dust3d/thirdparty/QuadriFlow/3rd/lemon-1.3.1/lemon/dim2.h

727 lines
17 KiB
C++
Executable File

/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_DIM2_H
#define LEMON_DIM2_H
#include <iostream>
#include <algorithm>
///\ingroup geomdat
///\file
///\brief A simple two dimensional vector and a bounding box implementation
namespace lemon {
///Tools for handling two dimensional coordinates
///This namespace is a storage of several
///tools for handling two dimensional coordinates
namespace dim2 {
/// \addtogroup geomdat
/// @{
/// Two dimensional vector (plain vector)
/// A simple two dimensional vector (plain vector) implementation
/// with the usual vector operations.
template<typename T>
class Point {
public:
typedef T Value;
///First coordinate
T x;
///Second coordinate
T y;
///Default constructor
Point() {}
///Construct an instance from coordinates
Point(T a, T b) : x(a), y(b) { }
///Returns the dimension of the vector (i.e. returns 2).
///The dimension of the vector.
///This function always returns 2.
int size() const { return 2; }
///Subscripting operator
///\c p[0] is \c p.x and \c p[1] is \c p.y
///
T& operator[](int idx) { return idx == 0 ? x : y; }
///Const subscripting operator
///\c p[0] is \c p.x and \c p[1] is \c p.y
///
const T& operator[](int idx) const { return idx == 0 ? x : y; }
///Conversion constructor
template<class TT> Point(const Point<TT> &p) : x(p.x), y(p.y) {}
///Give back the square of the norm of the vector
T normSquare() const {
return x*x+y*y;
}
///Increment the left hand side by \c u
Point<T>& operator +=(const Point<T>& u) {
x += u.x;
y += u.y;
return *this;
}
///Decrement the left hand side by \c u
Point<T>& operator -=(const Point<T>& u) {
x -= u.x;
y -= u.y;
return *this;
}
///Multiply the left hand side with a scalar
Point<T>& operator *=(const T &u) {
x *= u;
y *= u;
return *this;
}
///Divide the left hand side by a scalar
Point<T>& operator /=(const T &u) {
x /= u;
y /= u;
return *this;
}
///Return the scalar product of two vectors
T operator *(const Point<T>& u) const {
return x*u.x+y*u.y;
}
///Return the sum of two vectors
Point<T> operator+(const Point<T> &u) const {
Point<T> b=*this;
return b+=u;
}
///Return the negative of the vector
Point<T> operator-() const {
Point<T> b=*this;
b.x=-b.x; b.y=-b.y;
return b;
}
///Return the difference of two vectors
Point<T> operator-(const Point<T> &u) const {
Point<T> b=*this;
return b-=u;
}
///Return a vector multiplied by a scalar
Point<T> operator*(const T &u) const {
Point<T> b=*this;
return b*=u;
}
///Return a vector divided by a scalar
Point<T> operator/(const T &u) const {
Point<T> b=*this;
return b/=u;
}
///Test equality
bool operator==(const Point<T> &u) const {
return (x==u.x) && (y==u.y);
}
///Test inequality
bool operator!=(Point u) const {
return (x!=u.x) || (y!=u.y);
}
};
///Return a Point
///Return a Point.
///\relates Point
template <typename T>
inline Point<T> makePoint(const T& x, const T& y) {
return Point<T>(x, y);
}
///Return a vector multiplied by a scalar
///Return a vector multiplied by a scalar.
///\relates Point
template<typename T> Point<T> operator*(const T &u,const Point<T> &x) {
return x*u;
}
///Read a plain vector from a stream
///Read a plain vector from a stream.
///\relates Point
///
template<typename T>
inline std::istream& operator>>(std::istream &is, Point<T> &z) {
char c;
if (is >> c) {
if (c != '(') is.putback(c);
} else {
is.clear();
}
if (!(is >> z.x)) return is;
if (is >> c) {
if (c != ',') is.putback(c);
} else {
is.clear();
}
if (!(is >> z.y)) return is;
if (is >> c) {
if (c != ')') is.putback(c);
} else {
is.clear();
}
return is;
}
///Write a plain vector to a stream
///Write a plain vector to a stream.
///\relates Point
///
template<typename T>
inline std::ostream& operator<<(std::ostream &os, const Point<T>& z)
{
os << "(" << z.x << "," << z.y << ")";
return os;
}
///Rotate by 90 degrees
///Returns the parameter rotated by 90 degrees in positive direction.
///\relates Point
///
template<typename T>
inline Point<T> rot90(const Point<T> &z)
{
return Point<T>(-z.y,z.x);
}
///Rotate by 180 degrees
///Returns the parameter rotated by 180 degrees.
///\relates Point
///
template<typename T>
inline Point<T> rot180(const Point<T> &z)
{
return Point<T>(-z.x,-z.y);
}
///Rotate by 270 degrees
///Returns the parameter rotated by 90 degrees in negative direction.
///\relates Point
///
template<typename T>
inline Point<T> rot270(const Point<T> &z)
{
return Point<T>(z.y,-z.x);
}
/// Bounding box of plain vectors (points).
/// A class to calculate or store the bounding box of plain vectors
/// (\ref Point "points").
template<typename T>
class Box {
Point<T> _bottom_left, _top_right;
bool _empty;
public:
///Default constructor: creates an empty box
Box() { _empty = true; }
///Construct a box from one point
Box(Point<T> a) {
_bottom_left = _top_right = a;
_empty = false;
}
///Construct a box from two points
///Construct a box from two points.
///\param a The bottom left corner.
///\param b The top right corner.
///\warning The coordinates of the bottom left corner must be no more
///than those of the top right one.
Box(Point<T> a,Point<T> b)
{
_bottom_left = a;
_top_right = b;
_empty = false;
}
///Construct a box from four numbers
///Construct a box from four numbers.
///\param l The left side of the box.
///\param b The bottom of the box.
///\param r The right side of the box.
///\param t The top of the box.
///\warning The left side must be no more than the right side and
///bottom must be no more than the top.
Box(T l,T b,T r,T t)
{
_bottom_left=Point<T>(l,b);
_top_right=Point<T>(r,t);
_empty = false;
}
///Return \c true if the box is empty.
///Return \c true if the box is empty (i.e. return \c false
///if at least one point was added to the box or the coordinates of
///the box were set).
///
///The coordinates of an empty box are not defined.
bool empty() const {
return _empty;
}
///Make the box empty
void clear() {
_empty = true;
}
///Give back the bottom left corner of the box
///Give back the bottom left corner of the box.
///If the box is empty, then the return value is not defined.
Point<T> bottomLeft() const {
return _bottom_left;
}
///Set the bottom left corner of the box
///Set the bottom left corner of the box.
///\pre The box must not be empty.
void bottomLeft(Point<T> p) {
_bottom_left = p;
}
///Give back the top right corner of the box
///Give back the top right corner of the box.
///If the box is empty, then the return value is not defined.
Point<T> topRight() const {
return _top_right;
}
///Set the top right corner of the box
///Set the top right corner of the box.
///\pre The box must not be empty.
void topRight(Point<T> p) {
_top_right = p;
}
///Give back the bottom right corner of the box
///Give back the bottom right corner of the box.
///If the box is empty, then the return value is not defined.
Point<T> bottomRight() const {
return Point<T>(_top_right.x,_bottom_left.y);
}
///Set the bottom right corner of the box
///Set the bottom right corner of the box.
///\pre The box must not be empty.
void bottomRight(Point<T> p) {
_top_right.x = p.x;
_bottom_left.y = p.y;
}
///Give back the top left corner of the box
///Give back the top left corner of the box.
///If the box is empty, then the return value is not defined.
Point<T> topLeft() const {
return Point<T>(_bottom_left.x,_top_right.y);
}
///Set the top left corner of the box
///Set the top left corner of the box.
///\pre The box must not be empty.
void topLeft(Point<T> p) {
_top_right.y = p.y;
_bottom_left.x = p.x;
}
///Give back the bottom of the box
///Give back the bottom of the box.
///If the box is empty, then the return value is not defined.
T bottom() const {
return _bottom_left.y;
}
///Set the bottom of the box
///Set the bottom of the box.
///\pre The box must not be empty.
void bottom(T t) {
_bottom_left.y = t;
}
///Give back the top of the box
///Give back the top of the box.
///If the box is empty, then the return value is not defined.
T top() const {
return _top_right.y;
}
///Set the top of the box
///Set the top of the box.
///\pre The box must not be empty.
void top(T t) {
_top_right.y = t;
}
///Give back the left side of the box
///Give back the left side of the box.
///If the box is empty, then the return value is not defined.
T left() const {
return _bottom_left.x;
}
///Set the left side of the box
///Set the left side of the box.
///\pre The box must not be empty.
void left(T t) {
_bottom_left.x = t;
}
/// Give back the right side of the box
/// Give back the right side of the box.
///If the box is empty, then the return value is not defined.
T right() const {
return _top_right.x;
}
///Set the right side of the box
///Set the right side of the box.
///\pre The box must not be empty.
void right(T t) {
_top_right.x = t;
}
///Give back the height of the box
///Give back the height of the box.
///If the box is empty, then the return value is not defined.
T height() const {
return _top_right.y-_bottom_left.y;
}
///Give back the width of the box
///Give back the width of the box.
///If the box is empty, then the return value is not defined.
T width() const {
return _top_right.x-_bottom_left.x;
}
///Checks whether a point is inside the box
bool inside(const Point<T>& u) const {
if (_empty)
return false;
else {
return ( (u.x-_bottom_left.x)*(_top_right.x-u.x) >= 0 &&
(u.y-_bottom_left.y)*(_top_right.y-u.y) >= 0 );
}
}
///Increments the box with a point
///Increments the box with a point.
///
Box& add(const Point<T>& u){
if (_empty) {
_bottom_left = _top_right = u;
_empty = false;
}
else {
if (_bottom_left.x > u.x) _bottom_left.x = u.x;
if (_bottom_left.y > u.y) _bottom_left.y = u.y;
if (_top_right.x < u.x) _top_right.x = u.x;
if (_top_right.y < u.y) _top_right.y = u.y;
}
return *this;
}
///Increments the box to contain another box
///Increments the box to contain another box.
///
Box& add(const Box &u){
if ( !u.empty() ){
add(u._bottom_left);
add(u._top_right);
}
return *this;
}
///Intersection of two boxes
///Intersection of two boxes.
///
Box operator&(const Box& u) const {
Box b;
if (_empty || u._empty) {
b._empty = true;
} else {
b._bottom_left.x = std::max(_bottom_left.x, u._bottom_left.x);
b._bottom_left.y = std::max(_bottom_left.y, u._bottom_left.y);
b._top_right.x = std::min(_top_right.x, u._top_right.x);
b._top_right.y = std::min(_top_right.y, u._top_right.y);
b._empty = b._bottom_left.x > b._top_right.x ||
b._bottom_left.y > b._top_right.y;
}
return b;
}
};//class Box
///Read a box from a stream
///Read a box from a stream.
///\relates Box
template<typename T>
inline std::istream& operator>>(std::istream &is, Box<T>& b) {
char c;
Point<T> p;
if (is >> c) {
if (c != '(') is.putback(c);
} else {
is.clear();
}
if (!(is >> p)) return is;
b.bottomLeft(p);
if (is >> c) {
if (c != ',') is.putback(c);
} else {
is.clear();
}
if (!(is >> p)) return is;
b.topRight(p);
if (is >> c) {
if (c != ')') is.putback(c);
} else {
is.clear();
}
return is;
}
///Write a box to a stream
///Write a box to a stream.
///\relates Box
template<typename T>
inline std::ostream& operator<<(std::ostream &os, const Box<T>& b)
{
os << "(" << b.bottomLeft() << "," << b.topRight() << ")";
return os;
}
///Map of x-coordinates of a <tt>Point</tt>-map
///Map of x-coordinates of a \ref Point "Point"-map.
///
template<class M>
class XMap
{
M& _map;
public:
typedef typename M::Value::Value Value;
typedef typename M::Key Key;
///\e
XMap(M& map) : _map(map) {}
Value operator[](Key k) const {return _map[k].x;}
void set(Key k,Value v) {_map.set(k,typename M::Value(v,_map[k].y));}
};
///Returns an XMap class
///This function just returns an XMap class.
///\relates XMap
template<class M>
inline XMap<M> xMap(M &m)
{
return XMap<M>(m);
}
template<class M>
inline XMap<M> xMap(const M &m)
{
return XMap<M>(m);
}
///Constant (read only) version of XMap
///Constant (read only) version of XMap.
///
template<class M>
class ConstXMap
{
const M& _map;
public:
typedef typename M::Value::Value Value;
typedef typename M::Key Key;
///\e
ConstXMap(const M &map) : _map(map) {}
Value operator[](Key k) const {return _map[k].x;}
};
///Returns a ConstXMap class
///This function just returns a ConstXMap class.
///\relates ConstXMap
template<class M>
inline ConstXMap<M> xMap(const M &m)
{
return ConstXMap<M>(m);
}
///Map of y-coordinates of a <tt>Point</tt>-map
///Map of y-coordinates of a \ref Point "Point"-map.
///
template<class M>
class YMap
{
M& _map;
public:
typedef typename M::Value::Value Value;
typedef typename M::Key Key;
///\e
YMap(M& map) : _map(map) {}
Value operator[](Key k) const {return _map[k].y;}
void set(Key k,Value v) {_map.set(k,typename M::Value(_map[k].x,v));}
};
///Returns a YMap class
///This function just returns a YMap class.
///\relates YMap
template<class M>
inline YMap<M> yMap(M &m)
{
return YMap<M>(m);
}
template<class M>
inline YMap<M> yMap(const M &m)
{
return YMap<M>(m);
}
///Constant (read only) version of YMap
///Constant (read only) version of YMap.
///
template<class M>
class ConstYMap
{
const M& _map;
public:
typedef typename M::Value::Value Value;
typedef typename M::Key Key;
///\e
ConstYMap(const M &map) : _map(map) {}
Value operator[](Key k) const {return _map[k].y;}
};
///Returns a ConstYMap class
///This function just returns a ConstYMap class.
///\relates ConstYMap
template<class M>
inline ConstYMap<M> yMap(const M &m)
{
return ConstYMap<M>(m);
}
///\brief Map of the normSquare() of a <tt>Point</tt>-map
///
///Map of the \ref Point::normSquare() "normSquare()"
///of a \ref Point "Point"-map.
template<class M>
class NormSquareMap
{
const M& _map;
public:
typedef typename M::Value::Value Value;
typedef typename M::Key Key;
///\e
NormSquareMap(const M &map) : _map(map) {}
Value operator[](Key k) const {return _map[k].normSquare();}
};
///Returns a NormSquareMap class
///This function just returns a NormSquareMap class.
///\relates NormSquareMap
template<class M>
inline NormSquareMap<M> normSquareMap(const M &m)
{
return NormSquareMap<M>(m);
}
/// @}
} //namespce dim2
} //namespace lemon
#endif //LEMON_DIM2_H