446 lines
13 KiB
C++
Executable File
446 lines
13 KiB
C++
Executable File
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
|
*
|
|
* This file is a part of LEMON, a generic C++ optimization library.
|
|
*
|
|
* Copyright (C) 2003-2010
|
|
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
|
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
|
*
|
|
* Permission to use, modify and distribute this software is granted
|
|
* provided that this copyright notice appears in all copies. For
|
|
* precise terms see the accompanying LICENSE file.
|
|
*
|
|
* This software is provided "AS IS" with no warranty of any kind,
|
|
* express or implied, and with no claim as to its suitability for any
|
|
* purpose.
|
|
*
|
|
*/
|
|
|
|
#ifndef LEMON_BINOMIAL_HEAP_H
|
|
#define LEMON_BINOMIAL_HEAP_H
|
|
|
|
///\file
|
|
///\ingroup heaps
|
|
///\brief Binomial Heap implementation.
|
|
|
|
#include <vector>
|
|
#include <utility>
|
|
#include <functional>
|
|
#include <lemon/math.h>
|
|
#include <lemon/counter.h>
|
|
|
|
namespace lemon {
|
|
|
|
/// \ingroup heaps
|
|
///
|
|
///\brief Binomial heap data structure.
|
|
///
|
|
/// This class implements the \e binomial \e heap data structure.
|
|
/// It fully conforms to the \ref concepts::Heap "heap concept".
|
|
///
|
|
/// The methods \ref increase() and \ref erase() are not efficient
|
|
/// in a binomial heap. In case of many calls of these operations,
|
|
/// it is better to use other heap structure, e.g. \ref BinHeap
|
|
/// "binary heap".
|
|
///
|
|
/// \tparam PR Type of the priorities of the items.
|
|
/// \tparam IM A read-writable item map with \c int values, used
|
|
/// internally to handle the cross references.
|
|
/// \tparam CMP A functor class for comparing the priorities.
|
|
/// The default is \c std::less<PR>.
|
|
#ifdef DOXYGEN
|
|
template <typename PR, typename IM, typename CMP>
|
|
#else
|
|
template <typename PR, typename IM, typename CMP = std::less<PR> >
|
|
#endif
|
|
class BinomialHeap {
|
|
public:
|
|
/// Type of the item-int map.
|
|
typedef IM ItemIntMap;
|
|
/// Type of the priorities.
|
|
typedef PR Prio;
|
|
/// Type of the items stored in the heap.
|
|
typedef typename ItemIntMap::Key Item;
|
|
/// Functor type for comparing the priorities.
|
|
typedef CMP Compare;
|
|
|
|
/// \brief Type to represent the states of the items.
|
|
///
|
|
/// Each item has a state associated to it. It can be "in heap",
|
|
/// "pre-heap" or "post-heap". The latter two are indifferent from the
|
|
/// heap's point of view, but may be useful to the user.
|
|
///
|
|
/// The item-int map must be initialized in such way that it assigns
|
|
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
|
|
enum State {
|
|
IN_HEAP = 0, ///< = 0.
|
|
PRE_HEAP = -1, ///< = -1.
|
|
POST_HEAP = -2 ///< = -2.
|
|
};
|
|
|
|
private:
|
|
class Store;
|
|
|
|
std::vector<Store> _data;
|
|
int _min, _head;
|
|
ItemIntMap &_iim;
|
|
Compare _comp;
|
|
int _num_items;
|
|
|
|
public:
|
|
/// \brief Constructor.
|
|
///
|
|
/// Constructor.
|
|
/// \param map A map that assigns \c int values to the items.
|
|
/// It is used internally to handle the cross references.
|
|
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
|
|
explicit BinomialHeap(ItemIntMap &map)
|
|
: _min(0), _head(-1), _iim(map), _num_items(0) {}
|
|
|
|
/// \brief Constructor.
|
|
///
|
|
/// Constructor.
|
|
/// \param map A map that assigns \c int values to the items.
|
|
/// It is used internally to handle the cross references.
|
|
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
|
|
/// \param comp The function object used for comparing the priorities.
|
|
BinomialHeap(ItemIntMap &map, const Compare &comp)
|
|
: _min(0), _head(-1), _iim(map), _comp(comp), _num_items(0) {}
|
|
|
|
/// \brief The number of items stored in the heap.
|
|
///
|
|
/// This function returns the number of items stored in the heap.
|
|
int size() const { return _num_items; }
|
|
|
|
/// \brief Check if the heap is empty.
|
|
///
|
|
/// This function returns \c true if the heap is empty.
|
|
bool empty() const { return _num_items==0; }
|
|
|
|
/// \brief Make the heap empty.
|
|
///
|
|
/// This functon makes the heap empty.
|
|
/// It does not change the cross reference map. If you want to reuse
|
|
/// a heap that is not surely empty, you should first clear it and
|
|
/// then you should set the cross reference map to \c PRE_HEAP
|
|
/// for each item.
|
|
void clear() {
|
|
_data.clear(); _min=0; _num_items=0; _head=-1;
|
|
}
|
|
|
|
/// \brief Set the priority of an item or insert it, if it is
|
|
/// not stored in the heap.
|
|
///
|
|
/// This method sets the priority of the given item if it is
|
|
/// already stored in the heap. Otherwise it inserts the given
|
|
/// item into the heap with the given priority.
|
|
/// \param item The item.
|
|
/// \param value The priority.
|
|
void set (const Item& item, const Prio& value) {
|
|
int i=_iim[item];
|
|
if ( i >= 0 && _data[i].in ) {
|
|
if ( _comp(value, _data[i].prio) ) decrease(item, value);
|
|
if ( _comp(_data[i].prio, value) ) increase(item, value);
|
|
} else push(item, value);
|
|
}
|
|
|
|
/// \brief Insert an item into the heap with the given priority.
|
|
///
|
|
/// This function inserts the given item into the heap with the
|
|
/// given priority.
|
|
/// \param item The item to insert.
|
|
/// \param value The priority of the item.
|
|
/// \pre \e item must not be stored in the heap.
|
|
void push (const Item& item, const Prio& value) {
|
|
int i=_iim[item];
|
|
if ( i<0 ) {
|
|
int s=_data.size();
|
|
_iim.set( item,s );
|
|
Store st;
|
|
st.name=item;
|
|
st.prio=value;
|
|
_data.push_back(st);
|
|
i=s;
|
|
}
|
|
else {
|
|
_data[i].parent=_data[i].right_neighbor=_data[i].child=-1;
|
|
_data[i].degree=0;
|
|
_data[i].in=true;
|
|
_data[i].prio=value;
|
|
}
|
|
|
|
if( 0==_num_items ) {
|
|
_head=i;
|
|
_min=i;
|
|
} else {
|
|
merge(i);
|
|
if( _comp(_data[i].prio, _data[_min].prio) ) _min=i;
|
|
}
|
|
++_num_items;
|
|
}
|
|
|
|
/// \brief Return the item having minimum priority.
|
|
///
|
|
/// This function returns the item having minimum priority.
|
|
/// \pre The heap must be non-empty.
|
|
Item top() const { return _data[_min].name; }
|
|
|
|
/// \brief The minimum priority.
|
|
///
|
|
/// This function returns the minimum priority.
|
|
/// \pre The heap must be non-empty.
|
|
Prio prio() const { return _data[_min].prio; }
|
|
|
|
/// \brief The priority of the given item.
|
|
///
|
|
/// This function returns the priority of the given item.
|
|
/// \param item The item.
|
|
/// \pre \e item must be in the heap.
|
|
const Prio& operator[](const Item& item) const {
|
|
return _data[_iim[item]].prio;
|
|
}
|
|
|
|
/// \brief Remove the item having minimum priority.
|
|
///
|
|
/// This function removes the item having minimum priority.
|
|
/// \pre The heap must be non-empty.
|
|
void pop() {
|
|
_data[_min].in=false;
|
|
|
|
int head_child=-1;
|
|
if ( _data[_min].child!=-1 ) {
|
|
int child=_data[_min].child;
|
|
int neighb;
|
|
while( child!=-1 ) {
|
|
neighb=_data[child].right_neighbor;
|
|
_data[child].parent=-1;
|
|
_data[child].right_neighbor=head_child;
|
|
head_child=child;
|
|
child=neighb;
|
|
}
|
|
}
|
|
|
|
if ( _data[_head].right_neighbor==-1 ) {
|
|
// there was only one root
|
|
_head=head_child;
|
|
}
|
|
else {
|
|
// there were more roots
|
|
if( _head!=_min ) { unlace(_min); }
|
|
else { _head=_data[_head].right_neighbor; }
|
|
merge(head_child);
|
|
}
|
|
_min=findMin();
|
|
--_num_items;
|
|
}
|
|
|
|
/// \brief Remove the given item from the heap.
|
|
///
|
|
/// This function removes the given item from the heap if it is
|
|
/// already stored.
|
|
/// \param item The item to delete.
|
|
/// \pre \e item must be in the heap.
|
|
void erase (const Item& item) {
|
|
int i=_iim[item];
|
|
if ( i >= 0 && _data[i].in ) {
|
|
decrease( item, _data[_min].prio-1 );
|
|
pop();
|
|
}
|
|
}
|
|
|
|
/// \brief Decrease the priority of an item to the given value.
|
|
///
|
|
/// This function decreases the priority of an item to the given value.
|
|
/// \param item The item.
|
|
/// \param value The priority.
|
|
/// \pre \e item must be stored in the heap with priority at least \e value.
|
|
void decrease (Item item, const Prio& value) {
|
|
int i=_iim[item];
|
|
int p=_data[i].parent;
|
|
_data[i].prio=value;
|
|
|
|
while( p!=-1 && _comp(value, _data[p].prio) ) {
|
|
_data[i].name=_data[p].name;
|
|
_data[i].prio=_data[p].prio;
|
|
_data[p].name=item;
|
|
_data[p].prio=value;
|
|
_iim[_data[i].name]=i;
|
|
i=p;
|
|
p=_data[p].parent;
|
|
}
|
|
_iim[item]=i;
|
|
if ( _comp(value, _data[_min].prio) ) _min=i;
|
|
}
|
|
|
|
/// \brief Increase the priority of an item to the given value.
|
|
///
|
|
/// This function increases the priority of an item to the given value.
|
|
/// \param item The item.
|
|
/// \param value The priority.
|
|
/// \pre \e item must be stored in the heap with priority at most \e value.
|
|
void increase (Item item, const Prio& value) {
|
|
erase(item);
|
|
push(item, value);
|
|
}
|
|
|
|
/// \brief Return the state of an item.
|
|
///
|
|
/// This method returns \c PRE_HEAP if the given item has never
|
|
/// been in the heap, \c IN_HEAP if it is in the heap at the moment,
|
|
/// and \c POST_HEAP otherwise.
|
|
/// In the latter case it is possible that the item will get back
|
|
/// to the heap again.
|
|
/// \param item The item.
|
|
State state(const Item &item) const {
|
|
int i=_iim[item];
|
|
if( i>=0 ) {
|
|
if ( _data[i].in ) i=0;
|
|
else i=-2;
|
|
}
|
|
return State(i);
|
|
}
|
|
|
|
/// \brief Set the state of an item in the heap.
|
|
///
|
|
/// This function sets the state of the given item in the heap.
|
|
/// It can be used to manually clear the heap when it is important
|
|
/// to achive better time complexity.
|
|
/// \param i The item.
|
|
/// \param st The state. It should not be \c IN_HEAP.
|
|
void state(const Item& i, State st) {
|
|
switch (st) {
|
|
case POST_HEAP:
|
|
case PRE_HEAP:
|
|
if (state(i) == IN_HEAP) {
|
|
erase(i);
|
|
}
|
|
_iim[i] = st;
|
|
break;
|
|
case IN_HEAP:
|
|
break;
|
|
}
|
|
}
|
|
|
|
private:
|
|
|
|
// Find the minimum of the roots
|
|
int findMin() {
|
|
if( _head!=-1 ) {
|
|
int min_loc=_head, min_val=_data[_head].prio;
|
|
for( int x=_data[_head].right_neighbor; x!=-1;
|
|
x=_data[x].right_neighbor ) {
|
|
if( _comp( _data[x].prio,min_val ) ) {
|
|
min_val=_data[x].prio;
|
|
min_loc=x;
|
|
}
|
|
}
|
|
return min_loc;
|
|
}
|
|
else return -1;
|
|
}
|
|
|
|
// Merge the heap with another heap starting at the given position
|
|
void merge(int a) {
|
|
if( _head==-1 || a==-1 ) return;
|
|
if( _data[a].right_neighbor==-1 &&
|
|
_data[a].degree<=_data[_head].degree ) {
|
|
_data[a].right_neighbor=_head;
|
|
_head=a;
|
|
} else {
|
|
interleave(a);
|
|
}
|
|
if( _data[_head].right_neighbor==-1 ) return;
|
|
|
|
int x=_head;
|
|
int x_prev=-1, x_next=_data[x].right_neighbor;
|
|
while( x_next!=-1 ) {
|
|
if( _data[x].degree!=_data[x_next].degree ||
|
|
( _data[x_next].right_neighbor!=-1 &&
|
|
_data[_data[x_next].right_neighbor].degree==_data[x].degree ) ) {
|
|
x_prev=x;
|
|
x=x_next;
|
|
}
|
|
else {
|
|
if( _comp(_data[x_next].prio,_data[x].prio) ) {
|
|
if( x_prev==-1 ) {
|
|
_head=x_next;
|
|
} else {
|
|
_data[x_prev].right_neighbor=x_next;
|
|
}
|
|
fuse(x,x_next);
|
|
x=x_next;
|
|
}
|
|
else {
|
|
_data[x].right_neighbor=_data[x_next].right_neighbor;
|
|
fuse(x_next,x);
|
|
}
|
|
}
|
|
x_next=_data[x].right_neighbor;
|
|
}
|
|
}
|
|
|
|
// Interleave the elements of the given list into the list of the roots
|
|
void interleave(int a) {
|
|
int p=_head, q=a;
|
|
int curr=_data.size();
|
|
_data.push_back(Store());
|
|
|
|
while( p!=-1 || q!=-1 ) {
|
|
if( q==-1 || ( p!=-1 && _data[p].degree<_data[q].degree ) ) {
|
|
_data[curr].right_neighbor=p;
|
|
curr=p;
|
|
p=_data[p].right_neighbor;
|
|
}
|
|
else {
|
|
_data[curr].right_neighbor=q;
|
|
curr=q;
|
|
q=_data[q].right_neighbor;
|
|
}
|
|
}
|
|
|
|
_head=_data.back().right_neighbor;
|
|
_data.pop_back();
|
|
}
|
|
|
|
// Lace node a under node b
|
|
void fuse(int a, int b) {
|
|
_data[a].parent=b;
|
|
_data[a].right_neighbor=_data[b].child;
|
|
_data[b].child=a;
|
|
|
|
++_data[b].degree;
|
|
}
|
|
|
|
// Unlace node a (if it has siblings)
|
|
void unlace(int a) {
|
|
int neighb=_data[a].right_neighbor;
|
|
int other=_head;
|
|
|
|
while( _data[other].right_neighbor!=a )
|
|
other=_data[other].right_neighbor;
|
|
_data[other].right_neighbor=neighb;
|
|
}
|
|
|
|
private:
|
|
|
|
class Store {
|
|
friend class BinomialHeap;
|
|
|
|
Item name;
|
|
int parent;
|
|
int right_neighbor;
|
|
int child;
|
|
int degree;
|
|
bool in;
|
|
Prio prio;
|
|
|
|
Store() : parent(-1), right_neighbor(-1), child(-1), degree(0),
|
|
in(true) {}
|
|
};
|
|
};
|
|
|
|
} //namespace lemon
|
|
|
|
#endif //LEMON_BINOMIAL_HEAP_H
|
|
|