557 lines
16 KiB
C++
Executable File
557 lines
16 KiB
C++
Executable File
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
|
*
|
|
* This file is a part of LEMON, a generic C++ optimization library.
|
|
*
|
|
* Copyright (C) 2003-2013
|
|
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
|
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
|
*
|
|
* Permission to use, modify and distribute this software is granted
|
|
* provided that this copyright notice appears in all copies. For
|
|
* precise terms see the accompanying LICENSE file.
|
|
*
|
|
* This software is provided "AS IS" with no warranty of any kind,
|
|
* express or implied, and with no claim as to its suitability for any
|
|
* purpose.
|
|
*
|
|
*/
|
|
|
|
#ifndef LEMON_EDMONDS_KARP_H
|
|
#define LEMON_EDMONDS_KARP_H
|
|
|
|
/// \file
|
|
/// \ingroup max_flow
|
|
/// \brief Implementation of the Edmonds-Karp algorithm.
|
|
|
|
#include <lemon/tolerance.h>
|
|
#include <vector>
|
|
|
|
namespace lemon {
|
|
|
|
/// \brief Default traits class of EdmondsKarp class.
|
|
///
|
|
/// Default traits class of EdmondsKarp class.
|
|
/// \param GR Digraph type.
|
|
/// \param CAP Type of capacity map.
|
|
template <typename GR, typename CAP>
|
|
struct EdmondsKarpDefaultTraits {
|
|
|
|
/// \brief The digraph type the algorithm runs on.
|
|
typedef GR Digraph;
|
|
|
|
/// \brief The type of the map that stores the arc capacities.
|
|
///
|
|
/// The type of the map that stores the arc capacities.
|
|
/// It must meet the \ref concepts::ReadMap "ReadMap" concept.
|
|
typedef CAP CapacityMap;
|
|
|
|
/// \brief The type of the flow values.
|
|
typedef typename CapacityMap::Value Value;
|
|
|
|
/// \brief The type of the map that stores the flow values.
|
|
///
|
|
/// The type of the map that stores the flow values.
|
|
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
|
|
#ifdef DOXYGEN
|
|
typedef GR::ArcMap<Value> FlowMap;
|
|
#else
|
|
typedef typename Digraph::template ArcMap<Value> FlowMap;
|
|
#endif
|
|
|
|
/// \brief Instantiates a FlowMap.
|
|
///
|
|
/// This function instantiates a \ref FlowMap.
|
|
/// \param digraph The digraph for which we would like to define
|
|
/// the flow map.
|
|
static FlowMap* createFlowMap(const Digraph& digraph) {
|
|
return new FlowMap(digraph);
|
|
}
|
|
|
|
/// \brief The tolerance used by the algorithm
|
|
///
|
|
/// The tolerance used by the algorithm to handle inexact computation.
|
|
typedef lemon::Tolerance<Value> Tolerance;
|
|
|
|
};
|
|
|
|
/// \ingroup max_flow
|
|
///
|
|
/// \brief Edmonds-Karp algorithms class.
|
|
///
|
|
/// This class provides an implementation of the \e Edmonds-Karp \e
|
|
/// algorithm producing a \ref max_flow "flow of maximum value" in a
|
|
/// digraph \cite clrs01algorithms, \cite amo93networkflows,
|
|
/// \cite edmondskarp72theoretical.
|
|
/// The Edmonds-Karp algorithm is slower than the Preflow
|
|
/// algorithm, but it has an advantage of the step-by-step execution
|
|
/// control with feasible flow solutions. The \e source node, the \e
|
|
/// target node, the \e capacity of the arcs and the \e starting \e
|
|
/// flow value of the arcs should be passed to the algorithm
|
|
/// through the constructor.
|
|
///
|
|
/// The time complexity of the algorithm is \f$ O(nm^2) \f$ in
|
|
/// worst case. Always try the Preflow algorithm instead of this if
|
|
/// you just want to compute the optimal flow.
|
|
///
|
|
/// \tparam GR The type of the digraph the algorithm runs on.
|
|
/// \tparam CAP The type of the capacity map. The default map
|
|
/// type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
|
|
/// \tparam TR The traits class that defines various types used by the
|
|
/// algorithm. By default, it is \ref EdmondsKarpDefaultTraits
|
|
/// "EdmondsKarpDefaultTraits<GR, CAP>".
|
|
/// In most cases, this parameter should not be set directly,
|
|
/// consider to use the named template parameters instead.
|
|
|
|
#ifdef DOXYGEN
|
|
template <typename GR, typename CAP, typename TR>
|
|
#else
|
|
template <typename GR,
|
|
typename CAP = typename GR::template ArcMap<int>,
|
|
typename TR = EdmondsKarpDefaultTraits<GR, CAP> >
|
|
#endif
|
|
class EdmondsKarp {
|
|
public:
|
|
|
|
/// \brief The \ref lemon::EdmondsKarpDefaultTraits "traits class"
|
|
/// of the algorithm.
|
|
typedef TR Traits;
|
|
/// The type of the digraph the algorithm runs on.
|
|
typedef typename Traits::Digraph Digraph;
|
|
/// The type of the capacity map.
|
|
typedef typename Traits::CapacityMap CapacityMap;
|
|
/// The type of the flow values.
|
|
typedef typename Traits::Value Value;
|
|
|
|
/// The type of the flow map.
|
|
typedef typename Traits::FlowMap FlowMap;
|
|
/// The type of the tolerance.
|
|
typedef typename Traits::Tolerance Tolerance;
|
|
|
|
private:
|
|
|
|
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
|
|
typedef typename Digraph::template NodeMap<Arc> PredMap;
|
|
|
|
const Digraph& _graph;
|
|
const CapacityMap* _capacity;
|
|
|
|
Node _source, _target;
|
|
|
|
FlowMap* _flow;
|
|
bool _local_flow;
|
|
|
|
PredMap* _pred;
|
|
std::vector<Node> _queue;
|
|
|
|
Tolerance _tolerance;
|
|
Value _flow_value;
|
|
|
|
void createStructures() {
|
|
if (!_flow) {
|
|
_flow = Traits::createFlowMap(_graph);
|
|
_local_flow = true;
|
|
}
|
|
if (!_pred) {
|
|
_pred = new PredMap(_graph);
|
|
}
|
|
_queue.resize(countNodes(_graph));
|
|
}
|
|
|
|
void destroyStructures() {
|
|
if (_local_flow) {
|
|
delete _flow;
|
|
}
|
|
if (_pred) {
|
|
delete _pred;
|
|
}
|
|
}
|
|
|
|
public:
|
|
|
|
typedef EdmondsKarp Create;
|
|
|
|
///\name Named template parameters
|
|
|
|
///@{
|
|
|
|
template <typename T>
|
|
struct SetFlowMapTraits : public Traits {
|
|
typedef T FlowMap;
|
|
static FlowMap *createFlowMap(const Digraph&) {
|
|
LEMON_ASSERT(false, "FlowMap is not initialized");
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
/// \brief \ref named-templ-param "Named parameter" for setting
|
|
/// FlowMap type
|
|
///
|
|
/// \ref named-templ-param "Named parameter" for setting FlowMap
|
|
/// type
|
|
template <typename T>
|
|
struct SetFlowMap
|
|
: public EdmondsKarp<Digraph, CapacityMap, SetFlowMapTraits<T> > {
|
|
typedef EdmondsKarp<Digraph, CapacityMap, SetFlowMapTraits<T> > Create;
|
|
};
|
|
|
|
/// @}
|
|
|
|
protected:
|
|
|
|
EdmondsKarp() {}
|
|
|
|
public:
|
|
|
|
/// \brief The constructor of the class.
|
|
///
|
|
/// The constructor of the class.
|
|
/// \param digraph The digraph the algorithm runs on.
|
|
/// \param capacity The capacity of the arcs.
|
|
/// \param source The source node.
|
|
/// \param target The target node.
|
|
EdmondsKarp(const Digraph& digraph, const CapacityMap& capacity,
|
|
Node source, Node target)
|
|
: _graph(digraph), _capacity(&capacity), _source(source), _target(target),
|
|
_flow(0), _local_flow(false), _pred(0), _tolerance(), _flow_value()
|
|
{
|
|
LEMON_ASSERT(_source != _target,
|
|
"Flow source and target are the same nodes.");
|
|
}
|
|
|
|
/// \brief Destructor.
|
|
///
|
|
/// Destructor.
|
|
~EdmondsKarp() {
|
|
destroyStructures();
|
|
}
|
|
|
|
/// \brief Sets the capacity map.
|
|
///
|
|
/// Sets the capacity map.
|
|
/// \return <tt>(*this)</tt>
|
|
EdmondsKarp& capacityMap(const CapacityMap& map) {
|
|
_capacity = ↦
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Sets the flow map.
|
|
///
|
|
/// Sets the flow map.
|
|
/// If you don't use this function before calling \ref run() or
|
|
/// \ref init(), an instance will be allocated automatically.
|
|
/// The destructor deallocates this automatically allocated map,
|
|
/// of course.
|
|
/// \return <tt>(*this)</tt>
|
|
EdmondsKarp& flowMap(FlowMap& map) {
|
|
if (_local_flow) {
|
|
delete _flow;
|
|
_local_flow = false;
|
|
}
|
|
_flow = ↦
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Sets the source node.
|
|
///
|
|
/// Sets the source node.
|
|
/// \return <tt>(*this)</tt>
|
|
EdmondsKarp& source(const Node& node) {
|
|
_source = node;
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Sets the target node.
|
|
///
|
|
/// Sets the target node.
|
|
/// \return <tt>(*this)</tt>
|
|
EdmondsKarp& target(const Node& node) {
|
|
_target = node;
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Sets the tolerance used by algorithm.
|
|
///
|
|
/// Sets the tolerance used by algorithm.
|
|
/// \return <tt>(*this)</tt>
|
|
EdmondsKarp& tolerance(const Tolerance& tolerance) {
|
|
_tolerance = tolerance;
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Returns a const reference to the tolerance.
|
|
///
|
|
/// Returns a const reference to the tolerance object used by
|
|
/// the algorithm.
|
|
const Tolerance& tolerance() const {
|
|
return _tolerance;
|
|
}
|
|
|
|
/// \name Execution control
|
|
/// The simplest way to execute the algorithm is to use \ref run().\n
|
|
/// If you need better control on the initial solution or the execution,
|
|
/// you have to call one of the \ref init() functions first, then
|
|
/// \ref start() or multiple times the \ref augment() function.
|
|
|
|
///@{
|
|
|
|
/// \brief Initializes the algorithm.
|
|
///
|
|
/// Initializes the internal data structures and sets the initial
|
|
/// flow to zero on each arc.
|
|
void init() {
|
|
createStructures();
|
|
for (ArcIt it(_graph); it != INVALID; ++it) {
|
|
_flow->set(it, 0);
|
|
}
|
|
_flow_value = 0;
|
|
}
|
|
|
|
/// \brief Initializes the algorithm using the given flow map.
|
|
///
|
|
/// Initializes the internal data structures and sets the initial
|
|
/// flow to the given \c flowMap. The \c flowMap should
|
|
/// contain a feasible flow, i.e. at each node excluding the source
|
|
/// and the target, the incoming flow should be equal to the
|
|
/// outgoing flow.
|
|
template <typename FlowMap>
|
|
void init(const FlowMap& flowMap) {
|
|
createStructures();
|
|
for (ArcIt e(_graph); e != INVALID; ++e) {
|
|
_flow->set(e, flowMap[e]);
|
|
}
|
|
_flow_value = 0;
|
|
for (OutArcIt jt(_graph, _source); jt != INVALID; ++jt) {
|
|
_flow_value += (*_flow)[jt];
|
|
}
|
|
for (InArcIt jt(_graph, _source); jt != INVALID; ++jt) {
|
|
_flow_value -= (*_flow)[jt];
|
|
}
|
|
}
|
|
|
|
/// \brief Initializes the algorithm using the given flow map.
|
|
///
|
|
/// Initializes the internal data structures and sets the initial
|
|
/// flow to the given \c flowMap. The \c flowMap should
|
|
/// contain a feasible flow, i.e. at each node excluding the source
|
|
/// and the target, the incoming flow should be equal to the
|
|
/// outgoing flow.
|
|
/// \return \c false when the given \c flowMap does not contain a
|
|
/// feasible flow.
|
|
template <typename FlowMap>
|
|
bool checkedInit(const FlowMap& flowMap) {
|
|
createStructures();
|
|
for (ArcIt e(_graph); e != INVALID; ++e) {
|
|
_flow->set(e, flowMap[e]);
|
|
}
|
|
for (NodeIt it(_graph); it != INVALID; ++it) {
|
|
if (it == _source || it == _target) continue;
|
|
Value outFlow = 0;
|
|
for (OutArcIt jt(_graph, it); jt != INVALID; ++jt) {
|
|
outFlow += (*_flow)[jt];
|
|
}
|
|
Value inFlow = 0;
|
|
for (InArcIt jt(_graph, it); jt != INVALID; ++jt) {
|
|
inFlow += (*_flow)[jt];
|
|
}
|
|
if (_tolerance.different(outFlow, inFlow)) {
|
|
return false;
|
|
}
|
|
}
|
|
for (ArcIt it(_graph); it != INVALID; ++it) {
|
|
if (_tolerance.less((*_flow)[it], 0)) return false;
|
|
if (_tolerance.less((*_capacity)[it], (*_flow)[it])) return false;
|
|
}
|
|
_flow_value = 0;
|
|
for (OutArcIt jt(_graph, _source); jt != INVALID; ++jt) {
|
|
_flow_value += (*_flow)[jt];
|
|
}
|
|
for (InArcIt jt(_graph, _source); jt != INVALID; ++jt) {
|
|
_flow_value -= (*_flow)[jt];
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// \brief Augments the solution along a shortest path.
|
|
///
|
|
/// Augments the solution along a shortest path. This function searches a
|
|
/// shortest path between the source and the target
|
|
/// in the residual digraph by the Bfs algoritm.
|
|
/// Then it increases the flow on this path with the minimal residual
|
|
/// capacity on the path. If there is no such path, it gives back
|
|
/// false.
|
|
/// \return \c false when the augmenting did not success, i.e. the
|
|
/// current flow is a feasible and optimal solution.
|
|
bool augment() {
|
|
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
_pred->set(n, INVALID);
|
|
}
|
|
|
|
int first = 0, last = 1;
|
|
|
|
_queue[0] = _source;
|
|
_pred->set(_source, OutArcIt(_graph, _source));
|
|
|
|
while (first != last && (*_pred)[_target] == INVALID) {
|
|
Node n = _queue[first++];
|
|
|
|
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
|
Value rem = (*_capacity)[e] - (*_flow)[e];
|
|
Node t = _graph.target(e);
|
|
if (_tolerance.positive(rem) && (*_pred)[t] == INVALID) {
|
|
_pred->set(t, e);
|
|
_queue[last++] = t;
|
|
}
|
|
}
|
|
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
|
Value rem = (*_flow)[e];
|
|
Node t = _graph.source(e);
|
|
if (_tolerance.positive(rem) && (*_pred)[t] == INVALID) {
|
|
_pred->set(t, e);
|
|
_queue[last++] = t;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((*_pred)[_target] != INVALID) {
|
|
Node n = _target;
|
|
Arc e = (*_pred)[n];
|
|
|
|
Value prem = (*_capacity)[e] - (*_flow)[e];
|
|
n = _graph.source(e);
|
|
while (n != _source) {
|
|
e = (*_pred)[n];
|
|
if (_graph.target(e) == n) {
|
|
Value rem = (*_capacity)[e] - (*_flow)[e];
|
|
if (rem < prem) prem = rem;
|
|
n = _graph.source(e);
|
|
} else {
|
|
Value rem = (*_flow)[e];
|
|
if (rem < prem) prem = rem;
|
|
n = _graph.target(e);
|
|
}
|
|
}
|
|
|
|
n = _target;
|
|
e = (*_pred)[n];
|
|
|
|
_flow->set(e, (*_flow)[e] + prem);
|
|
n = _graph.source(e);
|
|
while (n != _source) {
|
|
e = (*_pred)[n];
|
|
if (_graph.target(e) == n) {
|
|
_flow->set(e, (*_flow)[e] + prem);
|
|
n = _graph.source(e);
|
|
} else {
|
|
_flow->set(e, (*_flow)[e] - prem);
|
|
n = _graph.target(e);
|
|
}
|
|
}
|
|
|
|
_flow_value += prem;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// \brief Executes the algorithm
|
|
///
|
|
/// Executes the algorithm by performing augmenting phases until the
|
|
/// optimal solution is reached.
|
|
/// \pre One of the \ref init() functions must be called before
|
|
/// using this function.
|
|
void start() {
|
|
while (augment()) {}
|
|
}
|
|
|
|
/// \brief Runs the algorithm.
|
|
///
|
|
/// Runs the Edmonds-Karp algorithm.
|
|
/// \note ek.run() is just a shortcut of the following code.
|
|
///\code
|
|
/// ek.init();
|
|
/// ek.start();
|
|
///\endcode
|
|
void run() {
|
|
init();
|
|
start();
|
|
}
|
|
|
|
/// @}
|
|
|
|
/// \name Query Functions
|
|
/// The result of the Edmonds-Karp algorithm can be obtained using these
|
|
/// functions.\n
|
|
/// Either \ref run() or \ref start() should be called before using them.
|
|
|
|
///@{
|
|
|
|
/// \brief Returns the value of the maximum flow.
|
|
///
|
|
/// Returns the value of the maximum flow found by the algorithm.
|
|
///
|
|
/// \pre Either \ref run() or \ref init() must be called before
|
|
/// using this function.
|
|
Value flowValue() const {
|
|
return _flow_value;
|
|
}
|
|
|
|
/// \brief Returns the flow value on the given arc.
|
|
///
|
|
/// Returns the flow value on the given arc.
|
|
///
|
|
/// \pre Either \ref run() or \ref init() must be called before
|
|
/// using this function.
|
|
Value flow(const Arc& arc) const {
|
|
return (*_flow)[arc];
|
|
}
|
|
|
|
/// \brief Returns a const reference to the flow map.
|
|
///
|
|
/// Returns a const reference to the arc map storing the found flow.
|
|
///
|
|
/// \pre Either \ref run() or \ref init() must be called before
|
|
/// using this function.
|
|
const FlowMap& flowMap() const {
|
|
return *_flow;
|
|
}
|
|
|
|
/// \brief Returns \c true when the node is on the source side of the
|
|
/// minimum cut.
|
|
///
|
|
/// Returns true when the node is on the source side of the found
|
|
/// minimum cut.
|
|
///
|
|
/// \pre Either \ref run() or \ref init() must be called before
|
|
/// using this function.
|
|
bool minCut(const Node& node) const {
|
|
return ((*_pred)[node] != INVALID) || node == _source;
|
|
}
|
|
|
|
/// \brief Gives back a minimum value cut.
|
|
///
|
|
/// Sets \c cutMap to the characteristic vector of a minimum value
|
|
/// cut. \c cutMap should be a \ref concepts::WriteMap "writable"
|
|
/// node map with \c bool (or convertible) value type.
|
|
///
|
|
/// \note This function calls \ref minCut() for each node, so it runs in
|
|
/// O(n) time.
|
|
///
|
|
/// \pre Either \ref run() or \ref init() must be called before
|
|
/// using this function.
|
|
template <typename CutMap>
|
|
void minCutMap(CutMap& cutMap) const {
|
|
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
cutMap.set(n, (*_pred)[n] != INVALID);
|
|
}
|
|
cutMap.set(_source, true);
|
|
}
|
|
|
|
/// @}
|
|
|
|
};
|
|
|
|
}
|
|
|
|
#endif
|