dust3d/thirdparty/QuadriFlow/3rd/lemon-1.3.1/lemon/edmonds_karp.h

557 lines
16 KiB
C++
Executable File

/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2013
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_EDMONDS_KARP_H
#define LEMON_EDMONDS_KARP_H
/// \file
/// \ingroup max_flow
/// \brief Implementation of the Edmonds-Karp algorithm.
#include <lemon/tolerance.h>
#include <vector>
namespace lemon {
/// \brief Default traits class of EdmondsKarp class.
///
/// Default traits class of EdmondsKarp class.
/// \param GR Digraph type.
/// \param CAP Type of capacity map.
template <typename GR, typename CAP>
struct EdmondsKarpDefaultTraits {
/// \brief The digraph type the algorithm runs on.
typedef GR Digraph;
/// \brief The type of the map that stores the arc capacities.
///
/// The type of the map that stores the arc capacities.
/// It must meet the \ref concepts::ReadMap "ReadMap" concept.
typedef CAP CapacityMap;
/// \brief The type of the flow values.
typedef typename CapacityMap::Value Value;
/// \brief The type of the map that stores the flow values.
///
/// The type of the map that stores the flow values.
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
#ifdef DOXYGEN
typedef GR::ArcMap<Value> FlowMap;
#else
typedef typename Digraph::template ArcMap<Value> FlowMap;
#endif
/// \brief Instantiates a FlowMap.
///
/// This function instantiates a \ref FlowMap.
/// \param digraph The digraph for which we would like to define
/// the flow map.
static FlowMap* createFlowMap(const Digraph& digraph) {
return new FlowMap(digraph);
}
/// \brief The tolerance used by the algorithm
///
/// The tolerance used by the algorithm to handle inexact computation.
typedef lemon::Tolerance<Value> Tolerance;
};
/// \ingroup max_flow
///
/// \brief Edmonds-Karp algorithms class.
///
/// This class provides an implementation of the \e Edmonds-Karp \e
/// algorithm producing a \ref max_flow "flow of maximum value" in a
/// digraph \cite clrs01algorithms, \cite amo93networkflows,
/// \cite edmondskarp72theoretical.
/// The Edmonds-Karp algorithm is slower than the Preflow
/// algorithm, but it has an advantage of the step-by-step execution
/// control with feasible flow solutions. The \e source node, the \e
/// target node, the \e capacity of the arcs and the \e starting \e
/// flow value of the arcs should be passed to the algorithm
/// through the constructor.
///
/// The time complexity of the algorithm is \f$ O(nm^2) \f$ in
/// worst case. Always try the Preflow algorithm instead of this if
/// you just want to compute the optimal flow.
///
/// \tparam GR The type of the digraph the algorithm runs on.
/// \tparam CAP The type of the capacity map. The default map
/// type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
/// \tparam TR The traits class that defines various types used by the
/// algorithm. By default, it is \ref EdmondsKarpDefaultTraits
/// "EdmondsKarpDefaultTraits<GR, CAP>".
/// In most cases, this parameter should not be set directly,
/// consider to use the named template parameters instead.
#ifdef DOXYGEN
template <typename GR, typename CAP, typename TR>
#else
template <typename GR,
typename CAP = typename GR::template ArcMap<int>,
typename TR = EdmondsKarpDefaultTraits<GR, CAP> >
#endif
class EdmondsKarp {
public:
/// \brief The \ref lemon::EdmondsKarpDefaultTraits "traits class"
/// of the algorithm.
typedef TR Traits;
/// The type of the digraph the algorithm runs on.
typedef typename Traits::Digraph Digraph;
/// The type of the capacity map.
typedef typename Traits::CapacityMap CapacityMap;
/// The type of the flow values.
typedef typename Traits::Value Value;
/// The type of the flow map.
typedef typename Traits::FlowMap FlowMap;
/// The type of the tolerance.
typedef typename Traits::Tolerance Tolerance;
private:
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
typedef typename Digraph::template NodeMap<Arc> PredMap;
const Digraph& _graph;
const CapacityMap* _capacity;
Node _source, _target;
FlowMap* _flow;
bool _local_flow;
PredMap* _pred;
std::vector<Node> _queue;
Tolerance _tolerance;
Value _flow_value;
void createStructures() {
if (!_flow) {
_flow = Traits::createFlowMap(_graph);
_local_flow = true;
}
if (!_pred) {
_pred = new PredMap(_graph);
}
_queue.resize(countNodes(_graph));
}
void destroyStructures() {
if (_local_flow) {
delete _flow;
}
if (_pred) {
delete _pred;
}
}
public:
typedef EdmondsKarp Create;
///\name Named template parameters
///@{
template <typename T>
struct SetFlowMapTraits : public Traits {
typedef T FlowMap;
static FlowMap *createFlowMap(const Digraph&) {
LEMON_ASSERT(false, "FlowMap is not initialized");
return 0;
}
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// FlowMap type
///
/// \ref named-templ-param "Named parameter" for setting FlowMap
/// type
template <typename T>
struct SetFlowMap
: public EdmondsKarp<Digraph, CapacityMap, SetFlowMapTraits<T> > {
typedef EdmondsKarp<Digraph, CapacityMap, SetFlowMapTraits<T> > Create;
};
/// @}
protected:
EdmondsKarp() {}
public:
/// \brief The constructor of the class.
///
/// The constructor of the class.
/// \param digraph The digraph the algorithm runs on.
/// \param capacity The capacity of the arcs.
/// \param source The source node.
/// \param target The target node.
EdmondsKarp(const Digraph& digraph, const CapacityMap& capacity,
Node source, Node target)
: _graph(digraph), _capacity(&capacity), _source(source), _target(target),
_flow(0), _local_flow(false), _pred(0), _tolerance(), _flow_value()
{
LEMON_ASSERT(_source != _target,
"Flow source and target are the same nodes.");
}
/// \brief Destructor.
///
/// Destructor.
~EdmondsKarp() {
destroyStructures();
}
/// \brief Sets the capacity map.
///
/// Sets the capacity map.
/// \return <tt>(*this)</tt>
EdmondsKarp& capacityMap(const CapacityMap& map) {
_capacity = &map;
return *this;
}
/// \brief Sets the flow map.
///
/// Sets the flow map.
/// If you don't use this function before calling \ref run() or
/// \ref init(), an instance will be allocated automatically.
/// The destructor deallocates this automatically allocated map,
/// of course.
/// \return <tt>(*this)</tt>
EdmondsKarp& flowMap(FlowMap& map) {
if (_local_flow) {
delete _flow;
_local_flow = false;
}
_flow = &map;
return *this;
}
/// \brief Sets the source node.
///
/// Sets the source node.
/// \return <tt>(*this)</tt>
EdmondsKarp& source(const Node& node) {
_source = node;
return *this;
}
/// \brief Sets the target node.
///
/// Sets the target node.
/// \return <tt>(*this)</tt>
EdmondsKarp& target(const Node& node) {
_target = node;
return *this;
}
/// \brief Sets the tolerance used by algorithm.
///
/// Sets the tolerance used by algorithm.
/// \return <tt>(*this)</tt>
EdmondsKarp& tolerance(const Tolerance& tolerance) {
_tolerance = tolerance;
return *this;
}
/// \brief Returns a const reference to the tolerance.
///
/// Returns a const reference to the tolerance object used by
/// the algorithm.
const Tolerance& tolerance() const {
return _tolerance;
}
/// \name Execution control
/// The simplest way to execute the algorithm is to use \ref run().\n
/// If you need better control on the initial solution or the execution,
/// you have to call one of the \ref init() functions first, then
/// \ref start() or multiple times the \ref augment() function.
///@{
/// \brief Initializes the algorithm.
///
/// Initializes the internal data structures and sets the initial
/// flow to zero on each arc.
void init() {
createStructures();
for (ArcIt it(_graph); it != INVALID; ++it) {
_flow->set(it, 0);
}
_flow_value = 0;
}
/// \brief Initializes the algorithm using the given flow map.
///
/// Initializes the internal data structures and sets the initial
/// flow to the given \c flowMap. The \c flowMap should
/// contain a feasible flow, i.e. at each node excluding the source
/// and the target, the incoming flow should be equal to the
/// outgoing flow.
template <typename FlowMap>
void init(const FlowMap& flowMap) {
createStructures();
for (ArcIt e(_graph); e != INVALID; ++e) {
_flow->set(e, flowMap[e]);
}
_flow_value = 0;
for (OutArcIt jt(_graph, _source); jt != INVALID; ++jt) {
_flow_value += (*_flow)[jt];
}
for (InArcIt jt(_graph, _source); jt != INVALID; ++jt) {
_flow_value -= (*_flow)[jt];
}
}
/// \brief Initializes the algorithm using the given flow map.
///
/// Initializes the internal data structures and sets the initial
/// flow to the given \c flowMap. The \c flowMap should
/// contain a feasible flow, i.e. at each node excluding the source
/// and the target, the incoming flow should be equal to the
/// outgoing flow.
/// \return \c false when the given \c flowMap does not contain a
/// feasible flow.
template <typename FlowMap>
bool checkedInit(const FlowMap& flowMap) {
createStructures();
for (ArcIt e(_graph); e != INVALID; ++e) {
_flow->set(e, flowMap[e]);
}
for (NodeIt it(_graph); it != INVALID; ++it) {
if (it == _source || it == _target) continue;
Value outFlow = 0;
for (OutArcIt jt(_graph, it); jt != INVALID; ++jt) {
outFlow += (*_flow)[jt];
}
Value inFlow = 0;
for (InArcIt jt(_graph, it); jt != INVALID; ++jt) {
inFlow += (*_flow)[jt];
}
if (_tolerance.different(outFlow, inFlow)) {
return false;
}
}
for (ArcIt it(_graph); it != INVALID; ++it) {
if (_tolerance.less((*_flow)[it], 0)) return false;
if (_tolerance.less((*_capacity)[it], (*_flow)[it])) return false;
}
_flow_value = 0;
for (OutArcIt jt(_graph, _source); jt != INVALID; ++jt) {
_flow_value += (*_flow)[jt];
}
for (InArcIt jt(_graph, _source); jt != INVALID; ++jt) {
_flow_value -= (*_flow)[jt];
}
return true;
}
/// \brief Augments the solution along a shortest path.
///
/// Augments the solution along a shortest path. This function searches a
/// shortest path between the source and the target
/// in the residual digraph by the Bfs algoritm.
/// Then it increases the flow on this path with the minimal residual
/// capacity on the path. If there is no such path, it gives back
/// false.
/// \return \c false when the augmenting did not success, i.e. the
/// current flow is a feasible and optimal solution.
bool augment() {
for (NodeIt n(_graph); n != INVALID; ++n) {
_pred->set(n, INVALID);
}
int first = 0, last = 1;
_queue[0] = _source;
_pred->set(_source, OutArcIt(_graph, _source));
while (first != last && (*_pred)[_target] == INVALID) {
Node n = _queue[first++];
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
Value rem = (*_capacity)[e] - (*_flow)[e];
Node t = _graph.target(e);
if (_tolerance.positive(rem) && (*_pred)[t] == INVALID) {
_pred->set(t, e);
_queue[last++] = t;
}
}
for (InArcIt e(_graph, n); e != INVALID; ++e) {
Value rem = (*_flow)[e];
Node t = _graph.source(e);
if (_tolerance.positive(rem) && (*_pred)[t] == INVALID) {
_pred->set(t, e);
_queue[last++] = t;
}
}
}
if ((*_pred)[_target] != INVALID) {
Node n = _target;
Arc e = (*_pred)[n];
Value prem = (*_capacity)[e] - (*_flow)[e];
n = _graph.source(e);
while (n != _source) {
e = (*_pred)[n];
if (_graph.target(e) == n) {
Value rem = (*_capacity)[e] - (*_flow)[e];
if (rem < prem) prem = rem;
n = _graph.source(e);
} else {
Value rem = (*_flow)[e];
if (rem < prem) prem = rem;
n = _graph.target(e);
}
}
n = _target;
e = (*_pred)[n];
_flow->set(e, (*_flow)[e] + prem);
n = _graph.source(e);
while (n != _source) {
e = (*_pred)[n];
if (_graph.target(e) == n) {
_flow->set(e, (*_flow)[e] + prem);
n = _graph.source(e);
} else {
_flow->set(e, (*_flow)[e] - prem);
n = _graph.target(e);
}
}
_flow_value += prem;
return true;
} else {
return false;
}
}
/// \brief Executes the algorithm
///
/// Executes the algorithm by performing augmenting phases until the
/// optimal solution is reached.
/// \pre One of the \ref init() functions must be called before
/// using this function.
void start() {
while (augment()) {}
}
/// \brief Runs the algorithm.
///
/// Runs the Edmonds-Karp algorithm.
/// \note ek.run() is just a shortcut of the following code.
///\code
/// ek.init();
/// ek.start();
///\endcode
void run() {
init();
start();
}
/// @}
/// \name Query Functions
/// The result of the Edmonds-Karp algorithm can be obtained using these
/// functions.\n
/// Either \ref run() or \ref start() should be called before using them.
///@{
/// \brief Returns the value of the maximum flow.
///
/// Returns the value of the maximum flow found by the algorithm.
///
/// \pre Either \ref run() or \ref init() must be called before
/// using this function.
Value flowValue() const {
return _flow_value;
}
/// \brief Returns the flow value on the given arc.
///
/// Returns the flow value on the given arc.
///
/// \pre Either \ref run() or \ref init() must be called before
/// using this function.
Value flow(const Arc& arc) const {
return (*_flow)[arc];
}
/// \brief Returns a const reference to the flow map.
///
/// Returns a const reference to the arc map storing the found flow.
///
/// \pre Either \ref run() or \ref init() must be called before
/// using this function.
const FlowMap& flowMap() const {
return *_flow;
}
/// \brief Returns \c true when the node is on the source side of the
/// minimum cut.
///
/// Returns true when the node is on the source side of the found
/// minimum cut.
///
/// \pre Either \ref run() or \ref init() must be called before
/// using this function.
bool minCut(const Node& node) const {
return ((*_pred)[node] != INVALID) || node == _source;
}
/// \brief Gives back a minimum value cut.
///
/// Sets \c cutMap to the characteristic vector of a minimum value
/// cut. \c cutMap should be a \ref concepts::WriteMap "writable"
/// node map with \c bool (or convertible) value type.
///
/// \note This function calls \ref minCut() for each node, so it runs in
/// O(n) time.
///
/// \pre Either \ref run() or \ref init() must be called before
/// using this function.
template <typename CutMap>
void minCutMap(CutMap& cutMap) const {
for (NodeIt n(_graph); n != INVALID; ++n) {
cutMap.set(n, (*_pred)[n] != INVALID);
}
cutMap.set(_source, true);
}
/// @}
};
}
#endif