2507 lines
83 KiB
C++
Executable File
2507 lines
83 KiB
C++
Executable File
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
|
*
|
|
* This file is a part of LEMON, a generic C++ optimization library.
|
|
*
|
|
* Copyright (C) 2003-2013
|
|
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
|
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
|
*
|
|
* Permission to use, modify and distribute this software is granted
|
|
* provided that this copyright notice appears in all copies. For
|
|
* precise terms see the accompanying LICENSE file.
|
|
*
|
|
* This software is provided "AS IS" with no warranty of any kind,
|
|
* express or implied, and with no claim as to its suitability for any
|
|
* purpose.
|
|
*
|
|
*/
|
|
|
|
#ifndef LEMON_CORE_H
|
|
#define LEMON_CORE_H
|
|
|
|
#include <vector>
|
|
#include <algorithm>
|
|
|
|
#include <lemon/config.h>
|
|
#include <lemon/bits/enable_if.h>
|
|
#include <lemon/bits/traits.h>
|
|
#include <lemon/assert.h>
|
|
|
|
// Disable the following warnings when compiling with MSVC:
|
|
// C4250: 'class1' : inherits 'class2::member' via dominance
|
|
// C4355: 'this' : used in base member initializer list
|
|
// C4503: 'function' : decorated name length exceeded, name was truncated
|
|
// C4800: 'type' : forcing value to bool 'true' or 'false' (performance warning)
|
|
// C4996: 'function': was declared deprecated
|
|
#ifdef _MSC_VER
|
|
#pragma warning( disable : 4250 4355 4503 4800 4996 )
|
|
#endif
|
|
|
|
#ifdef __GNUC__
|
|
#define GCC_VERSION (__GNUC__ * 10000 \
|
|
+ __GNUC_MINOR__ * 100 \
|
|
+ __GNUC_PATCHLEVEL__)
|
|
#endif
|
|
|
|
#if GCC_VERSION >= 40800
|
|
// Needed by the [DI]GRAPH_TYPEDEFS marcos for gcc 4.8
|
|
#pragma GCC diagnostic ignored "-Wunused-local-typedefs"
|
|
#endif
|
|
|
|
///\file
|
|
///\brief LEMON core utilities.
|
|
///
|
|
///This header file contains core utilities for LEMON.
|
|
///It is automatically included by all graph types, therefore it usually
|
|
///do not have to be included directly.
|
|
|
|
namespace lemon {
|
|
|
|
/// \brief Dummy type to make it easier to create invalid iterators.
|
|
///
|
|
/// Dummy type to make it easier to create invalid iterators.
|
|
/// See \ref INVALID for the usage.
|
|
struct Invalid {
|
|
public:
|
|
bool operator==(Invalid) { return true; }
|
|
bool operator!=(Invalid) { return false; }
|
|
bool operator< (Invalid) { return false; }
|
|
};
|
|
|
|
/// \brief Invalid iterators.
|
|
///
|
|
/// \ref Invalid is a global type that converts to each iterator
|
|
/// in such a way that the value of the target iterator will be invalid.
|
|
#ifdef LEMON_ONLY_TEMPLATES
|
|
const Invalid INVALID = Invalid();
|
|
#else
|
|
extern const Invalid INVALID;
|
|
#endif
|
|
|
|
/// \addtogroup gutils
|
|
/// @{
|
|
|
|
///Create convenience typedefs for the digraph types and iterators
|
|
|
|
///This \c \#define creates convenient type definitions for the following
|
|
///types of \c Digraph: \c Node, \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
|
|
///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap,
|
|
///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap.
|
|
///
|
|
///\note If the graph type is a dependent type, ie. the graph type depend
|
|
///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
|
|
///macro.
|
|
#define DIGRAPH_TYPEDEFS(Digraph) \
|
|
typedef Digraph::Node Node; \
|
|
typedef Digraph::NodeIt NodeIt; \
|
|
typedef Digraph::Arc Arc; \
|
|
typedef Digraph::ArcIt ArcIt; \
|
|
typedef Digraph::InArcIt InArcIt; \
|
|
typedef Digraph::OutArcIt OutArcIt; \
|
|
typedef Digraph::NodeMap<bool> BoolNodeMap; \
|
|
typedef Digraph::NodeMap<int> IntNodeMap; \
|
|
typedef Digraph::NodeMap<double> DoubleNodeMap; \
|
|
typedef Digraph::ArcMap<bool> BoolArcMap; \
|
|
typedef Digraph::ArcMap<int> IntArcMap; \
|
|
typedef Digraph::ArcMap<double> DoubleArcMap
|
|
|
|
///Create convenience typedefs for the digraph types and iterators
|
|
|
|
///\see DIGRAPH_TYPEDEFS
|
|
///
|
|
///\note Use this macro, if the graph type is a dependent type,
|
|
///ie. the graph type depend on a template parameter.
|
|
#define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph) \
|
|
typedef typename Digraph::Node Node; \
|
|
typedef typename Digraph::NodeIt NodeIt; \
|
|
typedef typename Digraph::Arc Arc; \
|
|
typedef typename Digraph::ArcIt ArcIt; \
|
|
typedef typename Digraph::InArcIt InArcIt; \
|
|
typedef typename Digraph::OutArcIt OutArcIt; \
|
|
typedef typename Digraph::template NodeMap<bool> BoolNodeMap; \
|
|
typedef typename Digraph::template NodeMap<int> IntNodeMap; \
|
|
typedef typename Digraph::template NodeMap<double> DoubleNodeMap; \
|
|
typedef typename Digraph::template ArcMap<bool> BoolArcMap; \
|
|
typedef typename Digraph::template ArcMap<int> IntArcMap; \
|
|
typedef typename Digraph::template ArcMap<double> DoubleArcMap
|
|
|
|
///Create convenience typedefs for the graph types and iterators
|
|
|
|
///This \c \#define creates the same convenient type definitions as defined
|
|
///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates
|
|
///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap,
|
|
///\c DoubleEdgeMap.
|
|
///
|
|
///\note If the graph type is a dependent type, ie. the graph type depend
|
|
///on a template parameter, then use \c TEMPLATE_GRAPH_TYPEDEFS()
|
|
///macro.
|
|
#define GRAPH_TYPEDEFS(Graph) \
|
|
DIGRAPH_TYPEDEFS(Graph); \
|
|
typedef Graph::Edge Edge; \
|
|
typedef Graph::EdgeIt EdgeIt; \
|
|
typedef Graph::IncEdgeIt IncEdgeIt; \
|
|
typedef Graph::EdgeMap<bool> BoolEdgeMap; \
|
|
typedef Graph::EdgeMap<int> IntEdgeMap; \
|
|
typedef Graph::EdgeMap<double> DoubleEdgeMap
|
|
|
|
///Create convenience typedefs for the graph types and iterators
|
|
|
|
///\see GRAPH_TYPEDEFS
|
|
///
|
|
///\note Use this macro, if the graph type is a dependent type,
|
|
///ie. the graph type depend on a template parameter.
|
|
#define TEMPLATE_GRAPH_TYPEDEFS(Graph) \
|
|
TEMPLATE_DIGRAPH_TYPEDEFS(Graph); \
|
|
typedef typename Graph::Edge Edge; \
|
|
typedef typename Graph::EdgeIt EdgeIt; \
|
|
typedef typename Graph::IncEdgeIt IncEdgeIt; \
|
|
typedef typename Graph::template EdgeMap<bool> BoolEdgeMap; \
|
|
typedef typename Graph::template EdgeMap<int> IntEdgeMap; \
|
|
typedef typename Graph::template EdgeMap<double> DoubleEdgeMap
|
|
|
|
///Create convenience typedefs for the bipartite graph types and iterators
|
|
|
|
///This \c \#define creates the same convenient type definitions as
|
|
///defined by \ref GRAPH_TYPEDEFS(BpGraph) and ten more, namely it
|
|
///creates \c RedNode, \c RedNodeIt, \c BoolRedNodeMap,
|
|
///\c IntRedNodeMap, \c DoubleRedNodeMap, \c BlueNode, \c BlueNodeIt,
|
|
///\c BoolBlueNodeMap, \c IntBlueNodeMap, \c DoubleBlueNodeMap.
|
|
///
|
|
///\note If the graph type is a dependent type, ie. the graph type depend
|
|
///on a template parameter, then use \c TEMPLATE_BPGRAPH_TYPEDEFS()
|
|
///macro.
|
|
#define BPGRAPH_TYPEDEFS(BpGraph) \
|
|
GRAPH_TYPEDEFS(BpGraph); \
|
|
typedef BpGraph::RedNode RedNode; \
|
|
typedef BpGraph::RedNodeIt RedNodeIt; \
|
|
typedef BpGraph::RedNodeMap<bool> BoolRedNodeMap; \
|
|
typedef BpGraph::RedNodeMap<int> IntRedNodeMap; \
|
|
typedef BpGraph::RedNodeMap<double> DoubleRedNodeMap; \
|
|
typedef BpGraph::BlueNode BlueNode; \
|
|
typedef BpGraph::BlueNodeIt BlueNodeIt; \
|
|
typedef BpGraph::BlueNodeMap<bool> BoolBlueNodeMap; \
|
|
typedef BpGraph::BlueNodeMap<int> IntBlueNodeMap; \
|
|
typedef BpGraph::BlueNodeMap<double> DoubleBlueNodeMap
|
|
|
|
///Create convenience typedefs for the bipartite graph types and iterators
|
|
|
|
///\see BPGRAPH_TYPEDEFS
|
|
///
|
|
///\note Use this macro, if the graph type is a dependent type,
|
|
///ie. the graph type depend on a template parameter.
|
|
#define TEMPLATE_BPGRAPH_TYPEDEFS(BpGraph) \
|
|
TEMPLATE_GRAPH_TYPEDEFS(BpGraph); \
|
|
typedef typename BpGraph::RedNode RedNode; \
|
|
typedef typename BpGraph::RedNodeIt RedNodeIt; \
|
|
typedef typename BpGraph::template RedNodeMap<bool> BoolRedNodeMap; \
|
|
typedef typename BpGraph::template RedNodeMap<int> IntRedNodeMap; \
|
|
typedef typename BpGraph::template RedNodeMap<double> DoubleRedNodeMap; \
|
|
typedef typename BpGraph::BlueNode BlueNode; \
|
|
typedef typename BpGraph::BlueNodeIt BlueNodeIt; \
|
|
typedef typename BpGraph::template BlueNodeMap<bool> BoolBlueNodeMap; \
|
|
typedef typename BpGraph::template BlueNodeMap<int> IntBlueNodeMap; \
|
|
typedef typename BpGraph::template BlueNodeMap<double> DoubleBlueNodeMap
|
|
|
|
/// \brief Function to count the items in a graph.
|
|
///
|
|
/// This function counts the items (nodes, arcs etc.) in a graph.
|
|
/// The complexity of the function is linear because
|
|
/// it iterates on all of the items.
|
|
template <typename Graph, typename Item>
|
|
inline int countItems(const Graph& g) {
|
|
typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
|
|
int num = 0;
|
|
for (ItemIt it(g); it != INVALID; ++it) {
|
|
++num;
|
|
}
|
|
return num;
|
|
}
|
|
|
|
// Node counting:
|
|
|
|
namespace _core_bits {
|
|
|
|
template <typename Graph, typename Enable = void>
|
|
struct CountNodesSelector {
|
|
static int count(const Graph &g) {
|
|
return countItems<Graph, typename Graph::Node>(g);
|
|
}
|
|
};
|
|
|
|
template <typename Graph>
|
|
struct CountNodesSelector<
|
|
Graph, typename
|
|
enable_if<typename Graph::NodeNumTag, void>::type>
|
|
{
|
|
static int count(const Graph &g) {
|
|
return g.nodeNum();
|
|
}
|
|
};
|
|
}
|
|
|
|
/// \brief Function to count the nodes in the graph.
|
|
///
|
|
/// This function counts the nodes in the graph.
|
|
/// The complexity of the function is <em>O</em>(<em>n</em>), but for some
|
|
/// graph structures it is specialized to run in <em>O</em>(1).
|
|
///
|
|
/// \note If the graph contains a \c nodeNum() member function and a
|
|
/// \c NodeNumTag tag then this function calls directly the member
|
|
/// function to query the cardinality of the node set.
|
|
template <typename Graph>
|
|
inline int countNodes(const Graph& g) {
|
|
return _core_bits::CountNodesSelector<Graph>::count(g);
|
|
}
|
|
|
|
namespace _graph_utils_bits {
|
|
|
|
template <typename Graph, typename Enable = void>
|
|
struct CountRedNodesSelector {
|
|
static int count(const Graph &g) {
|
|
return countItems<Graph, typename Graph::RedNode>(g);
|
|
}
|
|
};
|
|
|
|
template <typename Graph>
|
|
struct CountRedNodesSelector<
|
|
Graph, typename
|
|
enable_if<typename Graph::NodeNumTag, void>::type>
|
|
{
|
|
static int count(const Graph &g) {
|
|
return g.redNum();
|
|
}
|
|
};
|
|
}
|
|
|
|
/// \brief Function to count the red nodes in the graph.
|
|
///
|
|
/// This function counts the red nodes in the graph.
|
|
/// The complexity of the function is O(n) but for some
|
|
/// graph structures it is specialized to run in O(1).
|
|
///
|
|
/// If the graph contains a \e redNum() member function and a
|
|
/// \e NodeNumTag tag then this function calls directly the member
|
|
/// function to query the cardinality of the node set.
|
|
template <typename Graph>
|
|
inline int countRedNodes(const Graph& g) {
|
|
return _graph_utils_bits::CountRedNodesSelector<Graph>::count(g);
|
|
}
|
|
|
|
namespace _graph_utils_bits {
|
|
|
|
template <typename Graph, typename Enable = void>
|
|
struct CountBlueNodesSelector {
|
|
static int count(const Graph &g) {
|
|
return countItems<Graph, typename Graph::BlueNode>(g);
|
|
}
|
|
};
|
|
|
|
template <typename Graph>
|
|
struct CountBlueNodesSelector<
|
|
Graph, typename
|
|
enable_if<typename Graph::NodeNumTag, void>::type>
|
|
{
|
|
static int count(const Graph &g) {
|
|
return g.blueNum();
|
|
}
|
|
};
|
|
}
|
|
|
|
/// \brief Function to count the blue nodes in the graph.
|
|
///
|
|
/// This function counts the blue nodes in the graph.
|
|
/// The complexity of the function is O(n) but for some
|
|
/// graph structures it is specialized to run in O(1).
|
|
///
|
|
/// If the graph contains a \e blueNum() member function and a
|
|
/// \e NodeNumTag tag then this function calls directly the member
|
|
/// function to query the cardinality of the node set.
|
|
template <typename Graph>
|
|
inline int countBlueNodes(const Graph& g) {
|
|
return _graph_utils_bits::CountBlueNodesSelector<Graph>::count(g);
|
|
}
|
|
|
|
// Arc counting:
|
|
|
|
namespace _core_bits {
|
|
|
|
template <typename Graph, typename Enable = void>
|
|
struct CountArcsSelector {
|
|
static int count(const Graph &g) {
|
|
return countItems<Graph, typename Graph::Arc>(g);
|
|
}
|
|
};
|
|
|
|
template <typename Graph>
|
|
struct CountArcsSelector<
|
|
Graph,
|
|
typename enable_if<typename Graph::ArcNumTag, void>::type>
|
|
{
|
|
static int count(const Graph &g) {
|
|
return g.arcNum();
|
|
}
|
|
};
|
|
}
|
|
|
|
/// \brief Function to count the arcs in the graph.
|
|
///
|
|
/// This function counts the arcs in the graph.
|
|
/// The complexity of the function is <em>O</em>(<em>m</em>), but for some
|
|
/// graph structures it is specialized to run in <em>O</em>(1).
|
|
///
|
|
/// \note If the graph contains a \c arcNum() member function and a
|
|
/// \c ArcNumTag tag then this function calls directly the member
|
|
/// function to query the cardinality of the arc set.
|
|
template <typename Graph>
|
|
inline int countArcs(const Graph& g) {
|
|
return _core_bits::CountArcsSelector<Graph>::count(g);
|
|
}
|
|
|
|
// Edge counting:
|
|
|
|
namespace _core_bits {
|
|
|
|
template <typename Graph, typename Enable = void>
|
|
struct CountEdgesSelector {
|
|
static int count(const Graph &g) {
|
|
return countItems<Graph, typename Graph::Edge>(g);
|
|
}
|
|
};
|
|
|
|
template <typename Graph>
|
|
struct CountEdgesSelector<
|
|
Graph,
|
|
typename enable_if<typename Graph::EdgeNumTag, void>::type>
|
|
{
|
|
static int count(const Graph &g) {
|
|
return g.edgeNum();
|
|
}
|
|
};
|
|
}
|
|
|
|
/// \brief Function to count the edges in the graph.
|
|
///
|
|
/// This function counts the edges in the graph.
|
|
/// The complexity of the function is <em>O</em>(<em>m</em>), but for some
|
|
/// graph structures it is specialized to run in <em>O</em>(1).
|
|
///
|
|
/// \note If the graph contains a \c edgeNum() member function and a
|
|
/// \c EdgeNumTag tag then this function calls directly the member
|
|
/// function to query the cardinality of the edge set.
|
|
template <typename Graph>
|
|
inline int countEdges(const Graph& g) {
|
|
return _core_bits::CountEdgesSelector<Graph>::count(g);
|
|
|
|
}
|
|
|
|
|
|
template <typename Graph, typename DegIt>
|
|
inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
|
|
int num = 0;
|
|
for (DegIt it(_g, _n); it != INVALID; ++it) {
|
|
++num;
|
|
}
|
|
return num;
|
|
}
|
|
|
|
/// \brief Function to count the number of the out-arcs from node \c n.
|
|
///
|
|
/// This function counts the number of the out-arcs from node \c n
|
|
/// in the graph \c g.
|
|
template <typename Graph>
|
|
inline int countOutArcs(const Graph& g, const typename Graph::Node& n) {
|
|
return countNodeDegree<Graph, typename Graph::OutArcIt>(g, n);
|
|
}
|
|
|
|
/// \brief Function to count the number of the in-arcs to node \c n.
|
|
///
|
|
/// This function counts the number of the in-arcs to node \c n
|
|
/// in the graph \c g.
|
|
template <typename Graph>
|
|
inline int countInArcs(const Graph& g, const typename Graph::Node& n) {
|
|
return countNodeDegree<Graph, typename Graph::InArcIt>(g, n);
|
|
}
|
|
|
|
/// \brief Function to count the number of the inc-edges to node \c n.
|
|
///
|
|
/// This function counts the number of the inc-edges to node \c n
|
|
/// in the undirected graph \c g.
|
|
template <typename Graph>
|
|
inline int countIncEdges(const Graph& g, const typename Graph::Node& n) {
|
|
return countNodeDegree<Graph, typename Graph::IncEdgeIt>(g, n);
|
|
}
|
|
|
|
namespace _core_bits {
|
|
|
|
template <typename Digraph, typename Item, typename RefMap>
|
|
class MapCopyBase {
|
|
public:
|
|
virtual void copy(const Digraph& from, const RefMap& refMap) = 0;
|
|
|
|
virtual ~MapCopyBase() {}
|
|
};
|
|
|
|
template <typename Digraph, typename Item, typename RefMap,
|
|
typename FromMap, typename ToMap>
|
|
class MapCopy : public MapCopyBase<Digraph, Item, RefMap> {
|
|
public:
|
|
|
|
MapCopy(const FromMap& map, ToMap& tmap)
|
|
: _map(map), _tmap(tmap) {}
|
|
|
|
virtual void copy(const Digraph& digraph, const RefMap& refMap) {
|
|
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
|
|
for (ItemIt it(digraph); it != INVALID; ++it) {
|
|
_tmap.set(refMap[it], _map[it]);
|
|
}
|
|
}
|
|
|
|
private:
|
|
const FromMap& _map;
|
|
ToMap& _tmap;
|
|
};
|
|
|
|
template <typename Digraph, typename Item, typename RefMap, typename It>
|
|
class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> {
|
|
public:
|
|
|
|
ItemCopy(const Item& item, It& it) : _item(item), _it(it) {}
|
|
|
|
virtual void copy(const Digraph&, const RefMap& refMap) {
|
|
_it = refMap[_item];
|
|
}
|
|
|
|
private:
|
|
Item _item;
|
|
It& _it;
|
|
};
|
|
|
|
template <typename Digraph, typename Item, typename RefMap, typename Ref>
|
|
class RefCopy : public MapCopyBase<Digraph, Item, RefMap> {
|
|
public:
|
|
|
|
RefCopy(Ref& map) : _map(map) {}
|
|
|
|
virtual void copy(const Digraph& digraph, const RefMap& refMap) {
|
|
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
|
|
for (ItemIt it(digraph); it != INVALID; ++it) {
|
|
_map.set(it, refMap[it]);
|
|
}
|
|
}
|
|
|
|
private:
|
|
Ref& _map;
|
|
};
|
|
|
|
template <typename Digraph, typename Item, typename RefMap,
|
|
typename CrossRef>
|
|
class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> {
|
|
public:
|
|
|
|
CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
|
|
|
|
virtual void copy(const Digraph& digraph, const RefMap& refMap) {
|
|
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
|
|
for (ItemIt it(digraph); it != INVALID; ++it) {
|
|
_cmap.set(refMap[it], it);
|
|
}
|
|
}
|
|
|
|
private:
|
|
CrossRef& _cmap;
|
|
};
|
|
|
|
template <typename Digraph, typename Enable = void>
|
|
struct DigraphCopySelector {
|
|
template <typename From, typename NodeRefMap, typename ArcRefMap>
|
|
static void copy(const From& from, Digraph &to,
|
|
NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
|
|
to.clear();
|
|
for (typename From::NodeIt it(from); it != INVALID; ++it) {
|
|
nodeRefMap[it] = to.addNode();
|
|
}
|
|
for (typename From::ArcIt it(from); it != INVALID; ++it) {
|
|
arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)],
|
|
nodeRefMap[from.target(it)]);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename Digraph>
|
|
struct DigraphCopySelector<
|
|
Digraph,
|
|
typename enable_if<typename Digraph::BuildTag, void>::type>
|
|
{
|
|
template <typename From, typename NodeRefMap, typename ArcRefMap>
|
|
static void copy(const From& from, Digraph &to,
|
|
NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
|
|
to.build(from, nodeRefMap, arcRefMap);
|
|
}
|
|
};
|
|
|
|
template <typename Graph, typename Enable = void>
|
|
struct GraphCopySelector {
|
|
template <typename From, typename NodeRefMap, typename EdgeRefMap>
|
|
static void copy(const From& from, Graph &to,
|
|
NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
|
|
to.clear();
|
|
for (typename From::NodeIt it(from); it != INVALID; ++it) {
|
|
nodeRefMap[it] = to.addNode();
|
|
}
|
|
for (typename From::EdgeIt it(from); it != INVALID; ++it) {
|
|
edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)],
|
|
nodeRefMap[from.v(it)]);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename Graph>
|
|
struct GraphCopySelector<
|
|
Graph,
|
|
typename enable_if<typename Graph::BuildTag, void>::type>
|
|
{
|
|
template <typename From, typename NodeRefMap, typename EdgeRefMap>
|
|
static void copy(const From& from, Graph &to,
|
|
NodeRefMap& nodeRefMap,
|
|
EdgeRefMap& edgeRefMap) {
|
|
to.build(from, nodeRefMap, edgeRefMap);
|
|
}
|
|
};
|
|
|
|
template <typename BpGraph, typename Enable = void>
|
|
struct BpGraphCopySelector {
|
|
template <typename From, typename RedNodeRefMap,
|
|
typename BlueNodeRefMap, typename EdgeRefMap>
|
|
static void copy(const From& from, BpGraph &to,
|
|
RedNodeRefMap& redNodeRefMap,
|
|
BlueNodeRefMap& blueNodeRefMap,
|
|
EdgeRefMap& edgeRefMap) {
|
|
to.clear();
|
|
for (typename From::RedNodeIt it(from); it != INVALID; ++it) {
|
|
redNodeRefMap[it] = to.addRedNode();
|
|
}
|
|
for (typename From::BlueNodeIt it(from); it != INVALID; ++it) {
|
|
blueNodeRefMap[it] = to.addBlueNode();
|
|
}
|
|
for (typename From::EdgeIt it(from); it != INVALID; ++it) {
|
|
edgeRefMap[it] = to.addEdge(redNodeRefMap[from.redNode(it)],
|
|
blueNodeRefMap[from.blueNode(it)]);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename BpGraph>
|
|
struct BpGraphCopySelector<
|
|
BpGraph,
|
|
typename enable_if<typename BpGraph::BuildTag, void>::type>
|
|
{
|
|
template <typename From, typename RedNodeRefMap,
|
|
typename BlueNodeRefMap, typename EdgeRefMap>
|
|
static void copy(const From& from, BpGraph &to,
|
|
RedNodeRefMap& redNodeRefMap,
|
|
BlueNodeRefMap& blueNodeRefMap,
|
|
EdgeRefMap& edgeRefMap) {
|
|
to.build(from, redNodeRefMap, blueNodeRefMap, edgeRefMap);
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
/// \brief Check whether a graph is undirected.
|
|
///
|
|
/// This function returns \c true if the given graph is undirected.
|
|
#ifdef DOXYGEN
|
|
template <typename GR>
|
|
bool undirected(const GR& g) { return false; }
|
|
#else
|
|
template <typename GR>
|
|
typename enable_if<UndirectedTagIndicator<GR>, bool>::type
|
|
undirected(const GR&) {
|
|
return true;
|
|
}
|
|
template <typename GR>
|
|
typename disable_if<UndirectedTagIndicator<GR>, bool>::type
|
|
undirected(const GR&) {
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
/// \brief Class to copy a digraph.
|
|
///
|
|
/// Class to copy a digraph to another digraph (duplicate a digraph). The
|
|
/// simplest way of using it is through the \c digraphCopy() function.
|
|
///
|
|
/// This class not only make a copy of a digraph, but it can create
|
|
/// references and cross references between the nodes and arcs of
|
|
/// the two digraphs, and it can copy maps to use with the newly created
|
|
/// digraph.
|
|
///
|
|
/// To make a copy from a digraph, first an instance of DigraphCopy
|
|
/// should be created, then the data belongs to the digraph should
|
|
/// assigned to copy. In the end, the \c run() member should be
|
|
/// called.
|
|
///
|
|
/// The next code copies a digraph with several data:
|
|
///\code
|
|
/// DigraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
|
|
/// // Create references for the nodes
|
|
/// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
|
|
/// cg.nodeRef(nr);
|
|
/// // Create cross references (inverse) for the arcs
|
|
/// NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph);
|
|
/// cg.arcCrossRef(acr);
|
|
/// // Copy an arc map
|
|
/// OrigGraph::ArcMap<double> oamap(orig_graph);
|
|
/// NewGraph::ArcMap<double> namap(new_graph);
|
|
/// cg.arcMap(oamap, namap);
|
|
/// // Copy a node
|
|
/// OrigGraph::Node on;
|
|
/// NewGraph::Node nn;
|
|
/// cg.node(on, nn);
|
|
/// // Execute copying
|
|
/// cg.run();
|
|
///\endcode
|
|
template <typename From, typename To>
|
|
class DigraphCopy {
|
|
private:
|
|
|
|
typedef typename From::Node Node;
|
|
typedef typename From::NodeIt NodeIt;
|
|
typedef typename From::Arc Arc;
|
|
typedef typename From::ArcIt ArcIt;
|
|
|
|
typedef typename To::Node TNode;
|
|
typedef typename To::Arc TArc;
|
|
|
|
typedef typename From::template NodeMap<TNode> NodeRefMap;
|
|
typedef typename From::template ArcMap<TArc> ArcRefMap;
|
|
|
|
public:
|
|
|
|
/// \brief Constructor of DigraphCopy.
|
|
///
|
|
/// Constructor of DigraphCopy for copying the content of the
|
|
/// \c from digraph into the \c to digraph.
|
|
DigraphCopy(const From& from, To& to)
|
|
: _from(from), _to(to) {}
|
|
|
|
/// \brief Destructor of DigraphCopy
|
|
///
|
|
/// Destructor of DigraphCopy.
|
|
~DigraphCopy() {
|
|
for (int i = 0; i < int(_node_maps.size()); ++i) {
|
|
delete _node_maps[i];
|
|
}
|
|
for (int i = 0; i < int(_arc_maps.size()); ++i) {
|
|
delete _arc_maps[i];
|
|
}
|
|
|
|
}
|
|
|
|
/// \brief Copy the node references into the given map.
|
|
///
|
|
/// This function copies the node references into the given map.
|
|
/// The parameter should be a map, whose key type is the Node type of
|
|
/// the source digraph, while the value type is the Node type of the
|
|
/// destination digraph.
|
|
template <typename NodeRef>
|
|
DigraphCopy& nodeRef(NodeRef& map) {
|
|
_node_maps.push_back(new _core_bits::RefCopy<From, Node,
|
|
NodeRefMap, NodeRef>(map));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Copy the node cross references into the given map.
|
|
///
|
|
/// This function copies the node cross references (reverse references)
|
|
/// into the given map. The parameter should be a map, whose key type
|
|
/// is the Node type of the destination digraph, while the value type is
|
|
/// the Node type of the source digraph.
|
|
template <typename NodeCrossRef>
|
|
DigraphCopy& nodeCrossRef(NodeCrossRef& map) {
|
|
_node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
|
|
NodeRefMap, NodeCrossRef>(map));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Make a copy of the given node map.
|
|
///
|
|
/// This function makes a copy of the given node map for the newly
|
|
/// created digraph.
|
|
/// The key type of the new map \c tmap should be the Node type of the
|
|
/// destination digraph, and the key type of the original map \c map
|
|
/// should be the Node type of the source digraph.
|
|
template <typename FromMap, typename ToMap>
|
|
DigraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
|
|
_node_maps.push_back(new _core_bits::MapCopy<From, Node,
|
|
NodeRefMap, FromMap, ToMap>(map, tmap));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Make a copy of the given node.
|
|
///
|
|
/// This function makes a copy of the given node.
|
|
DigraphCopy& node(const Node& node, TNode& tnode) {
|
|
_node_maps.push_back(new _core_bits::ItemCopy<From, Node,
|
|
NodeRefMap, TNode>(node, tnode));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Copy the arc references into the given map.
|
|
///
|
|
/// This function copies the arc references into the given map.
|
|
/// The parameter should be a map, whose key type is the Arc type of
|
|
/// the source digraph, while the value type is the Arc type of the
|
|
/// destination digraph.
|
|
template <typename ArcRef>
|
|
DigraphCopy& arcRef(ArcRef& map) {
|
|
_arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
|
|
ArcRefMap, ArcRef>(map));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Copy the arc cross references into the given map.
|
|
///
|
|
/// This function copies the arc cross references (reverse references)
|
|
/// into the given map. The parameter should be a map, whose key type
|
|
/// is the Arc type of the destination digraph, while the value type is
|
|
/// the Arc type of the source digraph.
|
|
template <typename ArcCrossRef>
|
|
DigraphCopy& arcCrossRef(ArcCrossRef& map) {
|
|
_arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
|
|
ArcRefMap, ArcCrossRef>(map));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Make a copy of the given arc map.
|
|
///
|
|
/// This function makes a copy of the given arc map for the newly
|
|
/// created digraph.
|
|
/// The key type of the new map \c tmap should be the Arc type of the
|
|
/// destination digraph, and the key type of the original map \c map
|
|
/// should be the Arc type of the source digraph.
|
|
template <typename FromMap, typename ToMap>
|
|
DigraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
|
|
_arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
|
|
ArcRefMap, FromMap, ToMap>(map, tmap));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Make a copy of the given arc.
|
|
///
|
|
/// This function makes a copy of the given arc.
|
|
DigraphCopy& arc(const Arc& arc, TArc& tarc) {
|
|
_arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
|
|
ArcRefMap, TArc>(arc, tarc));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Execute copying.
|
|
///
|
|
/// This function executes the copying of the digraph along with the
|
|
/// copying of the assigned data.
|
|
void run() {
|
|
NodeRefMap nodeRefMap(_from);
|
|
ArcRefMap arcRefMap(_from);
|
|
_core_bits::DigraphCopySelector<To>::
|
|
copy(_from, _to, nodeRefMap, arcRefMap);
|
|
for (int i = 0; i < int(_node_maps.size()); ++i) {
|
|
_node_maps[i]->copy(_from, nodeRefMap);
|
|
}
|
|
for (int i = 0; i < int(_arc_maps.size()); ++i) {
|
|
_arc_maps[i]->copy(_from, arcRefMap);
|
|
}
|
|
}
|
|
|
|
protected:
|
|
|
|
const From& _from;
|
|
To& _to;
|
|
|
|
std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
|
|
_node_maps;
|
|
|
|
std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
|
|
_arc_maps;
|
|
|
|
};
|
|
|
|
/// \brief Copy a digraph to another digraph.
|
|
///
|
|
/// This function copies a digraph to another digraph.
|
|
/// The complete usage of it is detailed in the DigraphCopy class, but
|
|
/// a short example shows a basic work:
|
|
///\code
|
|
/// digraphCopy(src, trg).nodeRef(nr).arcCrossRef(acr).run();
|
|
///\endcode
|
|
///
|
|
/// After the copy the \c nr map will contain the mapping from the
|
|
/// nodes of the \c from digraph to the nodes of the \c to digraph and
|
|
/// \c acr will contain the mapping from the arcs of the \c to digraph
|
|
/// to the arcs of the \c from digraph.
|
|
///
|
|
/// \see DigraphCopy
|
|
template <typename From, typename To>
|
|
DigraphCopy<From, To> digraphCopy(const From& from, To& to) {
|
|
return DigraphCopy<From, To>(from, to);
|
|
}
|
|
|
|
/// \brief Class to copy a graph.
|
|
///
|
|
/// Class to copy a graph to another graph (duplicate a graph). The
|
|
/// simplest way of using it is through the \c graphCopy() function.
|
|
///
|
|
/// This class not only make a copy of a graph, but it can create
|
|
/// references and cross references between the nodes, edges and arcs of
|
|
/// the two graphs, and it can copy maps for using with the newly created
|
|
/// graph.
|
|
///
|
|
/// To make a copy from a graph, first an instance of GraphCopy
|
|
/// should be created, then the data belongs to the graph should
|
|
/// assigned to copy. In the end, the \c run() member should be
|
|
/// called.
|
|
///
|
|
/// The next code copies a graph with several data:
|
|
///\code
|
|
/// GraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
|
|
/// // Create references for the nodes
|
|
/// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
|
|
/// cg.nodeRef(nr);
|
|
/// // Create cross references (inverse) for the edges
|
|
/// NewGraph::EdgeMap<OrigGraph::Edge> ecr(new_graph);
|
|
/// cg.edgeCrossRef(ecr);
|
|
/// // Copy an edge map
|
|
/// OrigGraph::EdgeMap<double> oemap(orig_graph);
|
|
/// NewGraph::EdgeMap<double> nemap(new_graph);
|
|
/// cg.edgeMap(oemap, nemap);
|
|
/// // Copy a node
|
|
/// OrigGraph::Node on;
|
|
/// NewGraph::Node nn;
|
|
/// cg.node(on, nn);
|
|
/// // Execute copying
|
|
/// cg.run();
|
|
///\endcode
|
|
template <typename From, typename To>
|
|
class GraphCopy {
|
|
private:
|
|
|
|
typedef typename From::Node Node;
|
|
typedef typename From::NodeIt NodeIt;
|
|
typedef typename From::Arc Arc;
|
|
typedef typename From::ArcIt ArcIt;
|
|
typedef typename From::Edge Edge;
|
|
typedef typename From::EdgeIt EdgeIt;
|
|
|
|
typedef typename To::Node TNode;
|
|
typedef typename To::Arc TArc;
|
|
typedef typename To::Edge TEdge;
|
|
|
|
typedef typename From::template NodeMap<TNode> NodeRefMap;
|
|
typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
|
|
|
|
struct ArcRefMap {
|
|
ArcRefMap(const From& from, const To& to,
|
|
const EdgeRefMap& edge_ref, const NodeRefMap& node_ref)
|
|
: _from(from), _to(to),
|
|
_edge_ref(edge_ref), _node_ref(node_ref) {}
|
|
|
|
typedef typename From::Arc Key;
|
|
typedef typename To::Arc Value;
|
|
|
|
Value operator[](const Key& key) const {
|
|
bool forward = _from.u(key) != _from.v(key) ?
|
|
_node_ref[_from.source(key)] ==
|
|
_to.source(_to.direct(_edge_ref[key], true)) :
|
|
_from.direction(key);
|
|
return _to.direct(_edge_ref[key], forward);
|
|
}
|
|
|
|
const From& _from;
|
|
const To& _to;
|
|
const EdgeRefMap& _edge_ref;
|
|
const NodeRefMap& _node_ref;
|
|
};
|
|
|
|
public:
|
|
|
|
/// \brief Constructor of GraphCopy.
|
|
///
|
|
/// Constructor of GraphCopy for copying the content of the
|
|
/// \c from graph into the \c to graph.
|
|
GraphCopy(const From& from, To& to)
|
|
: _from(from), _to(to) {}
|
|
|
|
/// \brief Destructor of GraphCopy
|
|
///
|
|
/// Destructor of GraphCopy.
|
|
~GraphCopy() {
|
|
for (int i = 0; i < int(_node_maps.size()); ++i) {
|
|
delete _node_maps[i];
|
|
}
|
|
for (int i = 0; i < int(_arc_maps.size()); ++i) {
|
|
delete _arc_maps[i];
|
|
}
|
|
for (int i = 0; i < int(_edge_maps.size()); ++i) {
|
|
delete _edge_maps[i];
|
|
}
|
|
}
|
|
|
|
/// \brief Copy the node references into the given map.
|
|
///
|
|
/// This function copies the node references into the given map.
|
|
/// The parameter should be a map, whose key type is the Node type of
|
|
/// the source graph, while the value type is the Node type of the
|
|
/// destination graph.
|
|
template <typename NodeRef>
|
|
GraphCopy& nodeRef(NodeRef& map) {
|
|
_node_maps.push_back(new _core_bits::RefCopy<From, Node,
|
|
NodeRefMap, NodeRef>(map));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Copy the node cross references into the given map.
|
|
///
|
|
/// This function copies the node cross references (reverse references)
|
|
/// into the given map. The parameter should be a map, whose key type
|
|
/// is the Node type of the destination graph, while the value type is
|
|
/// the Node type of the source graph.
|
|
template <typename NodeCrossRef>
|
|
GraphCopy& nodeCrossRef(NodeCrossRef& map) {
|
|
_node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
|
|
NodeRefMap, NodeCrossRef>(map));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Make a copy of the given node map.
|
|
///
|
|
/// This function makes a copy of the given node map for the newly
|
|
/// created graph.
|
|
/// The key type of the new map \c tmap should be the Node type of the
|
|
/// destination graph, and the key type of the original map \c map
|
|
/// should be the Node type of the source graph.
|
|
template <typename FromMap, typename ToMap>
|
|
GraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
|
|
_node_maps.push_back(new _core_bits::MapCopy<From, Node,
|
|
NodeRefMap, FromMap, ToMap>(map, tmap));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Make a copy of the given node.
|
|
///
|
|
/// This function makes a copy of the given node.
|
|
GraphCopy& node(const Node& node, TNode& tnode) {
|
|
_node_maps.push_back(new _core_bits::ItemCopy<From, Node,
|
|
NodeRefMap, TNode>(node, tnode));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Copy the arc references into the given map.
|
|
///
|
|
/// This function copies the arc references into the given map.
|
|
/// The parameter should be a map, whose key type is the Arc type of
|
|
/// the source graph, while the value type is the Arc type of the
|
|
/// destination graph.
|
|
template <typename ArcRef>
|
|
GraphCopy& arcRef(ArcRef& map) {
|
|
_arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
|
|
ArcRefMap, ArcRef>(map));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Copy the arc cross references into the given map.
|
|
///
|
|
/// This function copies the arc cross references (reverse references)
|
|
/// into the given map. The parameter should be a map, whose key type
|
|
/// is the Arc type of the destination graph, while the value type is
|
|
/// the Arc type of the source graph.
|
|
template <typename ArcCrossRef>
|
|
GraphCopy& arcCrossRef(ArcCrossRef& map) {
|
|
_arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
|
|
ArcRefMap, ArcCrossRef>(map));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Make a copy of the given arc map.
|
|
///
|
|
/// This function makes a copy of the given arc map for the newly
|
|
/// created graph.
|
|
/// The key type of the new map \c tmap should be the Arc type of the
|
|
/// destination graph, and the key type of the original map \c map
|
|
/// should be the Arc type of the source graph.
|
|
template <typename FromMap, typename ToMap>
|
|
GraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
|
|
_arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
|
|
ArcRefMap, FromMap, ToMap>(map, tmap));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Make a copy of the given arc.
|
|
///
|
|
/// This function makes a copy of the given arc.
|
|
GraphCopy& arc(const Arc& arc, TArc& tarc) {
|
|
_arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
|
|
ArcRefMap, TArc>(arc, tarc));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Copy the edge references into the given map.
|
|
///
|
|
/// This function copies the edge references into the given map.
|
|
/// The parameter should be a map, whose key type is the Edge type of
|
|
/// the source graph, while the value type is the Edge type of the
|
|
/// destination graph.
|
|
template <typename EdgeRef>
|
|
GraphCopy& edgeRef(EdgeRef& map) {
|
|
_edge_maps.push_back(new _core_bits::RefCopy<From, Edge,
|
|
EdgeRefMap, EdgeRef>(map));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Copy the edge cross references into the given map.
|
|
///
|
|
/// This function copies the edge cross references (reverse references)
|
|
/// into the given map. The parameter should be a map, whose key type
|
|
/// is the Edge type of the destination graph, while the value type is
|
|
/// the Edge type of the source graph.
|
|
template <typename EdgeCrossRef>
|
|
GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
|
|
_edge_maps.push_back(new _core_bits::CrossRefCopy<From,
|
|
Edge, EdgeRefMap, EdgeCrossRef>(map));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Make a copy of the given edge map.
|
|
///
|
|
/// This function makes a copy of the given edge map for the newly
|
|
/// created graph.
|
|
/// The key type of the new map \c tmap should be the Edge type of the
|
|
/// destination graph, and the key type of the original map \c map
|
|
/// should be the Edge type of the source graph.
|
|
template <typename FromMap, typename ToMap>
|
|
GraphCopy& edgeMap(const FromMap& map, ToMap& tmap) {
|
|
_edge_maps.push_back(new _core_bits::MapCopy<From, Edge,
|
|
EdgeRefMap, FromMap, ToMap>(map, tmap));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Make a copy of the given edge.
|
|
///
|
|
/// This function makes a copy of the given edge.
|
|
GraphCopy& edge(const Edge& edge, TEdge& tedge) {
|
|
_edge_maps.push_back(new _core_bits::ItemCopy<From, Edge,
|
|
EdgeRefMap, TEdge>(edge, tedge));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Execute copying.
|
|
///
|
|
/// This function executes the copying of the graph along with the
|
|
/// copying of the assigned data.
|
|
void run() {
|
|
NodeRefMap nodeRefMap(_from);
|
|
EdgeRefMap edgeRefMap(_from);
|
|
ArcRefMap arcRefMap(_from, _to, edgeRefMap, nodeRefMap);
|
|
_core_bits::GraphCopySelector<To>::
|
|
copy(_from, _to, nodeRefMap, edgeRefMap);
|
|
for (int i = 0; i < int(_node_maps.size()); ++i) {
|
|
_node_maps[i]->copy(_from, nodeRefMap);
|
|
}
|
|
for (int i = 0; i < int(_edge_maps.size()); ++i) {
|
|
_edge_maps[i]->copy(_from, edgeRefMap);
|
|
}
|
|
for (int i = 0; i < int(_arc_maps.size()); ++i) {
|
|
_arc_maps[i]->copy(_from, arcRefMap);
|
|
}
|
|
}
|
|
|
|
private:
|
|
|
|
const From& _from;
|
|
To& _to;
|
|
|
|
std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
|
|
_node_maps;
|
|
|
|
std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
|
|
_arc_maps;
|
|
|
|
std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
|
|
_edge_maps;
|
|
|
|
};
|
|
|
|
/// \brief Copy a graph to another graph.
|
|
///
|
|
/// This function copies a graph to another graph.
|
|
/// The complete usage of it is detailed in the GraphCopy class,
|
|
/// but a short example shows a basic work:
|
|
///\code
|
|
/// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run();
|
|
///\endcode
|
|
///
|
|
/// After the copy the \c nr map will contain the mapping from the
|
|
/// nodes of the \c from graph to the nodes of the \c to graph and
|
|
/// \c ecr will contain the mapping from the edges of the \c to graph
|
|
/// to the edges of the \c from graph.
|
|
///
|
|
/// \see GraphCopy
|
|
template <typename From, typename To>
|
|
GraphCopy<From, To>
|
|
graphCopy(const From& from, To& to) {
|
|
return GraphCopy<From, To>(from, to);
|
|
}
|
|
|
|
/// \brief Class to copy a bipartite graph.
|
|
///
|
|
/// Class to copy a bipartite graph to another graph (duplicate a
|
|
/// graph). The simplest way of using it is through the
|
|
/// \c bpGraphCopy() function.
|
|
///
|
|
/// This class not only make a copy of a bipartite graph, but it can
|
|
/// create references and cross references between the nodes, edges
|
|
/// and arcs of the two graphs, and it can copy maps for using with
|
|
/// the newly created graph.
|
|
///
|
|
/// To make a copy from a graph, first an instance of BpGraphCopy
|
|
/// should be created, then the data belongs to the graph should
|
|
/// assigned to copy. In the end, the \c run() member should be
|
|
/// called.
|
|
///
|
|
/// The next code copies a graph with several data:
|
|
///\code
|
|
/// BpGraphCopy<OrigBpGraph, NewBpGraph> cg(orig_graph, new_graph);
|
|
/// // Create references for the nodes
|
|
/// OrigBpGraph::NodeMap<NewBpGraph::Node> nr(orig_graph);
|
|
/// cg.nodeRef(nr);
|
|
/// // Create cross references (inverse) for the edges
|
|
/// NewBpGraph::EdgeMap<OrigBpGraph::Edge> ecr(new_graph);
|
|
/// cg.edgeCrossRef(ecr);
|
|
/// // Copy a red node map
|
|
/// OrigBpGraph::RedNodeMap<double> ormap(orig_graph);
|
|
/// NewBpGraph::RedNodeMap<double> nrmap(new_graph);
|
|
/// cg.redNodeMap(ormap, nrmap);
|
|
/// // Copy a node
|
|
/// OrigBpGraph::Node on;
|
|
/// NewBpGraph::Node nn;
|
|
/// cg.node(on, nn);
|
|
/// // Execute copying
|
|
/// cg.run();
|
|
///\endcode
|
|
template <typename From, typename To>
|
|
class BpGraphCopy {
|
|
private:
|
|
|
|
typedef typename From::Node Node;
|
|
typedef typename From::RedNode RedNode;
|
|
typedef typename From::BlueNode BlueNode;
|
|
typedef typename From::NodeIt NodeIt;
|
|
typedef typename From::Arc Arc;
|
|
typedef typename From::ArcIt ArcIt;
|
|
typedef typename From::Edge Edge;
|
|
typedef typename From::EdgeIt EdgeIt;
|
|
|
|
typedef typename To::Node TNode;
|
|
typedef typename To::RedNode TRedNode;
|
|
typedef typename To::BlueNode TBlueNode;
|
|
typedef typename To::Arc TArc;
|
|
typedef typename To::Edge TEdge;
|
|
|
|
typedef typename From::template RedNodeMap<TRedNode> RedNodeRefMap;
|
|
typedef typename From::template BlueNodeMap<TBlueNode> BlueNodeRefMap;
|
|
typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
|
|
|
|
struct NodeRefMap {
|
|
NodeRefMap(const From& from, const RedNodeRefMap& red_node_ref,
|
|
const BlueNodeRefMap& blue_node_ref)
|
|
: _from(from), _red_node_ref(red_node_ref),
|
|
_blue_node_ref(blue_node_ref) {}
|
|
|
|
typedef typename From::Node Key;
|
|
typedef typename To::Node Value;
|
|
|
|
Value operator[](const Key& key) const {
|
|
if (_from.red(key)) {
|
|
return _red_node_ref[_from.asRedNodeUnsafe(key)];
|
|
} else {
|
|
return _blue_node_ref[_from.asBlueNodeUnsafe(key)];
|
|
}
|
|
}
|
|
|
|
const From& _from;
|
|
const RedNodeRefMap& _red_node_ref;
|
|
const BlueNodeRefMap& _blue_node_ref;
|
|
};
|
|
|
|
struct ArcRefMap {
|
|
ArcRefMap(const From& from, const To& to, const EdgeRefMap& edge_ref)
|
|
: _from(from), _to(to), _edge_ref(edge_ref) {}
|
|
|
|
typedef typename From::Arc Key;
|
|
typedef typename To::Arc Value;
|
|
|
|
Value operator[](const Key& key) const {
|
|
return _to.direct(_edge_ref[key], _from.direction(key));
|
|
}
|
|
|
|
const From& _from;
|
|
const To& _to;
|
|
const EdgeRefMap& _edge_ref;
|
|
};
|
|
|
|
public:
|
|
|
|
/// \brief Constructor of BpGraphCopy.
|
|
///
|
|
/// Constructor of BpGraphCopy for copying the content of the
|
|
/// \c from graph into the \c to graph.
|
|
BpGraphCopy(const From& from, To& to)
|
|
: _from(from), _to(to) {}
|
|
|
|
/// \brief Destructor of BpGraphCopy
|
|
///
|
|
/// Destructor of BpGraphCopy.
|
|
~BpGraphCopy() {
|
|
for (int i = 0; i < int(_node_maps.size()); ++i) {
|
|
delete _node_maps[i];
|
|
}
|
|
for (int i = 0; i < int(_red_maps.size()); ++i) {
|
|
delete _red_maps[i];
|
|
}
|
|
for (int i = 0; i < int(_blue_maps.size()); ++i) {
|
|
delete _blue_maps[i];
|
|
}
|
|
for (int i = 0; i < int(_arc_maps.size()); ++i) {
|
|
delete _arc_maps[i];
|
|
}
|
|
for (int i = 0; i < int(_edge_maps.size()); ++i) {
|
|
delete _edge_maps[i];
|
|
}
|
|
}
|
|
|
|
/// \brief Copy the node references into the given map.
|
|
///
|
|
/// This function copies the node references into the given map.
|
|
/// The parameter should be a map, whose key type is the Node type of
|
|
/// the source graph, while the value type is the Node type of the
|
|
/// destination graph.
|
|
template <typename NodeRef>
|
|
BpGraphCopy& nodeRef(NodeRef& map) {
|
|
_node_maps.push_back(new _core_bits::RefCopy<From, Node,
|
|
NodeRefMap, NodeRef>(map));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Copy the node cross references into the given map.
|
|
///
|
|
/// This function copies the node cross references (reverse references)
|
|
/// into the given map. The parameter should be a map, whose key type
|
|
/// is the Node type of the destination graph, while the value type is
|
|
/// the Node type of the source graph.
|
|
template <typename NodeCrossRef>
|
|
BpGraphCopy& nodeCrossRef(NodeCrossRef& map) {
|
|
_node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
|
|
NodeRefMap, NodeCrossRef>(map));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Make a copy of the given node map.
|
|
///
|
|
/// This function makes a copy of the given node map for the newly
|
|
/// created graph.
|
|
/// The key type of the new map \c tmap should be the Node type of the
|
|
/// destination graph, and the key type of the original map \c map
|
|
/// should be the Node type of the source graph.
|
|
template <typename FromMap, typename ToMap>
|
|
BpGraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
|
|
_node_maps.push_back(new _core_bits::MapCopy<From, Node,
|
|
NodeRefMap, FromMap, ToMap>(map, tmap));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Make a copy of the given node.
|
|
///
|
|
/// This function makes a copy of the given node.
|
|
BpGraphCopy& node(const Node& node, TNode& tnode) {
|
|
_node_maps.push_back(new _core_bits::ItemCopy<From, Node,
|
|
NodeRefMap, TNode>(node, tnode));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Copy the red node references into the given map.
|
|
///
|
|
/// This function copies the red node references into the given
|
|
/// map. The parameter should be a map, whose key type is the
|
|
/// Node type of the source graph with the red item set, while the
|
|
/// value type is the Node type of the destination graph.
|
|
template <typename RedRef>
|
|
BpGraphCopy& redRef(RedRef& map) {
|
|
_red_maps.push_back(new _core_bits::RefCopy<From, RedNode,
|
|
RedNodeRefMap, RedRef>(map));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Copy the red node cross references into the given map.
|
|
///
|
|
/// This function copies the red node cross references (reverse
|
|
/// references) into the given map. The parameter should be a map,
|
|
/// whose key type is the Node type of the destination graph with
|
|
/// the red item set, while the value type is the Node type of the
|
|
/// source graph.
|
|
template <typename RedCrossRef>
|
|
BpGraphCopy& redCrossRef(RedCrossRef& map) {
|
|
_red_maps.push_back(new _core_bits::CrossRefCopy<From, RedNode,
|
|
RedNodeRefMap, RedCrossRef>(map));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Make a copy of the given red node map.
|
|
///
|
|
/// This function makes a copy of the given red node map for the newly
|
|
/// created graph.
|
|
/// The key type of the new map \c tmap should be the Node type of
|
|
/// the destination graph with the red items, and the key type of
|
|
/// the original map \c map should be the Node type of the source
|
|
/// graph.
|
|
template <typename FromMap, typename ToMap>
|
|
BpGraphCopy& redNodeMap(const FromMap& map, ToMap& tmap) {
|
|
_red_maps.push_back(new _core_bits::MapCopy<From, RedNode,
|
|
RedNodeRefMap, FromMap, ToMap>(map, tmap));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Make a copy of the given red node.
|
|
///
|
|
/// This function makes a copy of the given red node.
|
|
BpGraphCopy& redNode(const RedNode& node, TRedNode& tnode) {
|
|
_red_maps.push_back(new _core_bits::ItemCopy<From, RedNode,
|
|
RedNodeRefMap, TRedNode>(node, tnode));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Copy the blue node references into the given map.
|
|
///
|
|
/// This function copies the blue node references into the given
|
|
/// map. The parameter should be a map, whose key type is the
|
|
/// Node type of the source graph with the blue item set, while the
|
|
/// value type is the Node type of the destination graph.
|
|
template <typename BlueRef>
|
|
BpGraphCopy& blueRef(BlueRef& map) {
|
|
_blue_maps.push_back(new _core_bits::RefCopy<From, BlueNode,
|
|
BlueNodeRefMap, BlueRef>(map));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Copy the blue node cross references into the given map.
|
|
///
|
|
/// This function copies the blue node cross references (reverse
|
|
/// references) into the given map. The parameter should be a map,
|
|
/// whose key type is the Node type of the destination graph with
|
|
/// the blue item set, while the value type is the Node type of the
|
|
/// source graph.
|
|
template <typename BlueCrossRef>
|
|
BpGraphCopy& blueCrossRef(BlueCrossRef& map) {
|
|
_blue_maps.push_back(new _core_bits::CrossRefCopy<From, BlueNode,
|
|
BlueNodeRefMap, BlueCrossRef>(map));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Make a copy of the given blue node map.
|
|
///
|
|
/// This function makes a copy of the given blue node map for the newly
|
|
/// created graph.
|
|
/// The key type of the new map \c tmap should be the Node type of
|
|
/// the destination graph with the blue items, and the key type of
|
|
/// the original map \c map should be the Node type of the source
|
|
/// graph.
|
|
template <typename FromMap, typename ToMap>
|
|
BpGraphCopy& blueNodeMap(const FromMap& map, ToMap& tmap) {
|
|
_blue_maps.push_back(new _core_bits::MapCopy<From, BlueNode,
|
|
BlueNodeRefMap, FromMap, ToMap>(map, tmap));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Make a copy of the given blue node.
|
|
///
|
|
/// This function makes a copy of the given blue node.
|
|
BpGraphCopy& blueNode(const BlueNode& node, TBlueNode& tnode) {
|
|
_blue_maps.push_back(new _core_bits::ItemCopy<From, BlueNode,
|
|
BlueNodeRefMap, TBlueNode>(node, tnode));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Copy the arc references into the given map.
|
|
///
|
|
/// This function copies the arc references into the given map.
|
|
/// The parameter should be a map, whose key type is the Arc type of
|
|
/// the source graph, while the value type is the Arc type of the
|
|
/// destination graph.
|
|
template <typename ArcRef>
|
|
BpGraphCopy& arcRef(ArcRef& map) {
|
|
_arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
|
|
ArcRefMap, ArcRef>(map));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Copy the arc cross references into the given map.
|
|
///
|
|
/// This function copies the arc cross references (reverse references)
|
|
/// into the given map. The parameter should be a map, whose key type
|
|
/// is the Arc type of the destination graph, while the value type is
|
|
/// the Arc type of the source graph.
|
|
template <typename ArcCrossRef>
|
|
BpGraphCopy& arcCrossRef(ArcCrossRef& map) {
|
|
_arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
|
|
ArcRefMap, ArcCrossRef>(map));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Make a copy of the given arc map.
|
|
///
|
|
/// This function makes a copy of the given arc map for the newly
|
|
/// created graph.
|
|
/// The key type of the new map \c tmap should be the Arc type of the
|
|
/// destination graph, and the key type of the original map \c map
|
|
/// should be the Arc type of the source graph.
|
|
template <typename FromMap, typename ToMap>
|
|
BpGraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
|
|
_arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
|
|
ArcRefMap, FromMap, ToMap>(map, tmap));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Make a copy of the given arc.
|
|
///
|
|
/// This function makes a copy of the given arc.
|
|
BpGraphCopy& arc(const Arc& arc, TArc& tarc) {
|
|
_arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
|
|
ArcRefMap, TArc>(arc, tarc));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Copy the edge references into the given map.
|
|
///
|
|
/// This function copies the edge references into the given map.
|
|
/// The parameter should be a map, whose key type is the Edge type of
|
|
/// the source graph, while the value type is the Edge type of the
|
|
/// destination graph.
|
|
template <typename EdgeRef>
|
|
BpGraphCopy& edgeRef(EdgeRef& map) {
|
|
_edge_maps.push_back(new _core_bits::RefCopy<From, Edge,
|
|
EdgeRefMap, EdgeRef>(map));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Copy the edge cross references into the given map.
|
|
///
|
|
/// This function copies the edge cross references (reverse references)
|
|
/// into the given map. The parameter should be a map, whose key type
|
|
/// is the Edge type of the destination graph, while the value type is
|
|
/// the Edge type of the source graph.
|
|
template <typename EdgeCrossRef>
|
|
BpGraphCopy& edgeCrossRef(EdgeCrossRef& map) {
|
|
_edge_maps.push_back(new _core_bits::CrossRefCopy<From,
|
|
Edge, EdgeRefMap, EdgeCrossRef>(map));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Make a copy of the given edge map.
|
|
///
|
|
/// This function makes a copy of the given edge map for the newly
|
|
/// created graph.
|
|
/// The key type of the new map \c tmap should be the Edge type of the
|
|
/// destination graph, and the key type of the original map \c map
|
|
/// should be the Edge type of the source graph.
|
|
template <typename FromMap, typename ToMap>
|
|
BpGraphCopy& edgeMap(const FromMap& map, ToMap& tmap) {
|
|
_edge_maps.push_back(new _core_bits::MapCopy<From, Edge,
|
|
EdgeRefMap, FromMap, ToMap>(map, tmap));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Make a copy of the given edge.
|
|
///
|
|
/// This function makes a copy of the given edge.
|
|
BpGraphCopy& edge(const Edge& edge, TEdge& tedge) {
|
|
_edge_maps.push_back(new _core_bits::ItemCopy<From, Edge,
|
|
EdgeRefMap, TEdge>(edge, tedge));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Execute copying.
|
|
///
|
|
/// This function executes the copying of the graph along with the
|
|
/// copying of the assigned data.
|
|
void run() {
|
|
RedNodeRefMap redNodeRefMap(_from);
|
|
BlueNodeRefMap blueNodeRefMap(_from);
|
|
NodeRefMap nodeRefMap(_from, redNodeRefMap, blueNodeRefMap);
|
|
EdgeRefMap edgeRefMap(_from);
|
|
ArcRefMap arcRefMap(_from, _to, edgeRefMap);
|
|
_core_bits::BpGraphCopySelector<To>::
|
|
copy(_from, _to, redNodeRefMap, blueNodeRefMap, edgeRefMap);
|
|
for (int i = 0; i < int(_node_maps.size()); ++i) {
|
|
_node_maps[i]->copy(_from, nodeRefMap);
|
|
}
|
|
for (int i = 0; i < int(_red_maps.size()); ++i) {
|
|
_red_maps[i]->copy(_from, redNodeRefMap);
|
|
}
|
|
for (int i = 0; i < int(_blue_maps.size()); ++i) {
|
|
_blue_maps[i]->copy(_from, blueNodeRefMap);
|
|
}
|
|
for (int i = 0; i < int(_edge_maps.size()); ++i) {
|
|
_edge_maps[i]->copy(_from, edgeRefMap);
|
|
}
|
|
for (int i = 0; i < int(_arc_maps.size()); ++i) {
|
|
_arc_maps[i]->copy(_from, arcRefMap);
|
|
}
|
|
}
|
|
|
|
private:
|
|
|
|
const From& _from;
|
|
To& _to;
|
|
|
|
std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
|
|
_node_maps;
|
|
|
|
std::vector<_core_bits::MapCopyBase<From, RedNode, RedNodeRefMap>* >
|
|
_red_maps;
|
|
|
|
std::vector<_core_bits::MapCopyBase<From, BlueNode, BlueNodeRefMap>* >
|
|
_blue_maps;
|
|
|
|
std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
|
|
_arc_maps;
|
|
|
|
std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
|
|
_edge_maps;
|
|
|
|
};
|
|
|
|
/// \brief Copy a graph to another graph.
|
|
///
|
|
/// This function copies a graph to another graph.
|
|
/// The complete usage of it is detailed in the BpGraphCopy class,
|
|
/// but a short example shows a basic work:
|
|
///\code
|
|
/// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run();
|
|
///\endcode
|
|
///
|
|
/// After the copy the \c nr map will contain the mapping from the
|
|
/// nodes of the \c from graph to the nodes of the \c to graph and
|
|
/// \c ecr will contain the mapping from the edges of the \c to graph
|
|
/// to the edges of the \c from graph.
|
|
///
|
|
/// \see BpGraphCopy
|
|
template <typename From, typename To>
|
|
BpGraphCopy<From, To>
|
|
bpGraphCopy(const From& from, To& to) {
|
|
return BpGraphCopy<From, To>(from, to);
|
|
}
|
|
|
|
namespace _core_bits {
|
|
|
|
template <typename Graph, typename Enable = void>
|
|
struct FindArcSelector {
|
|
typedef typename Graph::Node Node;
|
|
typedef typename Graph::Arc Arc;
|
|
static Arc find(const Graph &g, Node u, Node v, Arc e) {
|
|
if (e == INVALID) {
|
|
g.firstOut(e, u);
|
|
} else {
|
|
g.nextOut(e);
|
|
}
|
|
while (e != INVALID && g.target(e) != v) {
|
|
g.nextOut(e);
|
|
}
|
|
return e;
|
|
}
|
|
};
|
|
|
|
template <typename Graph>
|
|
struct FindArcSelector<
|
|
Graph,
|
|
typename enable_if<typename Graph::FindArcTag, void>::type>
|
|
{
|
|
typedef typename Graph::Node Node;
|
|
typedef typename Graph::Arc Arc;
|
|
static Arc find(const Graph &g, Node u, Node v, Arc prev) {
|
|
return g.findArc(u, v, prev);
|
|
}
|
|
};
|
|
}
|
|
|
|
/// \brief Find an arc between two nodes of a digraph.
|
|
///
|
|
/// This function finds an arc from node \c u to node \c v in the
|
|
/// digraph \c g.
|
|
///
|
|
/// If \c prev is \ref INVALID (this is the default value), then
|
|
/// it finds the first arc from \c u to \c v. Otherwise it looks for
|
|
/// the next arc from \c u to \c v after \c prev.
|
|
/// \return The found arc or \ref INVALID if there is no such an arc.
|
|
///
|
|
/// Thus you can iterate through each arc from \c u to \c v as it follows.
|
|
///\code
|
|
/// for(Arc e = findArc(g,u,v); e != INVALID; e = findArc(g,u,v,e)) {
|
|
/// ...
|
|
/// }
|
|
///\endcode
|
|
///
|
|
/// \note \ref ConArcIt provides iterator interface for the same
|
|
/// functionality.
|
|
///
|
|
///\sa ConArcIt
|
|
///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
|
|
template <typename Graph>
|
|
inline typename Graph::Arc
|
|
findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v,
|
|
typename Graph::Arc prev = INVALID) {
|
|
return _core_bits::FindArcSelector<Graph>::find(g, u, v, prev);
|
|
}
|
|
|
|
/// \brief Iterator for iterating on parallel arcs connecting the same nodes.
|
|
///
|
|
/// Iterator for iterating on parallel arcs connecting the same nodes. It is
|
|
/// a higher level interface for the \ref findArc() function. You can
|
|
/// use it the following way:
|
|
///\code
|
|
/// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) {
|
|
/// ...
|
|
/// }
|
|
///\endcode
|
|
///
|
|
///\sa findArc()
|
|
///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
|
|
template <typename GR>
|
|
class ConArcIt : public GR::Arc {
|
|
typedef typename GR::Arc Parent;
|
|
|
|
public:
|
|
|
|
typedef typename GR::Arc Arc;
|
|
typedef typename GR::Node Node;
|
|
|
|
/// \brief Constructor.
|
|
///
|
|
/// Construct a new ConArcIt iterating on the arcs that
|
|
/// connects nodes \c u and \c v.
|
|
ConArcIt(const GR& g, Node u, Node v) : _graph(g) {
|
|
Parent::operator=(findArc(_graph, u, v));
|
|
}
|
|
|
|
/// \brief Constructor.
|
|
///
|
|
/// Construct a new ConArcIt that continues the iterating from arc \c a.
|
|
ConArcIt(const GR& g, Arc a) : Parent(a), _graph(g) {}
|
|
|
|
/// \brief Increment operator.
|
|
///
|
|
/// It increments the iterator and gives back the next arc.
|
|
ConArcIt& operator++() {
|
|
Parent::operator=(findArc(_graph, _graph.source(*this),
|
|
_graph.target(*this), *this));
|
|
return *this;
|
|
}
|
|
private:
|
|
const GR& _graph;
|
|
};
|
|
|
|
namespace _core_bits {
|
|
|
|
template <typename Graph, typename Enable = void>
|
|
struct FindEdgeSelector {
|
|
typedef typename Graph::Node Node;
|
|
typedef typename Graph::Edge Edge;
|
|
static Edge find(const Graph &g, Node u, Node v, Edge e) {
|
|
bool b;
|
|
if (u != v) {
|
|
if (e == INVALID) {
|
|
g.firstInc(e, b, u);
|
|
} else {
|
|
b = g.u(e) == u;
|
|
g.nextInc(e, b);
|
|
}
|
|
while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) {
|
|
g.nextInc(e, b);
|
|
}
|
|
} else {
|
|
if (e == INVALID) {
|
|
g.firstInc(e, b, u);
|
|
} else {
|
|
b = true;
|
|
g.nextInc(e, b);
|
|
}
|
|
while (e != INVALID && (!b || g.v(e) != v)) {
|
|
g.nextInc(e, b);
|
|
}
|
|
}
|
|
return e;
|
|
}
|
|
};
|
|
|
|
template <typename Graph>
|
|
struct FindEdgeSelector<
|
|
Graph,
|
|
typename enable_if<typename Graph::FindEdgeTag, void>::type>
|
|
{
|
|
typedef typename Graph::Node Node;
|
|
typedef typename Graph::Edge Edge;
|
|
static Edge find(const Graph &g, Node u, Node v, Edge prev) {
|
|
return g.findEdge(u, v, prev);
|
|
}
|
|
};
|
|
}
|
|
|
|
/// \brief Find an edge between two nodes of a graph.
|
|
///
|
|
/// This function finds an edge from node \c u to node \c v in graph \c g.
|
|
/// If node \c u and node \c v is equal then each loop edge
|
|
/// will be enumerated once.
|
|
///
|
|
/// If \c prev is \ref INVALID (this is the default value), then
|
|
/// it finds the first edge from \c u to \c v. Otherwise it looks for
|
|
/// the next edge from \c u to \c v after \c prev.
|
|
/// \return The found edge or \ref INVALID if there is no such an edge.
|
|
///
|
|
/// Thus you can iterate through each edge between \c u and \c v
|
|
/// as it follows.
|
|
///\code
|
|
/// for(Edge e = findEdge(g,u,v); e != INVALID; e = findEdge(g,u,v,e)) {
|
|
/// ...
|
|
/// }
|
|
///\endcode
|
|
///
|
|
/// \note \ref ConEdgeIt provides iterator interface for the same
|
|
/// functionality.
|
|
///
|
|
///\sa ConEdgeIt
|
|
template <typename Graph>
|
|
inline typename Graph::Edge
|
|
findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
|
|
typename Graph::Edge p = INVALID) {
|
|
return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p);
|
|
}
|
|
|
|
/// \brief Iterator for iterating on parallel edges connecting the same nodes.
|
|
///
|
|
/// Iterator for iterating on parallel edges connecting the same nodes.
|
|
/// It is a higher level interface for the findEdge() function. You can
|
|
/// use it the following way:
|
|
///\code
|
|
/// for (ConEdgeIt<Graph> it(g, u, v); it != INVALID; ++it) {
|
|
/// ...
|
|
/// }
|
|
///\endcode
|
|
///
|
|
///\sa findEdge()
|
|
template <typename GR>
|
|
class ConEdgeIt : public GR::Edge {
|
|
typedef typename GR::Edge Parent;
|
|
|
|
public:
|
|
|
|
typedef typename GR::Edge Edge;
|
|
typedef typename GR::Node Node;
|
|
|
|
/// \brief Constructor.
|
|
///
|
|
/// Construct a new ConEdgeIt iterating on the edges that
|
|
/// connects nodes \c u and \c v.
|
|
ConEdgeIt(const GR& g, Node u, Node v) : _graph(g), _u(u), _v(v) {
|
|
Parent::operator=(findEdge(_graph, _u, _v));
|
|
}
|
|
|
|
/// \brief Constructor.
|
|
///
|
|
/// Construct a new ConEdgeIt that continues iterating from edge \c e.
|
|
ConEdgeIt(const GR& g, Edge e) : Parent(e), _graph(g) {}
|
|
|
|
/// \brief Increment operator.
|
|
///
|
|
/// It increments the iterator and gives back the next edge.
|
|
ConEdgeIt& operator++() {
|
|
Parent::operator=(findEdge(_graph, _u, _v, *this));
|
|
return *this;
|
|
}
|
|
private:
|
|
const GR& _graph;
|
|
Node _u, _v;
|
|
};
|
|
|
|
|
|
///Dynamic arc look-up between given endpoints.
|
|
|
|
///Using this class, you can find an arc in a digraph from a given
|
|
///source to a given target in amortized time <em>O</em>(log<em>d</em>),
|
|
///where <em>d</em> is the out-degree of the source node.
|
|
///
|
|
///It is possible to find \e all parallel arcs between two nodes with
|
|
///the \c operator() member.
|
|
///
|
|
///This is a dynamic data structure. Consider to use \ref ArcLookUp or
|
|
///\ref AllArcLookUp if your digraph is not changed so frequently.
|
|
///
|
|
///This class uses a self-adjusting binary search tree, the Splay tree
|
|
///of Sleator and Tarjan to guarantee the logarithmic amortized
|
|
///time bound for arc look-ups. This class also guarantees the
|
|
///optimal time bound in a constant factor for any distribution of
|
|
///queries.
|
|
///
|
|
///\tparam GR The type of the underlying digraph.
|
|
///
|
|
///\sa ArcLookUp
|
|
///\sa AllArcLookUp
|
|
template <typename GR>
|
|
class DynArcLookUp
|
|
: protected ItemSetTraits<GR, typename GR::Arc>::ItemNotifier::ObserverBase
|
|
{
|
|
typedef typename ItemSetTraits<GR, typename GR::Arc>
|
|
::ItemNotifier::ObserverBase Parent;
|
|
|
|
TEMPLATE_DIGRAPH_TYPEDEFS(GR);
|
|
|
|
public:
|
|
|
|
/// The Digraph type
|
|
typedef GR Digraph;
|
|
|
|
protected:
|
|
|
|
class AutoNodeMap : public ItemSetTraits<GR, Node>::template Map<Arc>::Type
|
|
{
|
|
typedef typename ItemSetTraits<GR, Node>::template Map<Arc>::Type Parent;
|
|
|
|
public:
|
|
|
|
AutoNodeMap(const GR& digraph) : Parent(digraph, INVALID) {}
|
|
|
|
virtual void add(const Node& node) {
|
|
Parent::add(node);
|
|
Parent::set(node, INVALID);
|
|
}
|
|
|
|
virtual void add(const std::vector<Node>& nodes) {
|
|
Parent::add(nodes);
|
|
for (int i = 0; i < int(nodes.size()); ++i) {
|
|
Parent::set(nodes[i], INVALID);
|
|
}
|
|
}
|
|
|
|
virtual void build() {
|
|
Parent::build();
|
|
Node it;
|
|
typename Parent::Notifier* nf = Parent::notifier();
|
|
for (nf->first(it); it != INVALID; nf->next(it)) {
|
|
Parent::set(it, INVALID);
|
|
}
|
|
}
|
|
};
|
|
|
|
class ArcLess {
|
|
const Digraph &g;
|
|
public:
|
|
ArcLess(const Digraph &_g) : g(_g) {}
|
|
bool operator()(Arc a,Arc b) const
|
|
{
|
|
return g.target(a)<g.target(b);
|
|
}
|
|
};
|
|
|
|
protected:
|
|
|
|
const Digraph &_g;
|
|
AutoNodeMap _head;
|
|
typename Digraph::template ArcMap<Arc> _parent;
|
|
typename Digraph::template ArcMap<Arc> _left;
|
|
typename Digraph::template ArcMap<Arc> _right;
|
|
|
|
public:
|
|
|
|
///Constructor
|
|
|
|
///Constructor.
|
|
///
|
|
///It builds up the search database.
|
|
DynArcLookUp(const Digraph &g)
|
|
: _g(g),_head(g),_parent(g),_left(g),_right(g)
|
|
{
|
|
Parent::attach(_g.notifier(typename Digraph::Arc()));
|
|
refresh();
|
|
}
|
|
|
|
protected:
|
|
|
|
virtual void add(const Arc& arc) {
|
|
insert(arc);
|
|
}
|
|
|
|
virtual void add(const std::vector<Arc>& arcs) {
|
|
for (int i = 0; i < int(arcs.size()); ++i) {
|
|
insert(arcs[i]);
|
|
}
|
|
}
|
|
|
|
virtual void erase(const Arc& arc) {
|
|
remove(arc);
|
|
}
|
|
|
|
virtual void erase(const std::vector<Arc>& arcs) {
|
|
for (int i = 0; i < int(arcs.size()); ++i) {
|
|
remove(arcs[i]);
|
|
}
|
|
}
|
|
|
|
virtual void build() {
|
|
refresh();
|
|
}
|
|
|
|
virtual void clear() {
|
|
for(NodeIt n(_g);n!=INVALID;++n) {
|
|
_head[n] = INVALID;
|
|
}
|
|
}
|
|
|
|
void insert(Arc arc) {
|
|
Node s = _g.source(arc);
|
|
Node t = _g.target(arc);
|
|
_left[arc] = INVALID;
|
|
_right[arc] = INVALID;
|
|
|
|
Arc e = _head[s];
|
|
if (e == INVALID) {
|
|
_head[s] = arc;
|
|
_parent[arc] = INVALID;
|
|
return;
|
|
}
|
|
while (true) {
|
|
if (t < _g.target(e)) {
|
|
if (_left[e] == INVALID) {
|
|
_left[e] = arc;
|
|
_parent[arc] = e;
|
|
splay(arc);
|
|
return;
|
|
} else {
|
|
e = _left[e];
|
|
}
|
|
} else {
|
|
if (_right[e] == INVALID) {
|
|
_right[e] = arc;
|
|
_parent[arc] = e;
|
|
splay(arc);
|
|
return;
|
|
} else {
|
|
e = _right[e];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void remove(Arc arc) {
|
|
if (_left[arc] == INVALID) {
|
|
if (_right[arc] != INVALID) {
|
|
_parent[_right[arc]] = _parent[arc];
|
|
}
|
|
if (_parent[arc] != INVALID) {
|
|
if (_left[_parent[arc]] == arc) {
|
|
_left[_parent[arc]] = _right[arc];
|
|
} else {
|
|
_right[_parent[arc]] = _right[arc];
|
|
}
|
|
} else {
|
|
_head[_g.source(arc)] = _right[arc];
|
|
}
|
|
} else if (_right[arc] == INVALID) {
|
|
_parent[_left[arc]] = _parent[arc];
|
|
if (_parent[arc] != INVALID) {
|
|
if (_left[_parent[arc]] == arc) {
|
|
_left[_parent[arc]] = _left[arc];
|
|
} else {
|
|
_right[_parent[arc]] = _left[arc];
|
|
}
|
|
} else {
|
|
_head[_g.source(arc)] = _left[arc];
|
|
}
|
|
} else {
|
|
Arc e = _left[arc];
|
|
if (_right[e] != INVALID) {
|
|
e = _right[e];
|
|
while (_right[e] != INVALID) {
|
|
e = _right[e];
|
|
}
|
|
Arc s = _parent[e];
|
|
_right[_parent[e]] = _left[e];
|
|
if (_left[e] != INVALID) {
|
|
_parent[_left[e]] = _parent[e];
|
|
}
|
|
|
|
_left[e] = _left[arc];
|
|
_parent[_left[arc]] = e;
|
|
_right[e] = _right[arc];
|
|
_parent[_right[arc]] = e;
|
|
|
|
_parent[e] = _parent[arc];
|
|
if (_parent[arc] != INVALID) {
|
|
if (_left[_parent[arc]] == arc) {
|
|
_left[_parent[arc]] = e;
|
|
} else {
|
|
_right[_parent[arc]] = e;
|
|
}
|
|
}
|
|
splay(s);
|
|
} else {
|
|
_right[e] = _right[arc];
|
|
_parent[_right[arc]] = e;
|
|
_parent[e] = _parent[arc];
|
|
|
|
if (_parent[arc] != INVALID) {
|
|
if (_left[_parent[arc]] == arc) {
|
|
_left[_parent[arc]] = e;
|
|
} else {
|
|
_right[_parent[arc]] = e;
|
|
}
|
|
} else {
|
|
_head[_g.source(arc)] = e;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Arc refreshRec(std::vector<Arc> &v,int a,int b)
|
|
{
|
|
int m=(a+b)/2;
|
|
Arc me=v[m];
|
|
if (a < m) {
|
|
Arc left = refreshRec(v,a,m-1);
|
|
_left[me] = left;
|
|
_parent[left] = me;
|
|
} else {
|
|
_left[me] = INVALID;
|
|
}
|
|
if (m < b) {
|
|
Arc right = refreshRec(v,m+1,b);
|
|
_right[me] = right;
|
|
_parent[right] = me;
|
|
} else {
|
|
_right[me] = INVALID;
|
|
}
|
|
return me;
|
|
}
|
|
|
|
void refresh() {
|
|
for(NodeIt n(_g);n!=INVALID;++n) {
|
|
std::vector<Arc> v;
|
|
for(OutArcIt a(_g,n);a!=INVALID;++a) v.push_back(a);
|
|
if (!v.empty()) {
|
|
std::sort(v.begin(),v.end(),ArcLess(_g));
|
|
Arc head = refreshRec(v,0,v.size()-1);
|
|
_head[n] = head;
|
|
_parent[head] = INVALID;
|
|
}
|
|
else _head[n] = INVALID;
|
|
}
|
|
}
|
|
|
|
void zig(Arc v) {
|
|
Arc w = _parent[v];
|
|
_parent[v] = _parent[w];
|
|
_parent[w] = v;
|
|
_left[w] = _right[v];
|
|
_right[v] = w;
|
|
if (_parent[v] != INVALID) {
|
|
if (_right[_parent[v]] == w) {
|
|
_right[_parent[v]] = v;
|
|
} else {
|
|
_left[_parent[v]] = v;
|
|
}
|
|
}
|
|
if (_left[w] != INVALID){
|
|
_parent[_left[w]] = w;
|
|
}
|
|
}
|
|
|
|
void zag(Arc v) {
|
|
Arc w = _parent[v];
|
|
_parent[v] = _parent[w];
|
|
_parent[w] = v;
|
|
_right[w] = _left[v];
|
|
_left[v] = w;
|
|
if (_parent[v] != INVALID){
|
|
if (_left[_parent[v]] == w) {
|
|
_left[_parent[v]] = v;
|
|
} else {
|
|
_right[_parent[v]] = v;
|
|
}
|
|
}
|
|
if (_right[w] != INVALID){
|
|
_parent[_right[w]] = w;
|
|
}
|
|
}
|
|
|
|
void splay(Arc v) {
|
|
while (_parent[v] != INVALID) {
|
|
if (v == _left[_parent[v]]) {
|
|
if (_parent[_parent[v]] == INVALID) {
|
|
zig(v);
|
|
} else {
|
|
if (_parent[v] == _left[_parent[_parent[v]]]) {
|
|
zig(_parent[v]);
|
|
zig(v);
|
|
} else {
|
|
zig(v);
|
|
zag(v);
|
|
}
|
|
}
|
|
} else {
|
|
if (_parent[_parent[v]] == INVALID) {
|
|
zag(v);
|
|
} else {
|
|
if (_parent[v] == _left[_parent[_parent[v]]]) {
|
|
zag(v);
|
|
zig(v);
|
|
} else {
|
|
zag(_parent[v]);
|
|
zag(v);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
_head[_g.source(v)] = v;
|
|
}
|
|
|
|
|
|
public:
|
|
|
|
///Find an arc between two nodes.
|
|
|
|
///Find an arc between two nodes.
|
|
///\param s The source node.
|
|
///\param t The target node.
|
|
///\param p The previous arc between \c s and \c t. It it is INVALID or
|
|
///not given, the operator finds the first appropriate arc.
|
|
///\return An arc from \c s to \c t after \c p or
|
|
///\ref INVALID if there is no more.
|
|
///
|
|
///For example, you can count the number of arcs from \c u to \c v in the
|
|
///following way.
|
|
///\code
|
|
///DynArcLookUp<ListDigraph> ae(g);
|
|
///...
|
|
///int n = 0;
|
|
///for(Arc a = ae(u,v); a != INVALID; a = ae(u,v,a)) n++;
|
|
///\endcode
|
|
///
|
|
///Finding the arcs take at most <em>O</em>(log<em>d</em>)
|
|
///amortized time, specifically, the time complexity of the lookups
|
|
///is equal to the optimal search tree implementation for the
|
|
///current query distribution in a constant factor.
|
|
///
|
|
///\note This is a dynamic data structure, therefore the data
|
|
///structure is updated after each graph alteration. Thus although
|
|
///this data structure is theoretically faster than \ref ArcLookUp
|
|
///and \ref AllArcLookUp, it often provides worse performance than
|
|
///them.
|
|
Arc operator()(Node s, Node t, Arc p = INVALID) const {
|
|
if (p == INVALID) {
|
|
Arc a = _head[s];
|
|
if (a == INVALID) return INVALID;
|
|
Arc r = INVALID;
|
|
while (true) {
|
|
if (_g.target(a) < t) {
|
|
if (_right[a] == INVALID) {
|
|
const_cast<DynArcLookUp&>(*this).splay(a);
|
|
return r;
|
|
} else {
|
|
a = _right[a];
|
|
}
|
|
} else {
|
|
if (_g.target(a) == t) {
|
|
r = a;
|
|
}
|
|
if (_left[a] == INVALID) {
|
|
const_cast<DynArcLookUp&>(*this).splay(a);
|
|
return r;
|
|
} else {
|
|
a = _left[a];
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
Arc a = p;
|
|
if (_right[a] != INVALID) {
|
|
a = _right[a];
|
|
while (_left[a] != INVALID) {
|
|
a = _left[a];
|
|
}
|
|
const_cast<DynArcLookUp&>(*this).splay(a);
|
|
} else {
|
|
while (_parent[a] != INVALID && _right[_parent[a]] == a) {
|
|
a = _parent[a];
|
|
}
|
|
if (_parent[a] == INVALID) {
|
|
return INVALID;
|
|
} else {
|
|
a = _parent[a];
|
|
const_cast<DynArcLookUp&>(*this).splay(a);
|
|
}
|
|
}
|
|
if (_g.target(a) == t) return a;
|
|
else return INVALID;
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
///Fast arc look-up between given endpoints.
|
|
|
|
///Using this class, you can find an arc in a digraph from a given
|
|
///source to a given target in time <em>O</em>(log<em>d</em>),
|
|
///where <em>d</em> is the out-degree of the source node.
|
|
///
|
|
///It is not possible to find \e all parallel arcs between two nodes.
|
|
///Use \ref AllArcLookUp for this purpose.
|
|
///
|
|
///\warning This class is static, so you should call refresh() (or at
|
|
///least refresh(Node)) to refresh this data structure whenever the
|
|
///digraph changes. This is a time consuming (superlinearly proportional
|
|
///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
|
|
///
|
|
///\tparam GR The type of the underlying digraph.
|
|
///
|
|
///\sa DynArcLookUp
|
|
///\sa AllArcLookUp
|
|
template<class GR>
|
|
class ArcLookUp
|
|
{
|
|
TEMPLATE_DIGRAPH_TYPEDEFS(GR);
|
|
|
|
public:
|
|
|
|
/// The Digraph type
|
|
typedef GR Digraph;
|
|
|
|
protected:
|
|
const Digraph &_g;
|
|
typename Digraph::template NodeMap<Arc> _head;
|
|
typename Digraph::template ArcMap<Arc> _left;
|
|
typename Digraph::template ArcMap<Arc> _right;
|
|
|
|
class ArcLess {
|
|
const Digraph &g;
|
|
public:
|
|
ArcLess(const Digraph &_g) : g(_g) {}
|
|
bool operator()(Arc a,Arc b) const
|
|
{
|
|
return g.target(a)<g.target(b);
|
|
}
|
|
};
|
|
|
|
public:
|
|
|
|
///Constructor
|
|
|
|
///Constructor.
|
|
///
|
|
///It builds up the search database, which remains valid until the digraph
|
|
///changes.
|
|
ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
|
|
|
|
private:
|
|
Arc refreshRec(std::vector<Arc> &v,int a,int b)
|
|
{
|
|
int m=(a+b)/2;
|
|
Arc me=v[m];
|
|
_left[me] = a<m?refreshRec(v,a,m-1):INVALID;
|
|
_right[me] = m<b?refreshRec(v,m+1,b):INVALID;
|
|
return me;
|
|
}
|
|
public:
|
|
///Refresh the search data structure at a node.
|
|
|
|
///Build up the search database of node \c n.
|
|
///
|
|
///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em>
|
|
///is the number of the outgoing arcs of \c n.
|
|
void refresh(Node n)
|
|
{
|
|
std::vector<Arc> v;
|
|
for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
|
|
if(v.size()) {
|
|
std::sort(v.begin(),v.end(),ArcLess(_g));
|
|
_head[n]=refreshRec(v,0,v.size()-1);
|
|
}
|
|
else _head[n]=INVALID;
|
|
}
|
|
///Refresh the full data structure.
|
|
|
|
///Build up the full search database. In fact, it simply calls
|
|
///\ref refresh(Node) "refresh(n)" for each node \c n.
|
|
///
|
|
///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
|
|
///the number of the arcs in the digraph and <em>D</em> is the maximum
|
|
///out-degree of the digraph.
|
|
void refresh()
|
|
{
|
|
for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
|
|
}
|
|
|
|
///Find an arc between two nodes.
|
|
|
|
///Find an arc between two nodes in time <em>O</em>(log<em>d</em>),
|
|
///where <em>d</em> is the number of outgoing arcs of \c s.
|
|
///\param s The source node.
|
|
///\param t The target node.
|
|
///\return An arc from \c s to \c t if there exists,
|
|
///\ref INVALID otherwise.
|
|
///
|
|
///\warning If you change the digraph, refresh() must be called before using
|
|
///this operator. If you change the outgoing arcs of
|
|
///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
|
|
Arc operator()(Node s, Node t) const
|
|
{
|
|
Arc e;
|
|
for(e=_head[s];
|
|
e!=INVALID&&_g.target(e)!=t;
|
|
e = t < _g.target(e)?_left[e]:_right[e]) ;
|
|
return e;
|
|
}
|
|
|
|
};
|
|
|
|
///Fast look-up of all arcs between given endpoints.
|
|
|
|
///This class is the same as \ref ArcLookUp, with the addition
|
|
///that it makes it possible to find all parallel arcs between given
|
|
///endpoints.
|
|
///
|
|
///\warning This class is static, so you should call refresh() (or at
|
|
///least refresh(Node)) to refresh this data structure whenever the
|
|
///digraph changes. This is a time consuming (superlinearly proportional
|
|
///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
|
|
///
|
|
///\tparam GR The type of the underlying digraph.
|
|
///
|
|
///\sa DynArcLookUp
|
|
///\sa ArcLookUp
|
|
template<class GR>
|
|
class AllArcLookUp : public ArcLookUp<GR>
|
|
{
|
|
using ArcLookUp<GR>::_g;
|
|
using ArcLookUp<GR>::_right;
|
|
using ArcLookUp<GR>::_left;
|
|
using ArcLookUp<GR>::_head;
|
|
|
|
TEMPLATE_DIGRAPH_TYPEDEFS(GR);
|
|
|
|
typename GR::template ArcMap<Arc> _next;
|
|
|
|
Arc refreshNext(Arc head,Arc next=INVALID)
|
|
{
|
|
if(head==INVALID) return next;
|
|
else {
|
|
next=refreshNext(_right[head],next);
|
|
_next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
|
|
? next : INVALID;
|
|
return refreshNext(_left[head],head);
|
|
}
|
|
}
|
|
|
|
void refreshNext()
|
|
{
|
|
for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
|
|
}
|
|
|
|
public:
|
|
|
|
/// The Digraph type
|
|
typedef GR Digraph;
|
|
|
|
///Constructor
|
|
|
|
///Constructor.
|
|
///
|
|
///It builds up the search database, which remains valid until the digraph
|
|
///changes.
|
|
AllArcLookUp(const Digraph &g) : ArcLookUp<GR>(g), _next(g) {refreshNext();}
|
|
|
|
///Refresh the data structure at a node.
|
|
|
|
///Build up the search database of node \c n.
|
|
///
|
|
///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> is
|
|
///the number of the outgoing arcs of \c n.
|
|
void refresh(Node n)
|
|
{
|
|
ArcLookUp<GR>::refresh(n);
|
|
refreshNext(_head[n]);
|
|
}
|
|
|
|
///Refresh the full data structure.
|
|
|
|
///Build up the full search database. In fact, it simply calls
|
|
///\ref refresh(Node) "refresh(n)" for each node \c n.
|
|
///
|
|
///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
|
|
///the number of the arcs in the digraph and <em>D</em> is the maximum
|
|
///out-degree of the digraph.
|
|
void refresh()
|
|
{
|
|
for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
|
|
}
|
|
|
|
///Find an arc between two nodes.
|
|
|
|
///Find an arc between two nodes.
|
|
///\param s The source node.
|
|
///\param t The target node.
|
|
///\param prev The previous arc between \c s and \c t. It it is INVALID or
|
|
///not given, the operator finds the first appropriate arc.
|
|
///\return An arc from \c s to \c t after \c prev or
|
|
///\ref INVALID if there is no more.
|
|
///
|
|
///For example, you can count the number of arcs from \c u to \c v in the
|
|
///following way.
|
|
///\code
|
|
///AllArcLookUp<ListDigraph> ae(g);
|
|
///...
|
|
///int n = 0;
|
|
///for(Arc a = ae(u,v); a != INVALID; a=ae(u,v,a)) n++;
|
|
///\endcode
|
|
///
|
|
///Finding the first arc take <em>O</em>(log<em>d</em>) time,
|
|
///where <em>d</em> is the number of outgoing arcs of \c s. Then the
|
|
///consecutive arcs are found in constant time.
|
|
///
|
|
///\warning If you change the digraph, refresh() must be called before using
|
|
///this operator. If you change the outgoing arcs of
|
|
///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
|
|
///
|
|
Arc operator()(Node s, Node t, Arc prev=INVALID) const
|
|
{
|
|
if(prev==INVALID)
|
|
{
|
|
Arc f=INVALID;
|
|
Arc e;
|
|
for(e=_head[s];
|
|
e!=INVALID&&_g.target(e)!=t;
|
|
e = t < _g.target(e)?_left[e]:_right[e]) ;
|
|
while(e!=INVALID)
|
|
if(_g.target(e)==t)
|
|
{
|
|
f = e;
|
|
e = _left[e];
|
|
}
|
|
else e = _right[e];
|
|
return f;
|
|
}
|
|
else return _next[prev];
|
|
}
|
|
|
|
};
|
|
|
|
/// @}
|
|
|
|
} //namespace lemon
|
|
|
|
#endif
|