dust3d/thirdparty/QuadriFlow/3rd/lemon-1.3.1/lemon/bucket_heap.h

595 lines
17 KiB
C++
Executable File

/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2010
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_BUCKET_HEAP_H
#define LEMON_BUCKET_HEAP_H
///\ingroup heaps
///\file
///\brief Bucket heap implementation.
#include <vector>
#include <utility>
#include <functional>
namespace lemon {
namespace _bucket_heap_bits {
template <bool MIN>
struct DirectionTraits {
static bool less(int left, int right) {
return left < right;
}
static void increase(int& value) {
++value;
}
};
template <>
struct DirectionTraits<false> {
static bool less(int left, int right) {
return left > right;
}
static void increase(int& value) {
--value;
}
};
}
/// \ingroup heaps
///
/// \brief Bucket heap data structure.
///
/// This class implements the \e bucket \e heap data structure.
/// It practically conforms to the \ref concepts::Heap "heap concept",
/// but it has some limitations.
///
/// The bucket heap is a very simple structure. It can store only
/// \c int priorities and it maintains a list of items for each priority
/// in the range <tt>[0..C)</tt>. So it should only be used when the
/// priorities are small. It is not intended to use as a Dijkstra heap.
///
/// \tparam IM A read-writable item map with \c int values, used
/// internally to handle the cross references.
/// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap.
/// The default is \e min-heap. If this parameter is set to \c false,
/// then the comparison is reversed, so the top(), prio() and pop()
/// functions deal with the item having maximum priority instead of the
/// minimum.
///
/// \sa SimpleBucketHeap
template <typename IM, bool MIN = true>
class BucketHeap {
public:
/// Type of the item-int map.
typedef IM ItemIntMap;
/// Type of the priorities.
typedef int Prio;
/// Type of the items stored in the heap.
typedef typename ItemIntMap::Key Item;
/// Type of the item-priority pairs.
typedef std::pair<Item,Prio> Pair;
private:
typedef _bucket_heap_bits::DirectionTraits<MIN> Direction;
public:
/// \brief Type to represent the states of the items.
///
/// Each item has a state associated to it. It can be "in heap",
/// "pre-heap" or "post-heap". The latter two are indifferent from the
/// heap's point of view, but may be useful to the user.
///
/// The item-int map must be initialized in such way that it assigns
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
enum State {
IN_HEAP = 0, ///< = 0.
PRE_HEAP = -1, ///< = -1.
POST_HEAP = -2 ///< = -2.
};
public:
/// \brief Constructor.
///
/// Constructor.
/// \param map A map that assigns \c int values to the items.
/// It is used internally to handle the cross references.
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
explicit BucketHeap(ItemIntMap &map) : _iim(map), _minimum(0) {}
/// \brief The number of items stored in the heap.
///
/// This function returns the number of items stored in the heap.
int size() const { return _data.size(); }
/// \brief Check if the heap is empty.
///
/// This function returns \c true if the heap is empty.
bool empty() const { return _data.empty(); }
/// \brief Make the heap empty.
///
/// This functon makes the heap empty.
/// It does not change the cross reference map. If you want to reuse
/// a heap that is not surely empty, you should first clear it and
/// then you should set the cross reference map to \c PRE_HEAP
/// for each item.
void clear() {
_data.clear(); _first.clear(); _minimum = 0;
}
private:
void relocateLast(int idx) {
if (idx + 1 < int(_data.size())) {
_data[idx] = _data.back();
if (_data[idx].prev != -1) {
_data[_data[idx].prev].next = idx;
} else {
_first[_data[idx].value] = idx;
}
if (_data[idx].next != -1) {
_data[_data[idx].next].prev = idx;
}
_iim[_data[idx].item] = idx;
}
_data.pop_back();
}
void unlace(int idx) {
if (_data[idx].prev != -1) {
_data[_data[idx].prev].next = _data[idx].next;
} else {
_first[_data[idx].value] = _data[idx].next;
}
if (_data[idx].next != -1) {
_data[_data[idx].next].prev = _data[idx].prev;
}
}
void lace(int idx) {
if (int(_first.size()) <= _data[idx].value) {
_first.resize(_data[idx].value + 1, -1);
}
_data[idx].next = _first[_data[idx].value];
if (_data[idx].next != -1) {
_data[_data[idx].next].prev = idx;
}
_first[_data[idx].value] = idx;
_data[idx].prev = -1;
}
public:
/// \brief Insert a pair of item and priority into the heap.
///
/// This function inserts \c p.first to the heap with priority
/// \c p.second.
/// \param p The pair to insert.
/// \pre \c p.first must not be stored in the heap.
void push(const Pair& p) {
push(p.first, p.second);
}
/// \brief Insert an item into the heap with the given priority.
///
/// This function inserts the given item into the heap with the
/// given priority.
/// \param i The item to insert.
/// \param p The priority of the item.
/// \pre \e i must not be stored in the heap.
void push(const Item &i, const Prio &p) {
int idx = _data.size();
_iim[i] = idx;
_data.push_back(BucketItem(i, p));
lace(idx);
if (Direction::less(p, _minimum)) {
_minimum = p;
}
}
/// \brief Return the item having minimum priority.
///
/// This function returns the item having minimum priority.
/// \pre The heap must be non-empty.
Item top() const {
while (_first[_minimum] == -1) {
Direction::increase(_minimum);
}
return _data[_first[_minimum]].item;
}
/// \brief The minimum priority.
///
/// This function returns the minimum priority.
/// \pre The heap must be non-empty.
Prio prio() const {
while (_first[_minimum] == -1) {
Direction::increase(_minimum);
}
return _minimum;
}
/// \brief Remove the item having minimum priority.
///
/// This function removes the item having minimum priority.
/// \pre The heap must be non-empty.
void pop() {
while (_first[_minimum] == -1) {
Direction::increase(_minimum);
}
int idx = _first[_minimum];
_iim[_data[idx].item] = -2;
unlace(idx);
relocateLast(idx);
}
/// \brief Remove the given item from the heap.
///
/// This function removes the given item from the heap if it is
/// already stored.
/// \param i The item to delete.
/// \pre \e i must be in the heap.
void erase(const Item &i) {
int idx = _iim[i];
_iim[_data[idx].item] = -2;
unlace(idx);
relocateLast(idx);
}
/// \brief The priority of the given item.
///
/// This function returns the priority of the given item.
/// \param i The item.
/// \pre \e i must be in the heap.
Prio operator[](const Item &i) const {
int idx = _iim[i];
return _data[idx].value;
}
/// \brief Set the priority of an item or insert it, if it is
/// not stored in the heap.
///
/// This method sets the priority of the given item if it is
/// already stored in the heap. Otherwise it inserts the given
/// item into the heap with the given priority.
/// \param i The item.
/// \param p The priority.
void set(const Item &i, const Prio &p) {
int idx = _iim[i];
if (idx < 0) {
push(i, p);
} else if (Direction::less(p, _data[idx].value)) {
decrease(i, p);
} else {
increase(i, p);
}
}
/// \brief Decrease the priority of an item to the given value.
///
/// This function decreases the priority of an item to the given value.
/// \param i The item.
/// \param p The priority.
/// \pre \e i must be stored in the heap with priority at least \e p.
void decrease(const Item &i, const Prio &p) {
int idx = _iim[i];
unlace(idx);
_data[idx].value = p;
if (Direction::less(p, _minimum)) {
_minimum = p;
}
lace(idx);
}
/// \brief Increase the priority of an item to the given value.
///
/// This function increases the priority of an item to the given value.
/// \param i The item.
/// \param p The priority.
/// \pre \e i must be stored in the heap with priority at most \e p.
void increase(const Item &i, const Prio &p) {
int idx = _iim[i];
unlace(idx);
_data[idx].value = p;
lace(idx);
}
/// \brief Return the state of an item.
///
/// This method returns \c PRE_HEAP if the given item has never
/// been in the heap, \c IN_HEAP if it is in the heap at the moment,
/// and \c POST_HEAP otherwise.
/// In the latter case it is possible that the item will get back
/// to the heap again.
/// \param i The item.
State state(const Item &i) const {
int idx = _iim[i];
if (idx >= 0) idx = 0;
return State(idx);
}
/// \brief Set the state of an item in the heap.
///
/// This function sets the state of the given item in the heap.
/// It can be used to manually clear the heap when it is important
/// to achive better time complexity.
/// \param i The item.
/// \param st The state. It should not be \c IN_HEAP.
void state(const Item& i, State st) {
switch (st) {
case POST_HEAP:
case PRE_HEAP:
if (state(i) == IN_HEAP) {
erase(i);
}
_iim[i] = st;
break;
case IN_HEAP:
break;
}
}
private:
struct BucketItem {
BucketItem(const Item& _item, int _value)
: item(_item), value(_value) {}
Item item;
int value;
int prev, next;
};
ItemIntMap& _iim;
std::vector<int> _first;
std::vector<BucketItem> _data;
mutable int _minimum;
}; // class BucketHeap
/// \ingroup heaps
///
/// \brief Simplified bucket heap data structure.
///
/// This class implements a simplified \e bucket \e heap data
/// structure. It does not provide some functionality, but it is
/// faster and simpler than BucketHeap. The main difference is
/// that BucketHeap stores a doubly-linked list for each key while
/// this class stores only simply-linked lists. It supports erasing
/// only for the item having minimum priority and it does not support
/// key increasing and decreasing.
///
/// Note that this implementation does not conform to the
/// \ref concepts::Heap "heap concept" due to the lack of some
/// functionality.
///
/// \tparam IM A read-writable item map with \c int values, used
/// internally to handle the cross references.
/// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap.
/// The default is \e min-heap. If this parameter is set to \c false,
/// then the comparison is reversed, so the top(), prio() and pop()
/// functions deal with the item having maximum priority instead of the
/// minimum.
///
/// \sa BucketHeap
template <typename IM, bool MIN = true >
class SimpleBucketHeap {
public:
/// Type of the item-int map.
typedef IM ItemIntMap;
/// Type of the priorities.
typedef int Prio;
/// Type of the items stored in the heap.
typedef typename ItemIntMap::Key Item;
/// Type of the item-priority pairs.
typedef std::pair<Item,Prio> Pair;
private:
typedef _bucket_heap_bits::DirectionTraits<MIN> Direction;
public:
/// \brief Type to represent the states of the items.
///
/// Each item has a state associated to it. It can be "in heap",
/// "pre-heap" or "post-heap". The latter two are indifferent from the
/// heap's point of view, but may be useful to the user.
///
/// The item-int map must be initialized in such way that it assigns
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
enum State {
IN_HEAP = 0, ///< = 0.
PRE_HEAP = -1, ///< = -1.
POST_HEAP = -2 ///< = -2.
};
public:
/// \brief Constructor.
///
/// Constructor.
/// \param map A map that assigns \c int values to the items.
/// It is used internally to handle the cross references.
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
explicit SimpleBucketHeap(ItemIntMap &map)
: _iim(map), _free(-1), _num(0), _minimum(0) {}
/// \brief The number of items stored in the heap.
///
/// This function returns the number of items stored in the heap.
int size() const { return _num; }
/// \brief Check if the heap is empty.
///
/// This function returns \c true if the heap is empty.
bool empty() const { return _num == 0; }
/// \brief Make the heap empty.
///
/// This functon makes the heap empty.
/// It does not change the cross reference map. If you want to reuse
/// a heap that is not surely empty, you should first clear it and
/// then you should set the cross reference map to \c PRE_HEAP
/// for each item.
void clear() {
_data.clear(); _first.clear(); _free = -1; _num = 0; _minimum = 0;
}
/// \brief Insert a pair of item and priority into the heap.
///
/// This function inserts \c p.first to the heap with priority
/// \c p.second.
/// \param p The pair to insert.
/// \pre \c p.first must not be stored in the heap.
void push(const Pair& p) {
push(p.first, p.second);
}
/// \brief Insert an item into the heap with the given priority.
///
/// This function inserts the given item into the heap with the
/// given priority.
/// \param i The item to insert.
/// \param p The priority of the item.
/// \pre \e i must not be stored in the heap.
void push(const Item &i, const Prio &p) {
int idx;
if (_free == -1) {
idx = _data.size();
_data.push_back(BucketItem(i));
} else {
idx = _free;
_free = _data[idx].next;
_data[idx].item = i;
}
_iim[i] = idx;
if (p >= int(_first.size())) _first.resize(p + 1, -1);
_data[idx].next = _first[p];
_first[p] = idx;
if (Direction::less(p, _minimum)) {
_minimum = p;
}
++_num;
}
/// \brief Return the item having minimum priority.
///
/// This function returns the item having minimum priority.
/// \pre The heap must be non-empty.
Item top() const {
while (_first[_minimum] == -1) {
Direction::increase(_minimum);
}
return _data[_first[_minimum]].item;
}
/// \brief The minimum priority.
///
/// This function returns the minimum priority.
/// \pre The heap must be non-empty.
Prio prio() const {
while (_first[_minimum] == -1) {
Direction::increase(_minimum);
}
return _minimum;
}
/// \brief Remove the item having minimum priority.
///
/// This function removes the item having minimum priority.
/// \pre The heap must be non-empty.
void pop() {
while (_first[_minimum] == -1) {
Direction::increase(_minimum);
}
int idx = _first[_minimum];
_iim[_data[idx].item] = -2;
_first[_minimum] = _data[idx].next;
_data[idx].next = _free;
_free = idx;
--_num;
}
/// \brief The priority of the given item.
///
/// This function returns the priority of the given item.
/// \param i The item.
/// \pre \e i must be in the heap.
/// \warning This operator is not a constant time function because
/// it scans the whole data structure to find the proper value.
Prio operator[](const Item &i) const {
for (int k = 0; k < int(_first.size()); ++k) {
int idx = _first[k];
while (idx != -1) {
if (_data[idx].item == i) {
return k;
}
idx = _data[idx].next;
}
}
return -1;
}
/// \brief Return the state of an item.
///
/// This method returns \c PRE_HEAP if the given item has never
/// been in the heap, \c IN_HEAP if it is in the heap at the moment,
/// and \c POST_HEAP otherwise.
/// In the latter case it is possible that the item will get back
/// to the heap again.
/// \param i The item.
State state(const Item &i) const {
int idx = _iim[i];
if (idx >= 0) idx = 0;
return State(idx);
}
private:
struct BucketItem {
BucketItem(const Item& _item)
: item(_item) {}
Item item;
int next;
};
ItemIntMap& _iim;
std::vector<int> _first;
std::vector<BucketItem> _data;
int _free, _num;
mutable int _minimum;
}; // class SimpleBucketHeap
}
#endif