dust3d/thirdparty/QuadriFlow/3rd/lemon-1.3.1/lemon/concepts/bpgraph.h

1030 lines
32 KiB
C++
Executable File

/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2013
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
///\ingroup graph_concepts
///\file
///\brief The concept of undirected graphs.
#ifndef LEMON_CONCEPTS_BPGRAPH_H
#define LEMON_CONCEPTS_BPGRAPH_H
#include <lemon/concepts/graph_components.h>
#include <lemon/concepts/maps.h>
#include <lemon/concept_check.h>
#include <lemon/core.h>
namespace lemon {
namespace concepts {
/// \ingroup graph_concepts
///
/// \brief Class describing the concept of undirected bipartite graphs.
///
/// This class describes the common interface of all undirected
/// bipartite graphs.
///
/// Like all concept classes, it only provides an interface
/// without any sensible implementation. So any general algorithm for
/// undirected bipartite graphs should compile with this class,
/// but it will not run properly, of course.
/// An actual graph implementation like \ref ListBpGraph or
/// \ref SmartBpGraph may have additional functionality.
///
/// The bipartite graphs also fulfill the concept of \ref Graph
/// "undirected graphs". Bipartite graphs provide a bipartition of
/// the node set, namely a red and blue set of the nodes. The
/// nodes can be iterated with the RedNodeIt and BlueNodeIt in the
/// two node sets. With RedNodeMap and BlueNodeMap values can be
/// assigned to the nodes in the two sets.
///
/// The edges of the graph cannot connect two nodes of the same
/// set. The edges inherent orientation is from the red nodes to
/// the blue nodes.
///
/// \sa Graph
class BpGraph {
private:
/// BpGraphs are \e not copy constructible. Use bpGraphCopy instead.
BpGraph(const BpGraph&) {}
/// \brief Assignment of a graph to another one is \e not allowed.
/// Use bpGraphCopy instead.
void operator=(const BpGraph&) {}
public:
/// Default constructor.
BpGraph() {}
/// \brief Undirected graphs should be tagged with \c UndirectedTag.
///
/// Undirected graphs should be tagged with \c UndirectedTag.
///
/// This tag helps the \c enable_if technics to make compile time
/// specializations for undirected graphs.
typedef True UndirectedTag;
/// The node type of the graph
/// This class identifies a node of the graph. It also serves
/// as a base class of the node iterators,
/// thus they convert to this type.
class Node {
public:
/// Default constructor
/// Default constructor.
/// \warning It sets the object to an undefined value.
Node() { }
/// Copy constructor.
/// Copy constructor.
///
Node(const Node&) { }
/// %Invalid constructor \& conversion.
/// Initializes the object to be invalid.
/// \sa Invalid for more details.
Node(Invalid) { }
/// Equality operator
/// Equality operator.
///
/// Two iterators are equal if and only if they point to the
/// same object or both are \c INVALID.
bool operator==(Node) const { return true; }
/// Inequality operator
/// Inequality operator.
bool operator!=(Node) const { return true; }
/// Artificial ordering operator.
/// Artificial ordering operator.
///
/// \note This operator only has to define some strict ordering of
/// the items; this order has nothing to do with the iteration
/// ordering of the items.
bool operator<(Node) const { return false; }
};
/// Class to represent red nodes.
/// This class represents the red nodes of the graph. It does
/// not supposed to be used directly, because the nodes can be
/// represented as Node instances. This class can be used as
/// template parameter for special map classes.
class RedNode : public Node {
public:
/// Default constructor
/// Default constructor.
/// \warning It sets the object to an undefined value.
RedNode() { }
/// Copy constructor.
/// Copy constructor.
///
RedNode(const RedNode&) : Node() { }
/// %Invalid constructor \& conversion.
/// Initializes the object to be invalid.
/// \sa Invalid for more details.
RedNode(Invalid) { }
};
/// Class to represent blue nodes.
/// This class represents the blue nodes of the graph. It does
/// not supposed to be used directly, because the nodes can be
/// represented as Node instances. This class can be used as
/// template parameter for special map classes.
class BlueNode : public Node {
public:
/// Default constructor
/// Default constructor.
/// \warning It sets the object to an undefined value.
BlueNode() { }
/// Copy constructor.
/// Copy constructor.
///
BlueNode(const BlueNode&) : Node() { }
/// %Invalid constructor \& conversion.
/// Initializes the object to be invalid.
/// \sa Invalid for more details.
BlueNode(Invalid) { }
};
/// Iterator class for the red nodes.
/// This iterator goes through each red node of the graph.
/// Its usage is quite simple, for example, you can count the number
/// of red nodes in a graph \c g of type \c %BpGraph like this:
///\code
/// int count=0;
/// for (BpGraph::RedNodeIt n(g); n!=INVALID; ++n) ++count;
///\endcode
class RedNodeIt : public RedNode {
public:
/// Default constructor
/// Default constructor.
/// \warning It sets the iterator to an undefined value.
RedNodeIt() { }
/// Copy constructor.
/// Copy constructor.
///
RedNodeIt(const RedNodeIt& n) : RedNode(n) { }
/// %Invalid constructor \& conversion.
/// Initializes the iterator to be invalid.
/// \sa Invalid for more details.
RedNodeIt(Invalid) { }
/// Sets the iterator to the first red node.
/// Sets the iterator to the first red node of the given
/// digraph.
explicit RedNodeIt(const BpGraph&) { }
/// Sets the iterator to the given red node.
/// Sets the iterator to the given red node of the given
/// digraph.
RedNodeIt(const BpGraph&, const RedNode&) { }
/// Next node.
/// Assign the iterator to the next red node.
///
RedNodeIt& operator++() { return *this; }
};
/// Iterator class for the blue nodes.
/// This iterator goes through each blue node of the graph.
/// Its usage is quite simple, for example, you can count the number
/// of blue nodes in a graph \c g of type \c %BpGraph like this:
///\code
/// int count=0;
/// for (BpGraph::BlueNodeIt n(g); n!=INVALID; ++n) ++count;
///\endcode
class BlueNodeIt : public BlueNode {
public:
/// Default constructor
/// Default constructor.
/// \warning It sets the iterator to an undefined value.
BlueNodeIt() { }
/// Copy constructor.
/// Copy constructor.
///
BlueNodeIt(const BlueNodeIt& n) : BlueNode(n) { }
/// %Invalid constructor \& conversion.
/// Initializes the iterator to be invalid.
/// \sa Invalid for more details.
BlueNodeIt(Invalid) { }
/// Sets the iterator to the first blue node.
/// Sets the iterator to the first blue node of the given
/// digraph.
explicit BlueNodeIt(const BpGraph&) { }
/// Sets the iterator to the given blue node.
/// Sets the iterator to the given blue node of the given
/// digraph.
BlueNodeIt(const BpGraph&, const BlueNode&) { }
/// Next node.
/// Assign the iterator to the next blue node.
///
BlueNodeIt& operator++() { return *this; }
};
/// Iterator class for the nodes.
/// This iterator goes through each node of the graph.
/// Its usage is quite simple, for example, you can count the number
/// of nodes in a graph \c g of type \c %BpGraph like this:
///\code
/// int count=0;
/// for (BpGraph::NodeIt n(g); n!=INVALID; ++n) ++count;
///\endcode
class NodeIt : public Node {
public:
/// Default constructor
/// Default constructor.
/// \warning It sets the iterator to an undefined value.
NodeIt() { }
/// Copy constructor.
/// Copy constructor.
///
NodeIt(const NodeIt& n) : Node(n) { }
/// %Invalid constructor \& conversion.
/// Initializes the iterator to be invalid.
/// \sa Invalid for more details.
NodeIt(Invalid) { }
/// Sets the iterator to the first node.
/// Sets the iterator to the first node of the given digraph.
///
explicit NodeIt(const BpGraph&) { }
/// Sets the iterator to the given node.
/// Sets the iterator to the given node of the given digraph.
///
NodeIt(const BpGraph&, const Node&) { }
/// Next node.
/// Assign the iterator to the next node.
///
NodeIt& operator++() { return *this; }
};
/// The edge type of the graph
/// This class identifies an edge of the graph. It also serves
/// as a base class of the edge iterators,
/// thus they will convert to this type.
class Edge {
public:
/// Default constructor
/// Default constructor.
/// \warning It sets the object to an undefined value.
Edge() { }
/// Copy constructor.
/// Copy constructor.
///
Edge(const Edge&) { }
/// %Invalid constructor \& conversion.
/// Initializes the object to be invalid.
/// \sa Invalid for more details.
Edge(Invalid) { }
/// Equality operator
/// Equality operator.
///
/// Two iterators are equal if and only if they point to the
/// same object or both are \c INVALID.
bool operator==(Edge) const { return true; }
/// Inequality operator
/// Inequality operator.
bool operator!=(Edge) const { return true; }
/// Artificial ordering operator.
/// Artificial ordering operator.
///
/// \note This operator only has to define some strict ordering of
/// the edges; this order has nothing to do with the iteration
/// ordering of the edges.
bool operator<(Edge) const { return false; }
};
/// Iterator class for the edges.
/// This iterator goes through each edge of the graph.
/// Its usage is quite simple, for example, you can count the number
/// of edges in a graph \c g of type \c %BpGraph as follows:
///\code
/// int count=0;
/// for(BpGraph::EdgeIt e(g); e!=INVALID; ++e) ++count;
///\endcode
class EdgeIt : public Edge {
public:
/// Default constructor
/// Default constructor.
/// \warning It sets the iterator to an undefined value.
EdgeIt() { }
/// Copy constructor.
/// Copy constructor.
///
EdgeIt(const EdgeIt& e) : Edge(e) { }
/// %Invalid constructor \& conversion.
/// Initializes the iterator to be invalid.
/// \sa Invalid for more details.
EdgeIt(Invalid) { }
/// Sets the iterator to the first edge.
/// Sets the iterator to the first edge of the given graph.
///
explicit EdgeIt(const BpGraph&) { }
/// Sets the iterator to the given edge.
/// Sets the iterator to the given edge of the given graph.
///
EdgeIt(const BpGraph&, const Edge&) { }
/// Next edge
/// Assign the iterator to the next edge.
///
EdgeIt& operator++() { return *this; }
};
/// Iterator class for the incident edges of a node.
/// This iterator goes trough the incident undirected edges
/// of a certain node of a graph.
/// Its usage is quite simple, for example, you can compute the
/// degree (i.e. the number of incident edges) of a node \c n
/// in a graph \c g of type \c %BpGraph as follows.
///
///\code
/// int count=0;
/// for(BpGraph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
///\endcode
///
/// \warning Loop edges will be iterated twice.
class IncEdgeIt : public Edge {
public:
/// Default constructor
/// Default constructor.
/// \warning It sets the iterator to an undefined value.
IncEdgeIt() { }
/// Copy constructor.
/// Copy constructor.
///
IncEdgeIt(const IncEdgeIt& e) : Edge(e) { }
/// %Invalid constructor \& conversion.
/// Initializes the iterator to be invalid.
/// \sa Invalid for more details.
IncEdgeIt(Invalid) { }
/// Sets the iterator to the first incident edge.
/// Sets the iterator to the first incident edge of the given node.
///
IncEdgeIt(const BpGraph&, const Node&) { }
/// Sets the iterator to the given edge.
/// Sets the iterator to the given edge of the given graph.
///
IncEdgeIt(const BpGraph&, const Edge&) { }
/// Next incident edge
/// Assign the iterator to the next incident edge
/// of the corresponding node.
IncEdgeIt& operator++() { return *this; }
};
/// The arc type of the graph
/// This class identifies a directed arc of the graph. It also serves
/// as a base class of the arc iterators,
/// thus they will convert to this type.
class Arc {
public:
/// Default constructor
/// Default constructor.
/// \warning It sets the object to an undefined value.
Arc() { }
/// Copy constructor.
/// Copy constructor.
///
Arc(const Arc&) { }
/// %Invalid constructor \& conversion.
/// Initializes the object to be invalid.
/// \sa Invalid for more details.
Arc(Invalid) { }
/// Equality operator
/// Equality operator.
///
/// Two iterators are equal if and only if they point to the
/// same object or both are \c INVALID.
bool operator==(Arc) const { return true; }
/// Inequality operator
/// Inequality operator.
bool operator!=(Arc) const { return true; }
/// Artificial ordering operator.
/// Artificial ordering operator.
///
/// \note This operator only has to define some strict ordering of
/// the arcs; this order has nothing to do with the iteration
/// ordering of the arcs.
bool operator<(Arc) const { return false; }
/// Converison to \c Edge
/// Converison to \c Edge.
///
operator Edge() const { return Edge(); }
};
/// Iterator class for the arcs.
/// This iterator goes through each directed arc of the graph.
/// Its usage is quite simple, for example, you can count the number
/// of arcs in a graph \c g of type \c %BpGraph as follows:
///\code
/// int count=0;
/// for(BpGraph::ArcIt a(g); a!=INVALID; ++a) ++count;
///\endcode
class ArcIt : public Arc {
public:
/// Default constructor
/// Default constructor.
/// \warning It sets the iterator to an undefined value.
ArcIt() { }
/// Copy constructor.
/// Copy constructor.
///
ArcIt(const ArcIt& e) : Arc(e) { }
/// %Invalid constructor \& conversion.
/// Initializes the iterator to be invalid.
/// \sa Invalid for more details.
ArcIt(Invalid) { }
/// Sets the iterator to the first arc.
/// Sets the iterator to the first arc of the given graph.
///
explicit ArcIt(const BpGraph &g)
{
::lemon::ignore_unused_variable_warning(g);
}
/// Sets the iterator to the given arc.
/// Sets the iterator to the given arc of the given graph.
///
ArcIt(const BpGraph&, const Arc&) { }
/// Next arc
/// Assign the iterator to the next arc.
///
ArcIt& operator++() { return *this; }
};
/// Iterator class for the outgoing arcs of a node.
/// This iterator goes trough the \e outgoing directed arcs of a
/// certain node of a graph.
/// Its usage is quite simple, for example, you can count the number
/// of outgoing arcs of a node \c n
/// in a graph \c g of type \c %BpGraph as follows.
///\code
/// int count=0;
/// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count;
///\endcode
class OutArcIt : public Arc {
public:
/// Default constructor
/// Default constructor.
/// \warning It sets the iterator to an undefined value.
OutArcIt() { }
/// Copy constructor.
/// Copy constructor.
///
OutArcIt(const OutArcIt& e) : Arc(e) { }
/// %Invalid constructor \& conversion.
/// Initializes the iterator to be invalid.
/// \sa Invalid for more details.
OutArcIt(Invalid) { }
/// Sets the iterator to the first outgoing arc.
/// Sets the iterator to the first outgoing arc of the given node.
///
OutArcIt(const BpGraph& n, const Node& g) {
::lemon::ignore_unused_variable_warning(n);
::lemon::ignore_unused_variable_warning(g);
}
/// Sets the iterator to the given arc.
/// Sets the iterator to the given arc of the given graph.
///
OutArcIt(const BpGraph&, const Arc&) { }
/// Next outgoing arc
/// Assign the iterator to the next
/// outgoing arc of the corresponding node.
OutArcIt& operator++() { return *this; }
};
/// Iterator class for the incoming arcs of a node.
/// This iterator goes trough the \e incoming directed arcs of a
/// certain node of a graph.
/// Its usage is quite simple, for example, you can count the number
/// of incoming arcs of a node \c n
/// in a graph \c g of type \c %BpGraph as follows.
///\code
/// int count=0;
/// for (Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count;
///\endcode
class InArcIt : public Arc {
public:
/// Default constructor
/// Default constructor.
/// \warning It sets the iterator to an undefined value.
InArcIt() { }
/// Copy constructor.
/// Copy constructor.
///
InArcIt(const InArcIt& e) : Arc(e) { }
/// %Invalid constructor \& conversion.
/// Initializes the iterator to be invalid.
/// \sa Invalid for more details.
InArcIt(Invalid) { }
/// Sets the iterator to the first incoming arc.
/// Sets the iterator to the first incoming arc of the given node.
///
InArcIt(const BpGraph& g, const Node& n) {
::lemon::ignore_unused_variable_warning(n);
::lemon::ignore_unused_variable_warning(g);
}
/// Sets the iterator to the given arc.
/// Sets the iterator to the given arc of the given graph.
///
InArcIt(const BpGraph&, const Arc&) { }
/// Next incoming arc
/// Assign the iterator to the next
/// incoming arc of the corresponding node.
InArcIt& operator++() { return *this; }
};
/// \brief Standard graph map type for the nodes.
///
/// Standard graph map type for the nodes.
/// It conforms to the ReferenceMap concept.
template<class T>
class NodeMap : public ReferenceMap<Node, T, T&, const T&>
{
public:
/// Constructor
explicit NodeMap(const BpGraph&) { }
/// Constructor with given initial value
NodeMap(const BpGraph&, T) { }
private:
///Copy constructor
NodeMap(const NodeMap& nm) :
ReferenceMap<Node, T, T&, const T&>(nm) { }
///Assignment operator
template <typename CMap>
NodeMap& operator=(const CMap&) {
checkConcept<ReadMap<Node, T>, CMap>();
return *this;
}
};
/// \brief Standard graph map type for the red nodes.
///
/// Standard graph map type for the red nodes.
/// It conforms to the ReferenceMap concept.
template<class T>
class RedNodeMap : public ReferenceMap<Node, T, T&, const T&>
{
public:
/// Constructor
explicit RedNodeMap(const BpGraph&) { }
/// Constructor with given initial value
RedNodeMap(const BpGraph&, T) { }
private:
///Copy constructor
RedNodeMap(const RedNodeMap& nm) :
ReferenceMap<Node, T, T&, const T&>(nm) { }
///Assignment operator
template <typename CMap>
RedNodeMap& operator=(const CMap&) {
checkConcept<ReadMap<Node, T>, CMap>();
return *this;
}
};
/// \brief Standard graph map type for the blue nodes.
///
/// Standard graph map type for the blue nodes.
/// It conforms to the ReferenceMap concept.
template<class T>
class BlueNodeMap : public ReferenceMap<Node, T, T&, const T&>
{
public:
/// Constructor
explicit BlueNodeMap(const BpGraph&) { }
/// Constructor with given initial value
BlueNodeMap(const BpGraph&, T) { }
private:
///Copy constructor
BlueNodeMap(const BlueNodeMap& nm) :
ReferenceMap<Node, T, T&, const T&>(nm) { }
///Assignment operator
template <typename CMap>
BlueNodeMap& operator=(const CMap&) {
checkConcept<ReadMap<Node, T>, CMap>();
return *this;
}
};
/// \brief Standard graph map type for the arcs.
///
/// Standard graph map type for the arcs.
/// It conforms to the ReferenceMap concept.
template<class T>
class ArcMap : public ReferenceMap<Arc, T, T&, const T&>
{
public:
/// Constructor
explicit ArcMap(const BpGraph&) { }
/// Constructor with given initial value
ArcMap(const BpGraph&, T) { }
private:
///Copy constructor
ArcMap(const ArcMap& em) :
ReferenceMap<Arc, T, T&, const T&>(em) { }
///Assignment operator
template <typename CMap>
ArcMap& operator=(const CMap&) {
checkConcept<ReadMap<Arc, T>, CMap>();
return *this;
}
};
/// \brief Standard graph map type for the edges.
///
/// Standard graph map type for the edges.
/// It conforms to the ReferenceMap concept.
template<class T>
class EdgeMap : public ReferenceMap<Edge, T, T&, const T&>
{
public:
/// Constructor
explicit EdgeMap(const BpGraph&) { }
/// Constructor with given initial value
EdgeMap(const BpGraph&, T) { }
private:
///Copy constructor
EdgeMap(const EdgeMap& em) :
ReferenceMap<Edge, T, T&, const T&>(em) {}
///Assignment operator
template <typename CMap>
EdgeMap& operator=(const CMap&) {
checkConcept<ReadMap<Edge, T>, CMap>();
return *this;
}
};
/// \brief Gives back %true for red nodes.
///
/// Gives back %true for red nodes.
bool red(const Node&) const { return true; }
/// \brief Gives back %true for blue nodes.
///
/// Gives back %true for blue nodes.
bool blue(const Node&) const { return true; }
/// \brief Converts the node to red node object.
///
/// This function converts unsafely the node to red node
/// object. It should be called only if the node is from the red
/// partition or INVALID.
RedNode asRedNodeUnsafe(const Node&) const { return RedNode(); }
/// \brief Converts the node to blue node object.
///
/// This function converts unsafely the node to blue node
/// object. It should be called only if the node is from the red
/// partition or INVALID.
BlueNode asBlueNodeUnsafe(const Node&) const { return BlueNode(); }
/// \brief Converts the node to red node object.
///
/// This function converts safely the node to red node
/// object. If the node is not from the red partition, then it
/// returns INVALID.
RedNode asRedNode(const Node&) const { return RedNode(); }
/// \brief Converts the node to blue node object.
///
/// This function converts unsafely the node to blue node
/// object. If the node is not from the blue partition, then it
/// returns INVALID.
BlueNode asBlueNode(const Node&) const { return BlueNode(); }
/// \brief Gives back the red end node of the edge.
///
/// Gives back the red end node of the edge.
RedNode redNode(const Edge&) const { return RedNode(); }
/// \brief Gives back the blue end node of the edge.
///
/// Gives back the blue end node of the edge.
BlueNode blueNode(const Edge&) const { return BlueNode(); }
/// \brief The first node of the edge.
///
/// It is a synonim for the \c redNode().
Node u(Edge) const { return INVALID; }
/// \brief The second node of the edge.
///
/// It is a synonim for the \c blueNode().
Node v(Edge) const { return INVALID; }
/// \brief The source node of the arc.
///
/// Returns the source node of the given arc.
Node source(Arc) const { return INVALID; }
/// \brief The target node of the arc.
///
/// Returns the target node of the given arc.
Node target(Arc) const { return INVALID; }
/// \brief The ID of the node.
///
/// Returns the ID of the given node.
int id(Node) const { return -1; }
/// \brief The red ID of the node.
///
/// Returns the red ID of the given node.
int id(RedNode) const { return -1; }
/// \brief The blue ID of the node.
///
/// Returns the blue ID of the given node.
int id(BlueNode) const { return -1; }
/// \brief The ID of the edge.
///
/// Returns the ID of the given edge.
int id(Edge) const { return -1; }
/// \brief The ID of the arc.
///
/// Returns the ID of the given arc.
int id(Arc) const { return -1; }
/// \brief The node with the given ID.
///
/// Returns the node with the given ID.
/// \pre The argument should be a valid node ID in the graph.
Node nodeFromId(int) const { return INVALID; }
/// \brief The edge with the given ID.
///
/// Returns the edge with the given ID.
/// \pre The argument should be a valid edge ID in the graph.
Edge edgeFromId(int) const { return INVALID; }
/// \brief The arc with the given ID.
///
/// Returns the arc with the given ID.
/// \pre The argument should be a valid arc ID in the graph.
Arc arcFromId(int) const { return INVALID; }
/// \brief An upper bound on the node IDs.
///
/// Returns an upper bound on the node IDs.
int maxNodeId() const { return -1; }
/// \brief An upper bound on the red IDs.
///
/// Returns an upper bound on the red IDs.
int maxRedId() const { return -1; }
/// \brief An upper bound on the blue IDs.
///
/// Returns an upper bound on the blue IDs.
int maxBlueId() const { return -1; }
/// \brief An upper bound on the edge IDs.
///
/// Returns an upper bound on the edge IDs.
int maxEdgeId() const { return -1; }
/// \brief An upper bound on the arc IDs.
///
/// Returns an upper bound on the arc IDs.
int maxArcId() const { return -1; }
/// \brief The direction of the arc.
///
/// Returns \c true if the given arc goes from a red node to a blue node.
bool direction(Arc) const { return true; }
/// \brief Direct the edge.
///
/// Direct the given edge. The returned arc
/// represents the given edge and its direction comes
/// from the bool parameter. If it is \c true, then the source of the node
/// will be a red node.
Arc direct(Edge, bool) const {
return INVALID;
}
/// \brief Direct the edge.
///
/// Direct the given edge. The returned arc represents the given
/// edge and its source node is the given node.
Arc direct(Edge, Node) const {
return INVALID;
}
/// \brief The oppositely directed arc.
///
/// Returns the oppositely directed arc representing the same edge.
Arc oppositeArc(Arc) const { return INVALID; }
/// \brief The opposite node on the edge.
///
/// Returns the opposite node on the given edge.
Node oppositeNode(Node, Edge) const { return INVALID; }
void first(Node&) const {}
void next(Node&) const {}
void firstRed(RedNode&) const {}
void nextRed(RedNode&) const {}
void firstBlue(BlueNode&) const {}
void nextBlue(BlueNode&) const {}
void first(Edge&) const {}
void next(Edge&) const {}
void first(Arc&) const {}
void next(Arc&) const {}
void firstOut(Arc&, Node) const {}
void nextOut(Arc&) const {}
void firstIn(Arc&, Node) const {}
void nextIn(Arc&) const {}
void firstInc(Edge &, bool &, const Node &) const {}
void nextInc(Edge &, bool &) const {}
// The second parameter is dummy.
Node fromId(int, Node) const { return INVALID; }
// The second parameter is dummy.
Edge fromId(int, Edge) const { return INVALID; }
// The second parameter is dummy.
Arc fromId(int, Arc) const { return INVALID; }
// Dummy parameter.
int maxId(Node) const { return -1; }
// Dummy parameter.
int maxId(RedNode) const { return -1; }
// Dummy parameter.
int maxId(BlueNode) const { return -1; }
// Dummy parameter.
int maxId(Edge) const { return -1; }
// Dummy parameter.
int maxId(Arc) const { return -1; }
/// \brief The base node of the iterator.
///
/// Returns the base node of the given incident edge iterator.
Node baseNode(IncEdgeIt) const { return INVALID; }
/// \brief The running node of the iterator.
///
/// Returns the running node of the given incident edge iterator.
Node runningNode(IncEdgeIt) const { return INVALID; }
/// \brief The base node of the iterator.
///
/// Returns the base node of the given outgoing arc iterator
/// (i.e. the source node of the corresponding arc).
Node baseNode(OutArcIt) const { return INVALID; }
/// \brief The running node of the iterator.
///
/// Returns the running node of the given outgoing arc iterator
/// (i.e. the target node of the corresponding arc).
Node runningNode(OutArcIt) const { return INVALID; }
/// \brief The base node of the iterator.
///
/// Returns the base node of the given incoming arc iterator
/// (i.e. the target node of the corresponding arc).
Node baseNode(InArcIt) const { return INVALID; }
/// \brief The running node of the iterator.
///
/// Returns the running node of the given incoming arc iterator
/// (i.e. the source node of the corresponding arc).
Node runningNode(InArcIt) const { return INVALID; }
template <typename _BpGraph>
struct Constraints {
void constraints() {
checkConcept<BaseBpGraphComponent, _BpGraph>();
checkConcept<IterableBpGraphComponent<>, _BpGraph>();
checkConcept<IDableBpGraphComponent<>, _BpGraph>();
checkConcept<MappableBpGraphComponent<>, _BpGraph>();
}
};
};
}
}
#endif