
/// \ref BellmanFord "Bellman-Ford" algorithm.
|
|
///
|
|
/// This auxiliary class is created to implement the
|
|
/// \ref bellmanFord() "function-type interface" of the
|
|
/// \ref BellmanFord "Bellman-Ford" algorithm.
|
|
/// It does not have own \ref run() method, it uses the
|
|
/// functions and features of the plain \ref BellmanFord.
|
|
///
|
|
/// This class should only be used through the \ref bellmanFord()
|
|
/// function, which makes it easier to use the algorithm.
|
|
///
|
|
/// \tparam TR The traits class that defines various types used by the
|
|
/// algorithm.
|
|
template<class TR>
|
|
class BellmanFordWizard : public TR {
|
|
typedef TR Base;
|
|
|
|
typedef typename TR::Digraph Digraph;
|
|
|
|
typedef typename Digraph::Node Node;
|
|
typedef typename Digraph::NodeIt NodeIt;
|
|
typedef typename Digraph::Arc Arc;
|
|
typedef typename Digraph::OutArcIt ArcIt;
|
|
|
|
typedef typename TR::LengthMap LengthMap;
|
|
typedef typename LengthMap::Value Value;
|
|
typedef typename TR::PredMap PredMap;
|
|
typedef typename TR::DistMap DistMap;
|
|
typedef typename TR::Path Path;
|
|
|
|
public:
|
|
/// Constructor.
|
|
BellmanFordWizard() : TR() {}
|
|
|
|
/// \brief Constructor that requires parameters.
|
|
///
|
|
/// Constructor that requires parameters.
|
|
/// These parameters will be the default values for the traits class.
|
|
/// \param gr The digraph the algorithm runs on.
|
|
/// \param len The length map.
|
|
BellmanFordWizard(const Digraph& gr, const LengthMap& len)
|
|
: TR(gr, len) {}
|
|
|
|
/// \brief Copy constructor
|
|
BellmanFordWizard(const TR &b) : TR(b) {}
|
|
|
|
~BellmanFordWizard() {}
|
|
|
|
/// \brief Runs the Bellman-Ford algorithm from the given source node.
|
|
///
|
|
/// This method runs the Bellman-Ford algorithm from the given source
|
|
/// node in order to compute the shortest path to each node.
|
|
void run(Node s) {
|
|
BellmanFord<Digraph,LengthMap,TR>
|
|
bf(*reinterpret_cast<const Digraph*>(Base::_graph),
|
|
*reinterpret_cast<const LengthMap*>(Base::_length));
|
|
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
|
|
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
|
|
bf.run(s);
|
|
}
|
|
|
|
/// \brief Runs the Bellman-Ford algorithm to find the shortest path
|
|
/// between \c s and \c t.
|
|
///
|
|
/// This method runs the Bellman-Ford algorithm from node \c s
|
|
/// in order to compute the shortest path to node \c t.
|
|
/// Actually, it computes the shortest path to each node, but using
|
|
/// this function you can retrieve the distance and the shortest path
|
|
/// for a single target node easier.
|
|
///
|
|
/// \return \c true if \c t is reachable form \c s.
|
|
bool run(Node s, Node t) {
|
|
BellmanFord<Digraph,LengthMap,TR>
|
|
bf(*reinterpret_cast<const Digraph*>(Base::_graph),
|
|
*reinterpret_cast<const LengthMap*>(Base::_length));
|
|
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
|
|
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
|
|
bf.run(s);
|
|
if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t);
|
|
if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t);
|
|
return bf.reached(t);
|
|
}
|
|
|
|
template<class T>
|
|
struct SetPredMapBase : public Base {
|
|
typedef T PredMap;
|
|
static PredMap *createPredMap(const Digraph &) { return 0; };
|
|
SetPredMapBase(const TR &b) : TR(b) {}
|
|
};
|
|
|
|
/// \brief \ref named-templ-param "Named parameter" for setting
|
|
/// the predecessor map.
|
|
///
|
|
/// \ref named-templ-param "Named parameter" for setting
|
|
/// the map that stores the predecessor arcs of the nodes.
|
|
template<class T>
|
|
BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) {
|
|
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
|
|
return BellmanFordWizard<SetPredMapBase<T> >(*this);
|
|
}
|
|
|
|
template<class T>
|
|
struct SetDistMapBase : public Base {
|
|
typedef T DistMap;
|
|
static DistMap *createDistMap(const Digraph &) { return 0; };
|
|
SetDistMapBase(const TR &b) : TR(b) {}
|
|
};
|
|
|
|
/// \brief \ref named-templ-param "Named parameter" for setting
|
|
/// the distance map.
|
|
///
|
|
/// \ref named-templ-param "Named parameter" for setting
|
|
/// the map that stores the distances of the nodes calculated
|
|
/// by the algorithm.
|
|
template<class T>
|
|
BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) {
|
|
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
|
|
return BellmanFordWizard<SetDistMapBase<T> >(*this);
|
|
}
|
|
|
|
template<class T>
|
|
struct SetPathBase : public Base {
|
|
typedef T Path;
|
|
SetPathBase(const TR &b) : TR(b) {}
|
|
};
|
|
|
|
/// \brief \ref named-func-param "Named parameter" for getting
|
|
/// the shortest path to the target node.
|
|
///
|
|
/// \ref named-func-param "Named parameter" for getting
|
|
/// the shortest path to the target node.
|
|
template<class T>
|
|
BellmanFordWizard<SetPathBase<T> > path(const T &t)
|
|
{
|
|
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
|
|
return BellmanFordWizard<SetPathBase<T> >(*this);
|
|
}
|
|
|
|
/// \brief \ref named-func-param "Named parameter" for getting
|
|
/// the distance of the target node.
|
|
///
|
|
/// \ref named-func-param "Named parameter" for getting
|
|
/// the distance of the target node.
|
|
BellmanFordWizard dist(const Value &d)
|
|
{
|
|
Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d));
|
|
return *this;
|
|
}
|
|
|
|
};
|
|
|
|
/// \brief Function type interface for the \ref BellmanFord "Bellman-Ford"
|
|
/// algorithm.
|
|
///
|
|
/// \ingroup shortest_path
|
|
/// Function type interface for the \ref BellmanFord "Bellman-Ford"
|
|
/// algorithm.
|
|
///
|
|
/// This function also has several \ref named-templ-func-param
|
|
/// "named parameters", they are declared as the members of class
|
|
/// \ref BellmanFordWizard.
|
|
/// The following examples show how to use these parameters.
|
|
/// \code
|
|
/// // Compute shortest path from node s to each node
|
|
/// bellmanFord(g,length).predMap(preds).distMap(dists).run(s);
|
|
///
|
|
/// // Compute shortest path from s to t
|
|
/// bool reached = bellmanFord(g,length).path(p).dist(d).run(s,t);
|
|
/// \endcode
|
|
/// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()"
|
|
/// to the end of the parameter list.
|
|
/// \sa BellmanFordWizard
|
|
/// \sa BellmanFord
|
|
template<typename GR, typename LEN>
|
|
BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >
|
|
bellmanFord(const GR& digraph,
|
|
const LEN& length)
|
|
{
|
|
return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length);
|
|
}
|
|
|
|
} //END OF NAMESPACE LEMON
|
|
|
|
#endif
|
|
|