dust3d/thirdparty/QuadriFlow/3rd/lemon-1.3.1/lemon/glpk.cc

1013 lines
24 KiB
C++
Executable File

/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2013
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
///\file
///\brief Implementation of the LEMON GLPK LP and MIP solver interface.
#include <lemon/glpk.h>
#include <glpk.h>
#include <lemon/assert.h>
namespace lemon {
// GlpkBase members
GlpkBase::GlpkBase() : LpBase() {
lp = glp_create_prob();
glp_create_index(lp);
messageLevel(MESSAGE_NOTHING);
}
GlpkBase::GlpkBase(const GlpkBase &other) : LpBase() {
lp = glp_create_prob();
glp_copy_prob(lp, other.lp, GLP_ON);
glp_create_index(lp);
rows = other.rows;
cols = other.cols;
messageLevel(MESSAGE_NOTHING);
}
GlpkBase::~GlpkBase() {
glp_delete_prob(lp);
}
int GlpkBase::_addCol() {
int i = glp_add_cols(lp, 1);
glp_set_col_bnds(lp, i, GLP_FR, 0.0, 0.0);
return i;
}
int GlpkBase::_addRow() {
int i = glp_add_rows(lp, 1);
glp_set_row_bnds(lp, i, GLP_FR, 0.0, 0.0);
return i;
}
int GlpkBase::_addRow(Value lo, ExprIterator b,
ExprIterator e, Value up) {
int i = glp_add_rows(lp, 1);
if (lo == -INF) {
if (up == INF) {
glp_set_row_bnds(lp, i, GLP_FR, lo, up);
} else {
glp_set_row_bnds(lp, i, GLP_UP, lo, up);
}
} else {
if (up == INF) {
glp_set_row_bnds(lp, i, GLP_LO, lo, up);
} else if (lo != up) {
glp_set_row_bnds(lp, i, GLP_DB, lo, up);
} else {
glp_set_row_bnds(lp, i, GLP_FX, lo, up);
}
}
std::vector<int> indexes;
std::vector<Value> values;
indexes.push_back(0);
values.push_back(0);
for(ExprIterator it = b; it != e; ++it) {
indexes.push_back(it->first);
values.push_back(it->second);
}
glp_set_mat_row(lp, i, values.size() - 1,
&indexes.front(), &values.front());
return i;
}
void GlpkBase::_eraseCol(int i) {
int ca[2];
ca[1] = i;
glp_del_cols(lp, 1, ca);
}
void GlpkBase::_eraseRow(int i) {
int ra[2];
ra[1] = i;
glp_del_rows(lp, 1, ra);
}
void GlpkBase::_eraseColId(int i) {
cols.eraseIndex(i);
cols.shiftIndices(i);
}
void GlpkBase::_eraseRowId(int i) {
rows.eraseIndex(i);
rows.shiftIndices(i);
}
void GlpkBase::_getColName(int c, std::string& name) const {
const char *str = glp_get_col_name(lp, c);
if (str) name = str;
else name.clear();
}
void GlpkBase::_setColName(int c, const std::string & name) {
glp_set_col_name(lp, c, const_cast<char*>(name.c_str()));
}
int GlpkBase::_colByName(const std::string& name) const {
int k = glp_find_col(lp, const_cast<char*>(name.c_str()));
return k > 0 ? k : -1;
}
void GlpkBase::_getRowName(int r, std::string& name) const {
const char *str = glp_get_row_name(lp, r);
if (str) name = str;
else name.clear();
}
void GlpkBase::_setRowName(int r, const std::string & name) {
glp_set_row_name(lp, r, const_cast<char*>(name.c_str()));
}
int GlpkBase::_rowByName(const std::string& name) const {
int k = glp_find_row(lp, const_cast<char*>(name.c_str()));
return k > 0 ? k : -1;
}
void GlpkBase::_setRowCoeffs(int i, ExprIterator b, ExprIterator e) {
std::vector<int> indexes;
std::vector<Value> values;
indexes.push_back(0);
values.push_back(0);
for(ExprIterator it = b; it != e; ++it) {
indexes.push_back(it->first);
values.push_back(it->second);
}
glp_set_mat_row(lp, i, values.size() - 1,
&indexes.front(), &values.front());
}
void GlpkBase::_getRowCoeffs(int ix, InsertIterator b) const {
int length = glp_get_mat_row(lp, ix, 0, 0);
std::vector<int> indexes(length + 1);
std::vector<Value> values(length + 1);
glp_get_mat_row(lp, ix, &indexes.front(), &values.front());
for (int i = 1; i <= length; ++i) {
*b = std::make_pair(indexes[i], values[i]);
++b;
}
}
void GlpkBase::_setColCoeffs(int ix, ExprIterator b,
ExprIterator e) {
std::vector<int> indexes;
std::vector<Value> values;
indexes.push_back(0);
values.push_back(0);
for(ExprIterator it = b; it != e; ++it) {
indexes.push_back(it->first);
values.push_back(it->second);
}
glp_set_mat_col(lp, ix, values.size() - 1,
&indexes.front(), &values.front());
}
void GlpkBase::_getColCoeffs(int ix, InsertIterator b) const {
int length = glp_get_mat_col(lp, ix, 0, 0);
std::vector<int> indexes(length + 1);
std::vector<Value> values(length + 1);
glp_get_mat_col(lp, ix, &indexes.front(), &values.front());
for (int i = 1; i <= length; ++i) {
*b = std::make_pair(indexes[i], values[i]);
++b;
}
}
void GlpkBase::_setCoeff(int ix, int jx, Value value) {
if (glp_get_num_cols(lp) < glp_get_num_rows(lp)) {
int length = glp_get_mat_row(lp, ix, 0, 0);
std::vector<int> indexes(length + 2);
std::vector<Value> values(length + 2);
glp_get_mat_row(lp, ix, &indexes.front(), &values.front());
//The following code does not suppose that the elements of the
//array indexes are sorted
bool found = false;
for (int i = 1; i <= length; ++i) {
if (indexes[i] == jx) {
found = true;
values[i] = value;
break;
}
}
if (!found) {
++length;
indexes[length] = jx;
values[length] = value;
}
glp_set_mat_row(lp, ix, length, &indexes.front(), &values.front());
} else {
int length = glp_get_mat_col(lp, jx, 0, 0);
std::vector<int> indexes(length + 2);
std::vector<Value> values(length + 2);
glp_get_mat_col(lp, jx, &indexes.front(), &values.front());
//The following code does not suppose that the elements of the
//array indexes are sorted
bool found = false;
for (int i = 1; i <= length; ++i) {
if (indexes[i] == ix) {
found = true;
values[i] = value;
break;
}
}
if (!found) {
++length;
indexes[length] = ix;
values[length] = value;
}
glp_set_mat_col(lp, jx, length, &indexes.front(), &values.front());
}
}
GlpkBase::Value GlpkBase::_getCoeff(int ix, int jx) const {
int length = glp_get_mat_row(lp, ix, 0, 0);
std::vector<int> indexes(length + 1);
std::vector<Value> values(length + 1);
glp_get_mat_row(lp, ix, &indexes.front(), &values.front());
for (int i = 1; i <= length; ++i) {
if (indexes[i] == jx) {
return values[i];
}
}
return 0;
}
void GlpkBase::_setColLowerBound(int i, Value lo) {
LEMON_ASSERT(lo != INF, "Invalid bound");
int b = glp_get_col_type(lp, i);
double up = glp_get_col_ub(lp, i);
if (lo == -INF) {
switch (b) {
case GLP_FR:
case GLP_LO:
glp_set_col_bnds(lp, i, GLP_FR, lo, up);
break;
case GLP_UP:
break;
case GLP_DB:
case GLP_FX:
glp_set_col_bnds(lp, i, GLP_UP, lo, up);
break;
default:
break;
}
} else {
switch (b) {
case GLP_FR:
case GLP_LO:
glp_set_col_bnds(lp, i, GLP_LO, lo, up);
break;
case GLP_UP:
case GLP_DB:
case GLP_FX:
if (lo == up)
glp_set_col_bnds(lp, i, GLP_FX, lo, up);
else
glp_set_col_bnds(lp, i, GLP_DB, lo, up);
break;
default:
break;
}
}
}
GlpkBase::Value GlpkBase::_getColLowerBound(int i) const {
int b = glp_get_col_type(lp, i);
switch (b) {
case GLP_LO:
case GLP_DB:
case GLP_FX:
return glp_get_col_lb(lp, i);
default:
return -INF;
}
}
void GlpkBase::_setColUpperBound(int i, Value up) {
LEMON_ASSERT(up != -INF, "Invalid bound");
int b = glp_get_col_type(lp, i);
double lo = glp_get_col_lb(lp, i);
if (up == INF) {
switch (b) {
case GLP_FR:
case GLP_LO:
break;
case GLP_UP:
glp_set_col_bnds(lp, i, GLP_FR, lo, up);
break;
case GLP_DB:
case GLP_FX:
glp_set_col_bnds(lp, i, GLP_LO, lo, up);
break;
default:
break;
}
} else {
switch (b) {
case GLP_FR:
glp_set_col_bnds(lp, i, GLP_UP, lo, up);
break;
case GLP_UP:
glp_set_col_bnds(lp, i, GLP_UP, lo, up);
break;
case GLP_LO:
case GLP_DB:
case GLP_FX:
if (lo == up)
glp_set_col_bnds(lp, i, GLP_FX, lo, up);
else
glp_set_col_bnds(lp, i, GLP_DB, lo, up);
break;
default:
break;
}
}
}
GlpkBase::Value GlpkBase::_getColUpperBound(int i) const {
int b = glp_get_col_type(lp, i);
switch (b) {
case GLP_UP:
case GLP_DB:
case GLP_FX:
return glp_get_col_ub(lp, i);
default:
return INF;
}
}
void GlpkBase::_setRowLowerBound(int i, Value lo) {
LEMON_ASSERT(lo != INF, "Invalid bound");
int b = glp_get_row_type(lp, i);
double up = glp_get_row_ub(lp, i);
if (lo == -INF) {
switch (b) {
case GLP_FR:
case GLP_LO:
glp_set_row_bnds(lp, i, GLP_FR, lo, up);
break;
case GLP_UP:
break;
case GLP_DB:
case GLP_FX:
glp_set_row_bnds(lp, i, GLP_UP, lo, up);
break;
default:
break;
}
} else {
switch (b) {
case GLP_FR:
case GLP_LO:
glp_set_row_bnds(lp, i, GLP_LO, lo, up);
break;
case GLP_UP:
case GLP_DB:
case GLP_FX:
if (lo == up)
glp_set_row_bnds(lp, i, GLP_FX, lo, up);
else
glp_set_row_bnds(lp, i, GLP_DB, lo, up);
break;
default:
break;
}
}
}
GlpkBase::Value GlpkBase::_getRowLowerBound(int i) const {
int b = glp_get_row_type(lp, i);
switch (b) {
case GLP_LO:
case GLP_DB:
case GLP_FX:
return glp_get_row_lb(lp, i);
default:
return -INF;
}
}
void GlpkBase::_setRowUpperBound(int i, Value up) {
LEMON_ASSERT(up != -INF, "Invalid bound");
int b = glp_get_row_type(lp, i);
double lo = glp_get_row_lb(lp, i);
if (up == INF) {
switch (b) {
case GLP_FR:
case GLP_LO:
break;
case GLP_UP:
glp_set_row_bnds(lp, i, GLP_FR, lo, up);
break;
case GLP_DB:
case GLP_FX:
glp_set_row_bnds(lp, i, GLP_LO, lo, up);
break;
default:
break;
}
} else {
switch (b) {
case GLP_FR:
glp_set_row_bnds(lp, i, GLP_UP, lo, up);
break;
case GLP_UP:
glp_set_row_bnds(lp, i, GLP_UP, lo, up);
break;
case GLP_LO:
case GLP_DB:
case GLP_FX:
if (lo == up)
glp_set_row_bnds(lp, i, GLP_FX, lo, up);
else
glp_set_row_bnds(lp, i, GLP_DB, lo, up);
break;
default:
break;
}
}
}
GlpkBase::Value GlpkBase::_getRowUpperBound(int i) const {
int b = glp_get_row_type(lp, i);
switch (b) {
case GLP_UP:
case GLP_DB:
case GLP_FX:
return glp_get_row_ub(lp, i);
default:
return INF;
}
}
void GlpkBase::_setObjCoeffs(ExprIterator b, ExprIterator e) {
for (int i = 1; i <= glp_get_num_cols(lp); ++i) {
glp_set_obj_coef(lp, i, 0.0);
}
for (ExprIterator it = b; it != e; ++it) {
glp_set_obj_coef(lp, it->first, it->second);
}
}
void GlpkBase::_getObjCoeffs(InsertIterator b) const {
for (int i = 1; i <= glp_get_num_cols(lp); ++i) {
Value val = glp_get_obj_coef(lp, i);
if (val != 0.0) {
*b = std::make_pair(i, val);
++b;
}
}
}
void GlpkBase::_setObjCoeff(int i, Value obj_coef) {
//i = 0 means the constant term (shift)
glp_set_obj_coef(lp, i, obj_coef);
}
GlpkBase::Value GlpkBase::_getObjCoeff(int i) const {
//i = 0 means the constant term (shift)
return glp_get_obj_coef(lp, i);
}
void GlpkBase::_setSense(GlpkBase::Sense sense) {
switch (sense) {
case MIN:
glp_set_obj_dir(lp, GLP_MIN);
break;
case MAX:
glp_set_obj_dir(lp, GLP_MAX);
break;
}
}
GlpkBase::Sense GlpkBase::_getSense() const {
switch(glp_get_obj_dir(lp)) {
case GLP_MIN:
return MIN;
case GLP_MAX:
return MAX;
default:
LEMON_ASSERT(false, "Wrong sense");
return GlpkBase::Sense();
}
}
void GlpkBase::_clear() {
glp_erase_prob(lp);
}
void GlpkBase::freeEnv() {
glp_free_env();
}
void GlpkBase::_messageLevel(MessageLevel level) {
switch (level) {
case MESSAGE_NOTHING:
_message_level = GLP_MSG_OFF;
break;
case MESSAGE_ERROR:
_message_level = GLP_MSG_ERR;
break;
case MESSAGE_WARNING:
_message_level = GLP_MSG_ERR;
break;
case MESSAGE_NORMAL:
_message_level = GLP_MSG_ON;
break;
case MESSAGE_VERBOSE:
_message_level = GLP_MSG_ALL;
break;
}
}
void GlpkBase::_write(std::string file, std::string format) const
{
if(format == "MPS")
glp_write_mps(lp, GLP_MPS_FILE, 0, file.c_str());
else if(format == "LP")
glp_write_lp(lp, 0, file.c_str());
else throw UnsupportedFormatError(format);
}
GlpkBase::FreeEnvHelper GlpkBase::freeEnvHelper;
// GlpkLp members
GlpkLp::GlpkLp()
: LpBase(), LpSolver(), GlpkBase() {
presolver(false);
}
GlpkLp::GlpkLp(const GlpkLp& other)
: LpBase(other), LpSolver(other), GlpkBase(other) {
presolver(false);
}
GlpkLp* GlpkLp::newSolver() const { return new GlpkLp; }
GlpkLp* GlpkLp::cloneSolver() const { return new GlpkLp(*this); }
const char* GlpkLp::_solverName() const { return "GlpkLp"; }
void GlpkLp::_clear_temporals() {
_primal_ray.clear();
_dual_ray.clear();
}
GlpkLp::SolveExitStatus GlpkLp::_solve() {
return solvePrimal();
}
GlpkLp::SolveExitStatus GlpkLp::solvePrimal() {
_clear_temporals();
glp_smcp smcp;
glp_init_smcp(&smcp);
smcp.msg_lev = _message_level;
smcp.presolve = _presolve;
// If the basis is not valid we get an error return value.
// In this case we can try to create a new basis.
switch (glp_simplex(lp, &smcp)) {
case 0:
break;
case GLP_EBADB:
case GLP_ESING:
case GLP_ECOND:
glp_term_out(false);
glp_adv_basis(lp, 0);
glp_term_out(true);
if (glp_simplex(lp, &smcp) != 0) return UNSOLVED;
break;
default:
return UNSOLVED;
}
return SOLVED;
}
GlpkLp::SolveExitStatus GlpkLp::solveDual() {
_clear_temporals();
glp_smcp smcp;
glp_init_smcp(&smcp);
smcp.msg_lev = _message_level;
smcp.meth = GLP_DUAL;
smcp.presolve = _presolve;
// If the basis is not valid we get an error return value.
// In this case we can try to create a new basis.
switch (glp_simplex(lp, &smcp)) {
case 0:
break;
case GLP_EBADB:
case GLP_ESING:
case GLP_ECOND:
glp_term_out(false);
glp_adv_basis(lp, 0);
glp_term_out(true);
if (glp_simplex(lp, &smcp) != 0) return UNSOLVED;
break;
default:
return UNSOLVED;
}
return SOLVED;
}
GlpkLp::Value GlpkLp::_getPrimal(int i) const {
return glp_get_col_prim(lp, i);
}
GlpkLp::Value GlpkLp::_getDual(int i) const {
return glp_get_row_dual(lp, i);
}
GlpkLp::Value GlpkLp::_getPrimalValue() const {
return glp_get_obj_val(lp);
}
GlpkLp::VarStatus GlpkLp::_getColStatus(int i) const {
switch (glp_get_col_stat(lp, i)) {
case GLP_BS:
return BASIC;
case GLP_UP:
return UPPER;
case GLP_LO:
return LOWER;
case GLP_NF:
return FREE;
case GLP_NS:
return FIXED;
default:
LEMON_ASSERT(false, "Wrong column status");
return GlpkLp::VarStatus();
}
}
GlpkLp::VarStatus GlpkLp::_getRowStatus(int i) const {
switch (glp_get_row_stat(lp, i)) {
case GLP_BS:
return BASIC;
case GLP_UP:
return UPPER;
case GLP_LO:
return LOWER;
case GLP_NF:
return FREE;
case GLP_NS:
return FIXED;
default:
LEMON_ASSERT(false, "Wrong row status");
return GlpkLp::VarStatus();
}
}
GlpkLp::Value GlpkLp::_getPrimalRay(int i) const {
if (_primal_ray.empty()) {
int row_num = glp_get_num_rows(lp);
int col_num = glp_get_num_cols(lp);
_primal_ray.resize(col_num + 1, 0.0);
int index = glp_get_unbnd_ray(lp);
if (index != 0) {
// The primal ray is found in primal simplex second phase
LEMON_ASSERT((index <= row_num ? glp_get_row_stat(lp, index) :
glp_get_col_stat(lp, index - row_num)) != GLP_BS,
"Wrong primal ray");
bool negate = glp_get_obj_dir(lp) == GLP_MAX;
if (index > row_num) {
_primal_ray[index - row_num] = 1.0;
if (glp_get_col_dual(lp, index - row_num) > 0) {
negate = !negate;
}
} else {
if (glp_get_row_dual(lp, index) > 0) {
negate = !negate;
}
}
std::vector<int> ray_indexes(row_num + 1);
std::vector<Value> ray_values(row_num + 1);
int ray_length = glp_eval_tab_col(lp, index, &ray_indexes.front(),
&ray_values.front());
for (int i = 1; i <= ray_length; ++i) {
if (ray_indexes[i] > row_num) {
_primal_ray[ray_indexes[i] - row_num] = ray_values[i];
}
}
if (negate) {
for (int i = 1; i <= col_num; ++i) {
_primal_ray[i] = - _primal_ray[i];
}
}
} else {
for (int i = 1; i <= col_num; ++i) {
_primal_ray[i] = glp_get_col_prim(lp, i);
}
}
}
return _primal_ray[i];
}
GlpkLp::Value GlpkLp::_getDualRay(int i) const {
if (_dual_ray.empty()) {
int row_num = glp_get_num_rows(lp);
_dual_ray.resize(row_num + 1, 0.0);
int index = glp_get_unbnd_ray(lp);
if (index != 0) {
// The dual ray is found in dual simplex second phase
LEMON_ASSERT((index <= row_num ? glp_get_row_stat(lp, index) :
glp_get_col_stat(lp, index - row_num)) == GLP_BS,
"Wrong dual ray");
int idx;
bool negate = false;
if (index > row_num) {
idx = glp_get_col_bind(lp, index - row_num);
if (glp_get_col_prim(lp, index - row_num) >
glp_get_col_ub(lp, index - row_num)) {
negate = true;
}
} else {
idx = glp_get_row_bind(lp, index);
if (glp_get_row_prim(lp, index) > glp_get_row_ub(lp, index)) {
negate = true;
}
}
_dual_ray[idx] = negate ? - 1.0 : 1.0;
glp_btran(lp, &_dual_ray.front());
} else {
double eps = 1e-7;
// The dual ray is found in primal simplex first phase
// We assume that the glpk minimizes the slack to get feasible solution
for (int i = 1; i <= row_num; ++i) {
int index = glp_get_bhead(lp, i);
if (index <= row_num) {
double res = glp_get_row_prim(lp, index);
if (res > glp_get_row_ub(lp, index) + eps) {
_dual_ray[i] = -1;
} else if (res < glp_get_row_lb(lp, index) - eps) {
_dual_ray[i] = 1;
} else {
_dual_ray[i] = 0;
}
_dual_ray[i] *= glp_get_rii(lp, index);
} else {
double res = glp_get_col_prim(lp, index - row_num);
if (res > glp_get_col_ub(lp, index - row_num) + eps) {
_dual_ray[i] = -1;
} else if (res < glp_get_col_lb(lp, index - row_num) - eps) {
_dual_ray[i] = 1;
} else {
_dual_ray[i] = 0;
}
_dual_ray[i] /= glp_get_sjj(lp, index - row_num);
}
}
glp_btran(lp, &_dual_ray.front());
for (int i = 1; i <= row_num; ++i) {
_dual_ray[i] /= glp_get_rii(lp, i);
}
}
}
return _dual_ray[i];
}
GlpkLp::ProblemType GlpkLp::_getPrimalType() const {
if (glp_get_status(lp) == GLP_OPT)
return OPTIMAL;
switch (glp_get_prim_stat(lp)) {
case GLP_UNDEF:
return UNDEFINED;
case GLP_FEAS:
case GLP_INFEAS:
if (glp_get_dual_stat(lp) == GLP_NOFEAS) {
return UNBOUNDED;
} else {
return UNDEFINED;
}
case GLP_NOFEAS:
return INFEASIBLE;
default:
LEMON_ASSERT(false, "Wrong primal type");
return GlpkLp::ProblemType();
}
}
GlpkLp::ProblemType GlpkLp::_getDualType() const {
if (glp_get_status(lp) == GLP_OPT)
return OPTIMAL;
switch (glp_get_dual_stat(lp)) {
case GLP_UNDEF:
return UNDEFINED;
case GLP_FEAS:
case GLP_INFEAS:
if (glp_get_prim_stat(lp) == GLP_NOFEAS) {
return UNBOUNDED;
} else {
return UNDEFINED;
}
case GLP_NOFEAS:
return INFEASIBLE;
default:
LEMON_ASSERT(false, "Wrong primal type");
return GlpkLp::ProblemType();
}
}
void GlpkLp::presolver(bool presolve) {
_presolve = presolve;
}
// GlpkMip members
GlpkMip::GlpkMip()
: LpBase(), MipSolver(), GlpkBase() {
}
GlpkMip::GlpkMip(const GlpkMip& other)
: LpBase(), MipSolver(), GlpkBase(other) {
}
void GlpkMip::_setColType(int i, GlpkMip::ColTypes col_type) {
switch (col_type) {
case INTEGER:
glp_set_col_kind(lp, i, GLP_IV);
break;
case REAL:
glp_set_col_kind(lp, i, GLP_CV);
break;
}
}
GlpkMip::ColTypes GlpkMip::_getColType(int i) const {
switch (glp_get_col_kind(lp, i)) {
case GLP_IV:
case GLP_BV:
return INTEGER;
default:
return REAL;
}
}
GlpkMip::SolveExitStatus GlpkMip::_solve() {
glp_smcp smcp;
glp_init_smcp(&smcp);
smcp.msg_lev = _message_level;
smcp.meth = GLP_DUAL;
// If the basis is not valid we get an error return value.
// In this case we can try to create a new basis.
switch (glp_simplex(lp, &smcp)) {
case 0:
break;
case GLP_EBADB:
case GLP_ESING:
case GLP_ECOND:
glp_term_out(false);
glp_adv_basis(lp, 0);
glp_term_out(true);
if (glp_simplex(lp, &smcp) != 0) return UNSOLVED;
break;
default:
return UNSOLVED;
}
if (glp_get_status(lp) != GLP_OPT) return SOLVED;
glp_iocp iocp;
glp_init_iocp(&iocp);
iocp.msg_lev = _message_level;
if (glp_intopt(lp, &iocp) != 0) return UNSOLVED;
return SOLVED;
}
GlpkMip::ProblemType GlpkMip::_getType() const {
switch (glp_get_status(lp)) {
case GLP_OPT:
switch (glp_mip_status(lp)) {
case GLP_UNDEF:
return UNDEFINED;
case GLP_NOFEAS:
return INFEASIBLE;
case GLP_FEAS:
return FEASIBLE;
case GLP_OPT:
return OPTIMAL;
default:
LEMON_ASSERT(false, "Wrong problem type.");
return GlpkMip::ProblemType();
}
case GLP_NOFEAS:
return INFEASIBLE;
case GLP_INFEAS:
case GLP_FEAS:
if (glp_get_dual_stat(lp) == GLP_NOFEAS) {
return UNBOUNDED;
} else {
return UNDEFINED;
}
default:
LEMON_ASSERT(false, "Wrong problem type.");
return GlpkMip::ProblemType();
}
}
GlpkMip::Value GlpkMip::_getSol(int i) const {
return glp_mip_col_val(lp, i);
}
GlpkMip::Value GlpkMip::_getSolValue() const {
return glp_mip_obj_val(lp);
}
GlpkMip* GlpkMip::newSolver() const { return new GlpkMip; }
GlpkMip* GlpkMip::cloneSolver() const {return new GlpkMip(*this); }
const char* GlpkMip::_solverName() const { return "GlpkMip"; }
} //END OF NAMESPACE LEMON