476 lines
14 KiB
C++
Executable File
476 lines
14 KiB
C++
Executable File
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
|
*
|
|
* This file is a part of LEMON, a generic C++ optimization library.
|
|
*
|
|
* Copyright (C) 2003-2009
|
|
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
|
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
|
*
|
|
* Permission to use, modify and distribute this software is granted
|
|
* provided that this copyright notice appears in all copies. For
|
|
* precise terms see the accompanying LICENSE file.
|
|
*
|
|
* This software is provided "AS IS" with no warranty of any kind,
|
|
* express or implied, and with no claim as to its suitability for any
|
|
* purpose.
|
|
*
|
|
*/
|
|
|
|
#ifndef LEMON_FIB_HEAP_H
|
|
#define LEMON_FIB_HEAP_H
|
|
|
|
///\file
|
|
///\ingroup heaps
|
|
///\brief Fibonacci heap implementation.
|
|
|
|
#include <vector>
|
|
#include <utility>
|
|
#include <functional>
|
|
#include <lemon/math.h>
|
|
|
|
namespace lemon {
|
|
|
|
/// \ingroup heaps
|
|
///
|
|
/// \brief Fibonacci heap data structure.
|
|
///
|
|
/// This class implements the \e Fibonacci \e heap data structure.
|
|
/// It fully conforms to the \ref concepts::Heap "heap concept".
|
|
///
|
|
/// The methods \ref increase() and \ref erase() are not efficient in a
|
|
/// Fibonacci heap. In case of many calls of these operations, it is
|
|
/// better to use other heap structure, e.g. \ref BinHeap "binary heap".
|
|
///
|
|
/// \tparam PR Type of the priorities of the items.
|
|
/// \tparam IM A read-writable item map with \c int values, used
|
|
/// internally to handle the cross references.
|
|
/// \tparam CMP A functor class for comparing the priorities.
|
|
/// The default is \c std::less<PR>.
|
|
#ifdef DOXYGEN
|
|
template <typename PR, typename IM, typename CMP>
|
|
#else
|
|
template <typename PR, typename IM, typename CMP = std::less<PR> >
|
|
#endif
|
|
class FibHeap {
|
|
public:
|
|
|
|
/// Type of the item-int map.
|
|
typedef IM ItemIntMap;
|
|
/// Type of the priorities.
|
|
typedef PR Prio;
|
|
/// Type of the items stored in the heap.
|
|
typedef typename ItemIntMap::Key Item;
|
|
/// Type of the item-priority pairs.
|
|
typedef std::pair<Item,Prio> Pair;
|
|
/// Functor type for comparing the priorities.
|
|
typedef CMP Compare;
|
|
|
|
private:
|
|
class Store;
|
|
|
|
std::vector<Store> _data;
|
|
int _minimum;
|
|
ItemIntMap &_iim;
|
|
Compare _comp;
|
|
int _num;
|
|
|
|
public:
|
|
|
|
/// \brief Type to represent the states of the items.
|
|
///
|
|
/// Each item has a state associated to it. It can be "in heap",
|
|
/// "pre-heap" or "post-heap". The latter two are indifferent from the
|
|
/// heap's point of view, but may be useful to the user.
|
|
///
|
|
/// The item-int map must be initialized in such way that it assigns
|
|
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
|
|
enum State {
|
|
IN_HEAP = 0, ///< = 0.
|
|
PRE_HEAP = -1, ///< = -1.
|
|
POST_HEAP = -2 ///< = -2.
|
|
};
|
|
|
|
/// \brief Constructor.
|
|
///
|
|
/// Constructor.
|
|
/// \param map A map that assigns \c int values to the items.
|
|
/// It is used internally to handle the cross references.
|
|
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
|
|
explicit FibHeap(ItemIntMap &map)
|
|
: _minimum(0), _iim(map), _num() {}
|
|
|
|
/// \brief Constructor.
|
|
///
|
|
/// Constructor.
|
|
/// \param map A map that assigns \c int values to the items.
|
|
/// It is used internally to handle the cross references.
|
|
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
|
|
/// \param comp The function object used for comparing the priorities.
|
|
FibHeap(ItemIntMap &map, const Compare &comp)
|
|
: _minimum(0), _iim(map), _comp(comp), _num() {}
|
|
|
|
/// \brief The number of items stored in the heap.
|
|
///
|
|
/// This function returns the number of items stored in the heap.
|
|
int size() const { return _num; }
|
|
|
|
/// \brief Check if the heap is empty.
|
|
///
|
|
/// This function returns \c true if the heap is empty.
|
|
bool empty() const { return _num==0; }
|
|
|
|
/// \brief Make the heap empty.
|
|
///
|
|
/// This functon makes the heap empty.
|
|
/// It does not change the cross reference map. If you want to reuse
|
|
/// a heap that is not surely empty, you should first clear it and
|
|
/// then you should set the cross reference map to \c PRE_HEAP
|
|
/// for each item.
|
|
void clear() {
|
|
_data.clear(); _minimum = 0; _num = 0;
|
|
}
|
|
|
|
/// \brief Insert an item into the heap with the given priority.
|
|
///
|
|
/// This function inserts the given item into the heap with the
|
|
/// given priority.
|
|
/// \param item The item to insert.
|
|
/// \param prio The priority of the item.
|
|
/// \pre \e item must not be stored in the heap.
|
|
void push (const Item& item, const Prio& prio) {
|
|
int i=_iim[item];
|
|
if ( i < 0 ) {
|
|
int s=_data.size();
|
|
_iim.set( item, s );
|
|
Store st;
|
|
st.name=item;
|
|
_data.push_back(st);
|
|
i=s;
|
|
} else {
|
|
_data[i].parent=_data[i].child=-1;
|
|
_data[i].degree=0;
|
|
_data[i].in=true;
|
|
_data[i].marked=false;
|
|
}
|
|
|
|
if ( _num ) {
|
|
_data[_data[_minimum].right_neighbor].left_neighbor=i;
|
|
_data[i].right_neighbor=_data[_minimum].right_neighbor;
|
|
_data[_minimum].right_neighbor=i;
|
|
_data[i].left_neighbor=_minimum;
|
|
if ( _comp( prio, _data[_minimum].prio) ) _minimum=i;
|
|
} else {
|
|
_data[i].right_neighbor=_data[i].left_neighbor=i;
|
|
_minimum=i;
|
|
}
|
|
_data[i].prio=prio;
|
|
++_num;
|
|
}
|
|
|
|
/// \brief Return the item having minimum priority.
|
|
///
|
|
/// This function returns the item having minimum priority.
|
|
/// \pre The heap must be non-empty.
|
|
Item top() const { return _data[_minimum].name; }
|
|
|
|
/// \brief The minimum priority.
|
|
///
|
|
/// This function returns the minimum priority.
|
|
/// \pre The heap must be non-empty.
|
|
Prio prio() const { return _data[_minimum].prio; }
|
|
|
|
/// \brief Remove the item having minimum priority.
|
|
///
|
|
/// This function removes the item having minimum priority.
|
|
/// \pre The heap must be non-empty.
|
|
void pop() {
|
|
/*The first case is that there are only one root.*/
|
|
if ( _data[_minimum].left_neighbor==_minimum ) {
|
|
_data[_minimum].in=false;
|
|
if ( _data[_minimum].degree!=0 ) {
|
|
makeRoot(_data[_minimum].child);
|
|
_minimum=_data[_minimum].child;
|
|
balance();
|
|
}
|
|
} else {
|
|
int right=_data[_minimum].right_neighbor;
|
|
unlace(_minimum);
|
|
_data[_minimum].in=false;
|
|
if ( _data[_minimum].degree > 0 ) {
|
|
int left=_data[_minimum].left_neighbor;
|
|
int child=_data[_minimum].child;
|
|
int last_child=_data[child].left_neighbor;
|
|
|
|
makeRoot(child);
|
|
|
|
_data[left].right_neighbor=child;
|
|
_data[child].left_neighbor=left;
|
|
_data[right].left_neighbor=last_child;
|
|
_data[last_child].right_neighbor=right;
|
|
}
|
|
_minimum=right;
|
|
balance();
|
|
} // the case where there are more roots
|
|
--_num;
|
|
}
|
|
|
|
/// \brief Remove the given item from the heap.
|
|
///
|
|
/// This function removes the given item from the heap if it is
|
|
/// already stored.
|
|
/// \param item The item to delete.
|
|
/// \pre \e item must be in the heap.
|
|
void erase (const Item& item) {
|
|
int i=_iim[item];
|
|
|
|
if ( i >= 0 && _data[i].in ) {
|
|
if ( _data[i].parent!=-1 ) {
|
|
int p=_data[i].parent;
|
|
cut(i,p);
|
|
cascade(p);
|
|
}
|
|
_minimum=i; //As if its prio would be -infinity
|
|
pop();
|
|
}
|
|
}
|
|
|
|
/// \brief The priority of the given item.
|
|
///
|
|
/// This function returns the priority of the given item.
|
|
/// \param item The item.
|
|
/// \pre \e item must be in the heap.
|
|
Prio operator[](const Item& item) const {
|
|
return _data[_iim[item]].prio;
|
|
}
|
|
|
|
/// \brief Set the priority of an item or insert it, if it is
|
|
/// not stored in the heap.
|
|
///
|
|
/// This method sets the priority of the given item if it is
|
|
/// already stored in the heap. Otherwise it inserts the given
|
|
/// item into the heap with the given priority.
|
|
/// \param item The item.
|
|
/// \param prio The priority.
|
|
void set (const Item& item, const Prio& prio) {
|
|
int i=_iim[item];
|
|
if ( i >= 0 && _data[i].in ) {
|
|
if ( _comp(prio, _data[i].prio) ) decrease(item, prio);
|
|
if ( _comp(_data[i].prio, prio) ) increase(item, prio);
|
|
} else push(item, prio);
|
|
}
|
|
|
|
/// \brief Decrease the priority of an item to the given value.
|
|
///
|
|
/// This function decreases the priority of an item to the given value.
|
|
/// \param item The item.
|
|
/// \param prio The priority.
|
|
/// \pre \e item must be stored in the heap with priority at least \e prio.
|
|
void decrease (const Item& item, const Prio& prio) {
|
|
int i=_iim[item];
|
|
_data[i].prio=prio;
|
|
int p=_data[i].parent;
|
|
|
|
if ( p!=-1 && _comp(prio, _data[p].prio) ) {
|
|
cut(i,p);
|
|
cascade(p);
|
|
}
|
|
if ( _comp(prio, _data[_minimum].prio) ) _minimum=i;
|
|
}
|
|
|
|
/// \brief Increase the priority of an item to the given value.
|
|
///
|
|
/// This function increases the priority of an item to the given value.
|
|
/// \param item The item.
|
|
/// \param prio The priority.
|
|
/// \pre \e item must be stored in the heap with priority at most \e prio.
|
|
void increase (const Item& item, const Prio& prio) {
|
|
erase(item);
|
|
push(item, prio);
|
|
}
|
|
|
|
/// \brief Return the state of an item.
|
|
///
|
|
/// This method returns \c PRE_HEAP if the given item has never
|
|
/// been in the heap, \c IN_HEAP if it is in the heap at the moment,
|
|
/// and \c POST_HEAP otherwise.
|
|
/// In the latter case it is possible that the item will get back
|
|
/// to the heap again.
|
|
/// \param item The item.
|
|
State state(const Item &item) const {
|
|
int i=_iim[item];
|
|
if( i>=0 ) {
|
|
if ( _data[i].in ) i=0;
|
|
else i=-2;
|
|
}
|
|
return State(i);
|
|
}
|
|
|
|
/// \brief Set the state of an item in the heap.
|
|
///
|
|
/// This function sets the state of the given item in the heap.
|
|
/// It can be used to manually clear the heap when it is important
|
|
/// to achive better time complexity.
|
|
/// \param i The item.
|
|
/// \param st The state. It should not be \c IN_HEAP.
|
|
void state(const Item& i, State st) {
|
|
switch (st) {
|
|
case POST_HEAP:
|
|
case PRE_HEAP:
|
|
if (state(i) == IN_HEAP) {
|
|
erase(i);
|
|
}
|
|
_iim[i] = st;
|
|
break;
|
|
case IN_HEAP:
|
|
break;
|
|
}
|
|
}
|
|
|
|
private:
|
|
|
|
void balance() {
|
|
|
|
int maxdeg=int( std::floor( 2.08*log(double(_data.size()))))+1;
|
|
|
|
std::vector<int> A(maxdeg,-1);
|
|
|
|
/*
|
|
*Recall that now minimum does not point to the minimum prio element.
|
|
*We set minimum to this during balance().
|
|
*/
|
|
int anchor=_data[_minimum].left_neighbor;
|
|
int next=_minimum;
|
|
bool end=false;
|
|
|
|
do {
|
|
int active=next;
|
|
if ( anchor==active ) end=true;
|
|
int d=_data[active].degree;
|
|
next=_data[active].right_neighbor;
|
|
|
|
while (A[d]!=-1) {
|
|
if( _comp(_data[active].prio, _data[A[d]].prio) ) {
|
|
fuse(active,A[d]);
|
|
} else {
|
|
fuse(A[d],active);
|
|
active=A[d];
|
|
}
|
|
A[d]=-1;
|
|
++d;
|
|
}
|
|
A[d]=active;
|
|
} while ( !end );
|
|
|
|
|
|
while ( _data[_minimum].parent >=0 )
|
|
_minimum=_data[_minimum].parent;
|
|
int s=_minimum;
|
|
int m=_minimum;
|
|
do {
|
|
if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s;
|
|
s=_data[s].right_neighbor;
|
|
} while ( s != m );
|
|
}
|
|
|
|
void makeRoot(int c) {
|
|
int s=c;
|
|
do {
|
|
_data[s].parent=-1;
|
|
s=_data[s].right_neighbor;
|
|
} while ( s != c );
|
|
}
|
|
|
|
void cut(int a, int b) {
|
|
/*
|
|
*Replacing a from the children of b.
|
|
*/
|
|
--_data[b].degree;
|
|
|
|
if ( _data[b].degree !=0 ) {
|
|
int child=_data[b].child;
|
|
if ( child==a )
|
|
_data[b].child=_data[child].right_neighbor;
|
|
unlace(a);
|
|
}
|
|
|
|
|
|
/*Lacing a to the roots.*/
|
|
int right=_data[_minimum].right_neighbor;
|
|
_data[_minimum].right_neighbor=a;
|
|
_data[a].left_neighbor=_minimum;
|
|
_data[a].right_neighbor=right;
|
|
_data[right].left_neighbor=a;
|
|
|
|
_data[a].parent=-1;
|
|
_data[a].marked=false;
|
|
}
|
|
|
|
void cascade(int a) {
|
|
if ( _data[a].parent!=-1 ) {
|
|
int p=_data[a].parent;
|
|
|
|
if ( _data[a].marked==false ) _data[a].marked=true;
|
|
else {
|
|
cut(a,p);
|
|
cascade(p);
|
|
}
|
|
}
|
|
}
|
|
|
|
void fuse(int a, int b) {
|
|
unlace(b);
|
|
|
|
/*Lacing b under a.*/
|
|
_data[b].parent=a;
|
|
|
|
if (_data[a].degree==0) {
|
|
_data[b].left_neighbor=b;
|
|
_data[b].right_neighbor=b;
|
|
_data[a].child=b;
|
|
} else {
|
|
int child=_data[a].child;
|
|
int last_child=_data[child].left_neighbor;
|
|
_data[child].left_neighbor=b;
|
|
_data[b].right_neighbor=child;
|
|
_data[last_child].right_neighbor=b;
|
|
_data[b].left_neighbor=last_child;
|
|
}
|
|
|
|
++_data[a].degree;
|
|
|
|
_data[b].marked=false;
|
|
}
|
|
|
|
/*
|
|
*It is invoked only if a has siblings.
|
|
*/
|
|
void unlace(int a) {
|
|
int leftn=_data[a].left_neighbor;
|
|
int rightn=_data[a].right_neighbor;
|
|
_data[leftn].right_neighbor=rightn;
|
|
_data[rightn].left_neighbor=leftn;
|
|
}
|
|
|
|
|
|
class Store {
|
|
friend class FibHeap;
|
|
|
|
Item name;
|
|
int parent;
|
|
int left_neighbor;
|
|
int right_neighbor;
|
|
int child;
|
|
int degree;
|
|
bool marked;
|
|
bool in;
|
|
Prio prio;
|
|
|
|
Store() : parent(-1), child(-1), degree(), marked(false), in(true) {}
|
|
};
|
|
};
|
|
|
|
} //namespace lemon
|
|
|
|
#endif //LEMON_FIB_HEAP_H
|
|
|