dust3d/thirdparty/QuadriFlow/3rd/lemon-1.3.1/lemon/christofides_tsp.h

255 lines
7.8 KiB
C++
Executable File

/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2013
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_CHRISTOFIDES_TSP_H
#define LEMON_CHRISTOFIDES_TSP_H
/// \ingroup tsp
/// \file
/// \brief Christofides algorithm for symmetric TSP
#include <lemon/full_graph.h>
#include <lemon/smart_graph.h>
#include <lemon/kruskal.h>
#include <lemon/matching.h>
#include <lemon/euler.h>
namespace lemon {
/// \ingroup tsp
///
/// \brief Christofides algorithm for symmetric TSP.
///
/// ChristofidesTsp implements Christofides' heuristic for solving
/// symmetric \ref tsp "TSP".
///
/// This a well-known approximation method for the TSP problem with
/// metric cost function.
/// It has a guaranteed approximation factor of 3/2 (i.e. it finds a tour
/// whose total cost is at most 3/2 of the optimum), but it usually
/// provides better solutions in practice.
/// This implementation runs in O(n<sup>3</sup>log(n)) time.
///
/// The algorithm starts with a \ref spantree "minimum cost spanning tree" and
/// finds a \ref MaxWeightedPerfectMatching "minimum cost perfect matching"
/// in the subgraph induced by the nodes that have odd degree in the
/// spanning tree.
/// Finally, it constructs the tour from the \ref EulerIt "Euler traversal"
/// of the union of the spanning tree and the matching.
/// During this last step, the algorithm simply skips the visited nodes
/// (i.e. creates shortcuts) assuming that the triangle inequality holds
/// for the cost function.
///
/// \tparam CM Type of the cost map.
///
/// \warning CM::Value must be a signed number type.
template <typename CM>
class ChristofidesTsp
{
public:
/// Type of the cost map
typedef CM CostMap;
/// Type of the edge costs
typedef typename CM::Value Cost;
private:
GRAPH_TYPEDEFS(FullGraph);
const FullGraph &_gr;
const CostMap &_cost;
std::vector<Node> _path;
Cost _sum;
public:
/// \brief Constructor
///
/// Constructor.
/// \param gr The \ref FullGraph "full graph" the algorithm runs on.
/// \param cost The cost map.
ChristofidesTsp(const FullGraph &gr, const CostMap &cost)
: _gr(gr), _cost(cost) {}
/// \name Execution Control
/// @{
/// \brief Runs the algorithm.
///
/// This function runs the algorithm.
///
/// \return The total cost of the found tour.
Cost run() {
_path.clear();
if (_gr.nodeNum() == 0) return _sum = 0;
else if (_gr.nodeNum() == 1) {
_path.push_back(_gr(0));
return _sum = 0;
}
else if (_gr.nodeNum() == 2) {
_path.push_back(_gr(0));
_path.push_back(_gr(1));
return _sum = 2 * _cost[_gr.edge(_gr(0), _gr(1))];
}
// Compute min. cost spanning tree
std::vector<Edge> tree;
kruskal(_gr, _cost, std::back_inserter(tree));
FullGraph::NodeMap<int> deg(_gr, 0);
for (int i = 0; i != int(tree.size()); ++i) {
Edge e = tree[i];
++deg[_gr.u(e)];
++deg[_gr.v(e)];
}
// Copy the induced subgraph of odd nodes
std::vector<Node> odd_nodes;
for (NodeIt u(_gr); u != INVALID; ++u) {
if (deg[u] % 2 == 1) odd_nodes.push_back(u);
}
SmartGraph sgr;
SmartGraph::EdgeMap<Cost> scost(sgr);
for (int i = 0; i != int(odd_nodes.size()); ++i) {
sgr.addNode();
}
for (int i = 0; i != int(odd_nodes.size()); ++i) {
for (int j = 0; j != int(odd_nodes.size()); ++j) {
if (j == i) continue;
SmartGraph::Edge e =
sgr.addEdge(sgr.nodeFromId(i), sgr.nodeFromId(j));
scost[e] = -_cost[_gr.edge(odd_nodes[i], odd_nodes[j])];
}
}
// Compute min. cost perfect matching
MaxWeightedPerfectMatching<SmartGraph, SmartGraph::EdgeMap<Cost> >
mwpm(sgr, scost);
mwpm.run();
for (SmartGraph::EdgeIt e(sgr); e != INVALID; ++e) {
if (mwpm.matching(e)) {
tree.push_back( _gr.edge(odd_nodes[sgr.id(sgr.u(e))],
odd_nodes[sgr.id(sgr.v(e))]) );
}
}
// Join the spanning tree and the matching
sgr.clear();
for (int i = 0; i != _gr.nodeNum(); ++i) {
sgr.addNode();
}
for (int i = 0; i != int(tree.size()); ++i) {
int ui = _gr.id(_gr.u(tree[i])),
vi = _gr.id(_gr.v(tree[i]));
sgr.addEdge(sgr.nodeFromId(ui), sgr.nodeFromId(vi));
}
// Compute the tour from the Euler traversal
SmartGraph::NodeMap<bool> visited(sgr, false);
for (EulerIt<SmartGraph> e(sgr); e != INVALID; ++e) {
SmartGraph::Node n = sgr.target(e);
if (!visited[n]) {
_path.push_back(_gr(sgr.id(n)));
visited[n] = true;
}
}
_sum = _cost[_gr.edge(_path.back(), _path.front())];
for (int i = 0; i < int(_path.size())-1; ++i) {
_sum += _cost[_gr.edge(_path[i], _path[i+1])];
}
return _sum;
}
/// @}
/// \name Query Functions
/// @{
/// \brief The total cost of the found tour.
///
/// This function returns the total cost of the found tour.
///
/// \pre run() must be called before using this function.
Cost tourCost() const {
return _sum;
}
/// \brief Returns a const reference to the node sequence of the
/// found tour.
///
/// This function returns a const reference to a vector
/// that stores the node sequence of the found tour.
///
/// \pre run() must be called before using this function.
const std::vector<Node>& tourNodes() const {
return _path;
}
/// \brief Gives back the node sequence of the found tour.
///
/// This function copies the node sequence of the found tour into
/// an STL container through the given output iterator. The
/// <tt>value_type</tt> of the container must be <tt>FullGraph::Node</tt>.
/// For example,
/// \code
/// std::vector<FullGraph::Node> nodes(countNodes(graph));
/// tsp.tourNodes(nodes.begin());
/// \endcode
/// or
/// \code
/// std::list<FullGraph::Node> nodes;
/// tsp.tourNodes(std::back_inserter(nodes));
/// \endcode
///
/// \pre run() must be called before using this function.
template <typename Iterator>
void tourNodes(Iterator out) const {
std::copy(_path.begin(), _path.end(), out);
}
/// \brief Gives back the found tour as a path.
///
/// This function copies the found tour as a list of arcs/edges into
/// the given \ref lemon::concepts::Path "path structure".
///
/// \pre run() must be called before using this function.
template <typename Path>
void tour(Path &path) const {
path.clear();
for (int i = 0; i < int(_path.size()) - 1; ++i) {
path.addBack(_gr.arc(_path[i], _path[i+1]));
}
if (int(_path.size()) >= 2) {
path.addBack(_gr.arc(_path.back(), _path.front()));
}
}
/// @}
};
}; // namespace lemon
#endif