dust3d/thirdparty/QuadriFlow/3rd/lemon-1.3.1/lemon/bits/variant.h

495 lines
14 KiB
C++
Executable File

/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_BITS_VARIANT_H
#define LEMON_BITS_VARIANT_H
#include <lemon/assert.h>
// \file
// \brief Variant types
namespace lemon {
namespace _variant_bits {
template <int left, int right>
struct CTMax {
static const int value = left < right ? right : left;
};
}
// \brief Simple Variant type for two types
//
// Simple Variant type for two types. The Variant type is a type-safe
// union. C++ has strong limitations for using unions, for
// example you cannot store a type with non-default constructor or
// destructor in a union. This class always knowns the current
// state of the variant and it cares for the proper construction
// and destruction.
template <typename _First, typename _Second>
class BiVariant {
public:
// \brief The \c First type.
typedef _First First;
// \brief The \c Second type.
typedef _Second Second;
// \brief Constructor
//
// This constructor initalizes to the default value of the \c First
// type.
BiVariant() {
flag = true;
new(reinterpret_cast<First*>(data)) First();
}
// \brief Constructor
//
// This constructor initalizes to the given value of the \c First
// type.
BiVariant(const First& f) {
flag = true;
new(reinterpret_cast<First*>(data)) First(f);
}
// \brief Constructor
//
// This constructor initalizes to the given value of the \c
// Second type.
BiVariant(const Second& s) {
flag = false;
new(reinterpret_cast<Second*>(data)) Second(s);
}
// \brief Copy constructor
//
// Copy constructor
BiVariant(const BiVariant& bivariant) {
flag = bivariant.flag;
if (flag) {
new(reinterpret_cast<First*>(data)) First(bivariant.first());
} else {
new(reinterpret_cast<Second*>(data)) Second(bivariant.second());
}
}
// \brief Destrcutor
//
// Destructor
~BiVariant() {
destroy();
}
// \brief Set to the default value of the \c First type.
//
// This function sets the variant to the default value of the \c
// First type.
BiVariant& setFirst() {
destroy();
flag = true;
new(reinterpret_cast<First*>(data)) First();
return *this;
}
// \brief Set to the given value of the \c First type.
//
// This function sets the variant to the given value of the \c
// First type.
BiVariant& setFirst(const First& f) {
destroy();
flag = true;
new(reinterpret_cast<First*>(data)) First(f);
return *this;
}
// \brief Set to the default value of the \c Second type.
//
// This function sets the variant to the default value of the \c
// Second type.
BiVariant& setSecond() {
destroy();
flag = false;
new(reinterpret_cast<Second*>(data)) Second();
return *this;
}
// \brief Set to the given value of the \c Second type.
//
// This function sets the variant to the given value of the \c
// Second type.
BiVariant& setSecond(const Second& s) {
destroy();
flag = false;
new(reinterpret_cast<Second*>(data)) Second(s);
return *this;
}
// \brief Operator form of the \c setFirst()
BiVariant& operator=(const First& f) {
return setFirst(f);
}
// \brief Operator form of the \c setSecond()
BiVariant& operator=(const Second& s) {
return setSecond(s);
}
// \brief Assign operator
BiVariant& operator=(const BiVariant& bivariant) {
if (this == &bivariant) return *this;
destroy();
flag = bivariant.flag;
if (flag) {
new(reinterpret_cast<First*>(data)) First(bivariant.first());
} else {
new(reinterpret_cast<Second*>(data)) Second(bivariant.second());
}
return *this;
}
// \brief Reference to the value
//
// Reference to the value of the \c First type.
// \pre The BiVariant should store value of \c First type.
First& first() {
LEMON_DEBUG(flag, "Variant wrong state");
return *reinterpret_cast<First*>(data);
}
// \brief Const reference to the value
//
// Const reference to the value of the \c First type.
// \pre The BiVariant should store value of \c First type.
const First& first() const {
LEMON_DEBUG(flag, "Variant wrong state");
return *reinterpret_cast<const First*>(data);
}
// \brief Operator form of the \c first()
operator First&() { return first(); }
// \brief Operator form of the const \c first()
operator const First&() const { return first(); }
// \brief Reference to the value
//
// Reference to the value of the \c Second type.
// \pre The BiVariant should store value of \c Second type.
Second& second() {
LEMON_DEBUG(!flag, "Variant wrong state");
return *reinterpret_cast<Second*>(data);
}
// \brief Const reference to the value
//
// Const reference to the value of the \c Second type.
// \pre The BiVariant should store value of \c Second type.
const Second& second() const {
LEMON_DEBUG(!flag, "Variant wrong state");
return *reinterpret_cast<const Second*>(data);
}
// \brief Operator form of the \c second()
operator Second&() { return second(); }
// \brief Operator form of the const \c second()
operator const Second&() const { return second(); }
// \brief %True when the variant is in the first state
//
// %True when the variant stores value of the \c First type.
bool firstState() const { return flag; }
// \brief %True when the variant is in the second state
//
// %True when the variant stores value of the \c Second type.
bool secondState() const { return !flag; }
private:
void destroy() {
if (flag) {
reinterpret_cast<First*>(data)->~First();
} else {
reinterpret_cast<Second*>(data)->~Second();
}
}
char data[_variant_bits::CTMax<sizeof(First), sizeof(Second)>::value];
bool flag;
};
namespace _variant_bits {
template <int _idx, typename _TypeMap>
struct Memory {
typedef typename _TypeMap::template Map<_idx>::Type Current;
static void destroy(int index, char* place) {
if (index == _idx) {
reinterpret_cast<Current*>(place)->~Current();
} else {
Memory<_idx - 1, _TypeMap>::destroy(index, place);
}
}
static void copy(int index, char* to, const char* from) {
if (index == _idx) {
new (reinterpret_cast<Current*>(to))
Current(reinterpret_cast<const Current*>(from));
} else {
Memory<_idx - 1, _TypeMap>::copy(index, to, from);
}
}
};
template <typename _TypeMap>
struct Memory<-1, _TypeMap> {
static void destroy(int, char*) {
LEMON_DEBUG(false, "Variant wrong index.");
}
static void copy(int, char*, const char*) {
LEMON_DEBUG(false, "Variant wrong index.");
}
};
template <int _idx, typename _TypeMap>
struct Size {
static const int value =
CTMax<sizeof(typename _TypeMap::template Map<_idx>::Type),
Size<_idx - 1, _TypeMap>::value>::value;
};
template <typename _TypeMap>
struct Size<0, _TypeMap> {
static const int value =
sizeof(typename _TypeMap::template Map<0>::Type);
};
}
// \brief Variant type
//
// Simple Variant type. The Variant type is a type-safe union.
// C++ has strong limitations for using unions, for example you
// cannot store type with non-default constructor or destructor in
// a union. This class always knowns the current state of the
// variant and it cares for the proper construction and
// destruction.
//
// \param _num The number of the types which can be stored in the
// variant type.
// \param _TypeMap This class describes the types of the Variant. The
// _TypeMap::Map<index>::Type should be a valid type for each index
// in the range {0, 1, ..., _num - 1}. The \c VariantTypeMap is helper
// class to define such type mappings up to 10 types.
//
// And the usage of the class:
//\code
// typedef Variant<3, VariantTypeMap<int, std::string, double> > MyVariant;
// MyVariant var;
// var.set<0>(12);
// std::cout << var.get<0>() << std::endl;
// var.set<1>("alpha");
// std::cout << var.get<1>() << std::endl;
// var.set<2>(0.75);
// std::cout << var.get<2>() << std::endl;
//\endcode
//
// The result of course:
//\code
// 12
// alpha
// 0.75
//\endcode
template <int _num, typename _TypeMap>
class Variant {
public:
static const int num = _num;
typedef _TypeMap TypeMap;
// \brief Constructor
//
// This constructor initalizes to the default value of the \c type
// with 0 index.
Variant() {
flag = 0;
new(reinterpret_cast<typename TypeMap::template Map<0>::Type*>(data))
typename TypeMap::template Map<0>::Type();
}
// \brief Copy constructor
//
// Copy constructor
Variant(const Variant& variant) {
flag = variant.flag;
_variant_bits::Memory<num - 1, TypeMap>::copy(flag, data, variant.data);
}
// \brief Assign operator
//
// Assign operator
Variant& operator=(const Variant& variant) {
if (this == &variant) return *this;
_variant_bits::Memory<num - 1, TypeMap>::
destroy(flag, data);
flag = variant.flag;
_variant_bits::Memory<num - 1, TypeMap>::
copy(flag, data, variant.data);
return *this;
}
// \brief Destrcutor
//
// Destructor
~Variant() {
_variant_bits::Memory<num - 1, TypeMap>::destroy(flag, data);
}
// \brief Set to the default value of the type with \c _idx index.
//
// This function sets the variant to the default value of the
// type with \c _idx index.
template <int _idx>
Variant& set() {
_variant_bits::Memory<num - 1, TypeMap>::destroy(flag, data);
flag = _idx;
new(reinterpret_cast<typename TypeMap::template Map<_idx>::Type*>(data))
typename TypeMap::template Map<_idx>::Type();
return *this;
}
// \brief Set to the given value of the type with \c _idx index.
//
// This function sets the variant to the given value of the type
// with \c _idx index.
template <int _idx>
Variant& set(const typename _TypeMap::template Map<_idx>::Type& init) {
_variant_bits::Memory<num - 1, TypeMap>::destroy(flag, data);
flag = _idx;
new(reinterpret_cast<typename TypeMap::template Map<_idx>::Type*>(data))
typename TypeMap::template Map<_idx>::Type(init);
return *this;
}
// \brief Gets the current value of the type with \c _idx index.
//
// Gets the current value of the type with \c _idx index.
template <int _idx>
const typename TypeMap::template Map<_idx>::Type& get() const {
LEMON_DEBUG(_idx == flag, "Variant wrong index");
return *reinterpret_cast<const typename TypeMap::
template Map<_idx>::Type*>(data);
}
// \brief Gets the current value of the type with \c _idx index.
//
// Gets the current value of the type with \c _idx index.
template <int _idx>
typename _TypeMap::template Map<_idx>::Type& get() {
LEMON_DEBUG(_idx == flag, "Variant wrong index");
return *reinterpret_cast<typename TypeMap::template Map<_idx>::Type*>
(data);
}
// \brief Returns the current state of the variant.
//
// Returns the current state of the variant.
int state() const {
return flag;
}
private:
char data[_variant_bits::Size<num - 1, TypeMap>::value];
int flag;
};
namespace _variant_bits {
template <int _index, typename _List>
struct Get {
typedef typename Get<_index - 1, typename _List::Next>::Type Type;
};
template <typename _List>
struct Get<0, _List> {
typedef typename _List::Type Type;
};
struct List {};
template <typename _Type, typename _List>
struct Insert {
typedef _List Next;
typedef _Type Type;
};
template <int _idx, typename _T0, typename _T1, typename _T2,
typename _T3, typename _T4, typename _T5, typename _T6,
typename _T7, typename _T8, typename _T9>
struct Mapper {
typedef List L10;
typedef Insert<_T9, L10> L9;
typedef Insert<_T8, L9> L8;
typedef Insert<_T7, L8> L7;
typedef Insert<_T6, L7> L6;
typedef Insert<_T5, L6> L5;
typedef Insert<_T4, L5> L4;
typedef Insert<_T3, L4> L3;
typedef Insert<_T2, L3> L2;
typedef Insert<_T1, L2> L1;
typedef Insert<_T0, L1> L0;
typedef typename Get<_idx, L0>::Type Type;
};
}
// \brief Helper class for Variant
//
// Helper class to define type mappings for Variant. This class
// converts the template parameters to be mappable by integer.
// \see Variant
template <
typename _T0,
typename _T1 = void, typename _T2 = void, typename _T3 = void,
typename _T4 = void, typename _T5 = void, typename _T6 = void,
typename _T7 = void, typename _T8 = void, typename _T9 = void>
struct VariantTypeMap {
template <int _idx>
struct Map {
typedef typename _variant_bits::
Mapper<_idx, _T0, _T1, _T2, _T3, _T4, _T5, _T6, _T7, _T8, _T9>::Type
Type;
};
};
}
#endif